
QUANTILE REGRESSION METHODS:

AN R VINAIGRETTE

ROGER KOENKER

1. Introduction

In the beginning data was scarce and life was hard. Imagine estimating quantile regression
models in 1975 for the infamous ”stackloss” data, 21 observations with 4 covariates, on a
CDC 7600 the size of a small New York kitchen with SAS linear programming algorithms and
punch cards. Gradually, data became more plentiful and interacting with computers became
easier, in the process methods of estimation and inference for quantile regression became
more sophisticated. This note is intended to provide some guidance for selecting among the
various methods offered by the author’s R package quantreg depending on problem size and
other characteristics. This is a prelude, I hope, to some constructive new development for the
package. In the immortal words of Marx’s last thesis on Feuerbach: ”Philosphers have only
tried to understand the world, our task is to change it.” But it usually helps to understand
it first.

Figure 1 offers an overview of the scope of the problem. Algorithms for point estimation of
quantile regression parameters appear in blue, summary methods for assessing the precision
of these estimates appear in pink, among these there are several distinct bootstrap methods
appearing in brown, and for each bootstrap method there are one or more bootstrap algo-
rithms available. Quantile regression models can be roughly characterized by four features:
the sample size, n; the parametric dimension of the model, p; the degree of sparsity of the
design matrix; and the number of quantiles to be estimated. Our objective is to offer some
advice on how to select methods depending upon these features.

2. Algorithms for Point Estimation

Edgeworth described an algorithm for median regression in 1888, but it wasn’t until the
early 1950’s that general median regression algorithms emerged with the development of
linear programming. The Barrodale and Roberts (1974) dual bounded variables algorithm
for median regression was ideally suited to the elaboration to quantile regression models
that were linear in parameters, as described in Koenker and d’Orey (1987). This simplex
approach was implemented in S in the late 1970’s and remains an efficient method for problems
of modest size. Interior point methods for linear programming that offered advantages for
larger problems arrived in the 1990’s and have been gradually incorporated into the quantreg
package, first for unconstrained problems, then for linear inequality constrained problems
and finally for problems with sparse designs. There are currently ten distinct algorithms for
estimating parametric, linear quantile regression models:

January 13, 2021.A genre manifesto for R Vinaigrettes is available at http://davoidofmeaning.
blogspot.com/2016/12/r-vinaigrettes.html.

1

2 ROGER KOENKER

br

fn

fnc

sfn

pfn
ppro

qfnb
pfnb

rank

iidnid
ker

boot

extr

xy

pwy

mcmb
wxy

wild

cluster

BLB

pxy

jack

Bxy

Bwxy

Bpxy

Bpwy

Bspwy

Brqs

pwxy

conq

conq

Algorithms
Summary Methods
Bootstrap Methods
Bootstrap Algorithms

Figure 1. Network of Quantile Regression Methods

”br” The original simplex algorithm based on Barrodale and Roberts (1974). An unfor-
tunate aspect of this algorithm is that the underlying fortran is highly unstructured
and difficult to follow. At some point in 1998 I realized that the basic idea of the
algorithm was quite close the essential idea of Edgeworth’s 1888 paper, and I wrote
a version in R that is only about 25 lines. This prototype version is available at
http://www.econ.uiuc.edu/~roger/research/rq/rqx.R.

”fn” A basic interior point algorithm based on ideas of Mehrotra (1992) that I refer to
as the Frisch-Newton method since it can be seen as a Newton-type method with
log-barrier constraints as originally suggested by Ragnar Frisch.

http://www.econ.uiuc.edu/~roger/research/rq/rqx.R

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 3

n/1000

cp
u−

se
co

nd
s

0.001

0.01

0.1

1

10

100

1 10 100

 : p 5

1 10 100

 : p 10

1 10 100

 : p 20

1 10 100

 : p 40

br fn pfn sfn

Figure 2. Comparison of Algorithm CPU Time for Dense Problems

”fnc” A variant of the ”fn” interior point algorithm that introduces linear inequality con-
straints.

”sfn” A variant of the ”fn” method that exploits sparse algebra for problems in which the
design matrix is sparse.

”sfnc” A variant of the ”fnc” method that exploits sparse algebra for problems in which the
design matrix is sparse.

”pfn” A variant of the ”fn” method that exploits a preprocessing strategy described in
Portnoy and Koenker (1997) to reduce the effective sample size of the problem.

”ppro” A variant of the ”pfn” method that exploits preprocessing when multiple quantiles
are being estimated.

”qfnb” A variant of the ”fnb” method designed for multiple quantiles all estimated within a
fortran loop.

”pfnb” A variant of the ”ppro” method but implemented in fortran.
”lasso” A variant of the ”fn” method that incorporates a lasso, or scad penalty.

Further details about these methods is available from the package documentation for the
function rq and the references provided therein.

Figure 2 compares cpu time in seconds for four of these algorithms: ”br”, ”fn”, ”sfn”
and ”pfn.” The model has p standard Gaussian covariates and Gaussian response. When
n is less than 25,000 the simplex algorithm of Barrodale and Roberts is quite competitive,
but for larger sample sizes the Frisch-Newton algorithm is quicker. Preprocessing is clearly
advantageous beyond n = 100, 000, or so, but its advantage dissipates somewhat for larger
parametric dimension, p, of the model. For dense design matrices like these sparse algebra is
not helpful The four methods all achieve the same precision to seven decimal digits.

Figure 3 compares performance in a similar setting except that a factor variable with q
distinct levels has been added to 5 dense covariates of the model. Now Frisch-Newton is

4 ROGER KOENKER

n/1000

cp
u−

se
co

nd
s

0.1

1

10

100

1000

10 100

 : q 50

10 100

 : q 100

10 100

 : q 200

10 100

 : q 400

br fn sfn

Figure 3. Comparison of Algorithm CPU Time for Sparse Problems

n/1000

cp
u−

se
co

nd
s

0.1

1

10

100

1000

10 100

 : p 2

10 100

 : p 5

10 100

 : p 10

10 100

 : p 20

br fn ppro

Figure 4. Comparison of Algorithm CPU Time for Multiple taus

clearly superior to simplex, but the sparse algebra version of Frisch-Newton is much faster
especially when q is large.

2.1. Estimation with Many τ ’s. Thus far we have only considered estimating a single
conditional quantile model, but many applications involve estimating several quantiles as an
ensemble. This is relatively easy to do by specifying, for example for the deciles, tau =

1:9/10 in the call to rq. A little reflection will suggest that adjacent quantiles should have

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 5

somewhat similar solutions, so some form of preprocessing might be helpful rather solving for
each value of τ , de novo. This idea is closely related to the preprocessing proposed in Portnoy
and Koenker (1997); given a solution at some τ0 if we want a solution at some nearby τ1 we can
presume that the signs of the residuals for τ0 should be predictive of the sign of the residuals
for τ1. This being the case we can combine observations with large negative residuals into
one new pseudo-observation with a very negative response, and likewise combine observations
with large positive residuals into another pseudo-observation with a very positive response
and thereby effectively reduce the effective sample size of the estimation problem. In Portnoy
and Koenker (1997) this process was based on a preliminary fit for a model with a fixed τ ,
but the idea for which we coined the highly sophisticated technical term ”globbing” is very
similar. Globbing for adjacent quantiles was implemented by Blaise Melly and described in
further detail in Chernozhukov et al. (2020), and is now implemented in quantreg with the
method = "ppro" option for rq function.

Figure 4 compares CPU effort for ”br”, ”fn” and ”ppro” for our dense model (without the
factor variable) with τ ∈ {0.02, 0.04, . . . , 0.98}, for 49 distinct, equally spaced τ ’s. The results
are quite surprising, so much so that I suspected that I’d blundered somewhere. There is no
performance gain from preprocessing, indeed except for the largest of the models fitted, with
n = 625, 000 and p = 20, ”fn” is always quicker than ”ppro”. Profiling the preprocessing code
I discovered that most of cpu time was being spent computing sums rather than actually doing
the “real work” of optimization. This finding led to a extended detour into the wonderful
world of ratfor and fortran.1

Figure 5 compares performance of the “ppro” R implementation with two new fortran
implementations for the same problems considered in Figure 4. The “qfnb” method was an
intermediate prototype to see whether I could still remember how to write ratfor; it simply
loops over a vector of τ ’s solving the full n by p problem at each step. The “pfnb” method
implements the preprocessing approach of “ppro” but all of the computation stays inside
the fortran call. The preprocessing strategy when “fortranized” shows a clear performance
advantage. There are several possible refinements, or tuning parameters to choose for the
preprocessing; the most crucial of these is the choice of the initial sample size that I have
provisionally set to be n2/3p1/2. Further experimentation could well lead to even better
performance.

There are hints scattered around the R ecosystem, including the authoritative R Core Team
(2020) suggesting that the standard R interface with Fortran, i.e. .Fortran, is inefficient
compared to the more recently introduced .Call interface, although I couldn’t find any
quantitative evidence for the magnitude of this “overhead” penalty. This prompted me to
write an inquiry to the newsgroup R-devel that provoked several responses including the
suggestion that the package dotCall64 might offer a relatively easy way to explore the
magnitude of such effects. So in the spirit of scientific exploration I wrote a new version
of rq.fit.pfnb that simply replaced the call to .Fortran with a call to .C64 in this package

1Ratfor is a dialect of fortran (rational fortran) developed at Bell Labs in the late 1970’s providing better
control structures and more flexible formatting. Like many ancient languages it is somewhat endangered, but
after some extensive googology I found an updated C version maintained by Brian Gaeke that generated fully
functional fortran 77. This had the valuable side benefit that it allowed me to clean up some incompatibilities
in my earlier ratfor code as well as allowing me to write new code. I’ve added links on my Reproducibility
webpage to a tar image of the source files for Gaeke’s version of ratfor and to Brian Kernighan’s brilliant 10
page exposition of the ratfor language.

6 ROGER KOENKER

n/1000

cp
u−

se
co

nd
s

0.1

1

10

100

10 100

 : p 2

10 100

 : p 5

10 100

 : p 10

10 100

 : p 20

ppro pfnb qfnb

Figure 5. Comparison of New Fortran Algorithms for Multiple taus

and then running a moderately large problem with n = 500, 000 and p = 5 for 49 equally
spaced quantiles.

In this example there is a slight performance advantage for the new .C64 code, which
requires 4.37, versus 4.505 seconds for the .Fortran version; for somewhat smaller problems
the .Fortran was actually quicker. My provisional conclusion from this exercise was that
this performance gain didn’t justify the additional layer of coding.2

3. Summary Methods

In R parlance a “summary” method can be anything that elaborates or coagulates the
salient features of an R object. For fitted objects from linear models this typically means that
they provide some form of inference about the reliability of the parameters of the fitted model.
Like quantile regression fitting methods there are quite a few summary method options. The
earliest of these offered direct estimates of the asymptotic covariance (sandwich) matrix,
which takes the form,

V = τ(1− τ)H−1n JnH
−1
n ,

where Jn = n−1
∑

i xix
>
i , Hn = n−1

∑
i xix

>
i fY |x(ξi(τ) and fi(ξi(τ)) = fi(x

>
i β(τ)) is the

conditional density of the response given covariates.
These original methods are:

iid estimates a scalar conditional density value from fitted residuals assuming that Hn

and Jn are the same up to a factor of proportionality,
nid estimates a vector of conditional density values for Hn by differencing fitted models

at τ ± h, for some bandwidth h,
ker estimates Hn by the kernel method of Powell (1991).

2Kaspar Daniel Hansen suggested that perhaps it would also be worthwhile to compare the memory re-
quirements of the two methods and indeed this does reveal a significant gain: 146Mb versus 262Mb for the
.Fortran version.

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 7

Two other methods emerged slightly later:

rank estimates a confidence interval for each parameter by inverting a rank test derived
from the general theory of Gutenbrunner and Jurečková (1992) using parametric lin-
ear programming methods. This procedure is quite reliable, however it is crucially
dependent upon simplex steps in the implementation of “br” fitting routine and con-
sequently is only practical in sample sizes up to a few thousand observations.

boot as indicated in the earlier network diagram there are now a plethora of bootstrapping
methods designed for various circumstances,

The main objective of the present note is to provide some guidance about which of these
methods to use under various circumstances, and possibly to suggest directions for future
development.

Given a fitted object constructed by one of the foregoing estimation methods any of the
summary methods can, in principle, be used by simply invoking the R command summary(fit,

se = meth) where meth is the name of one of these summary methods. As a general rule,
for small problems, that is problems with less than 5000 observations, it is advisable to use
the se = "rank" approach, which produces asymmetric “percentile intervals based on the
rank inversion procedure. However, for larger problems this can be rather slow since many
simplex pivoting operations are required. There are various other options to this approach
documented in the help file for rq.fit.br. These options can be passed along via the ...

argument of the summary function. The basic theory of these confidence intervals is sketched
in Section 3.5.5 of Koenker (2005) with further references cited there. To illustrate we can
consider a log transformed version of the classical Engel food expenditure model.

data(engel)

f <- rq(log(foodexp) ~ log(income), tau = 0.5, data = engel)

summary(f)

##

Call: rq(formula = log(foodexp) ~ log(income), tau = 0.5, data = engel)

##

tau: [1] 0.5

##

Coefficients:

coefficients lower bd upper bd

(Intercept) 0.41833 0.06966 0.90053

log(income) 0.87659 0.80514 0.93016

Another limitation of the rank method is that it operates coefficient by coefficient so it
doesn’t know how to cope with covariance matrix estimation for the vector of coefficients
as would be required,for example, by the anova test procedures. By default if no se option
is specified, the rank method is used if the sample size is less that 1001 and the covariance
option for summary is not requested, otherwise by default the se = "nid" option is invoked.
For historical reasons, the “nid” option is treated as a default in such situations even though
in retrospect it might have been preferable to use the se = "ker" option. The se = "iid"

option should be avoided except in rare cases where one is very confident about the iid
assumption.

When multiple τ ’s are specified in the fitting function then a list of fitted objects are
returned of class rqs, and summary then acts on this list sequentially returning a list of

8 ROGER KOENKER

tables of coefficients and their confidence intervals in the case that the se = "rank" option
is used, or standard errors, t-statistics and p-values in the case that one of the other options
is used.

4. Bootstrap Methods for Quantile Regression

As is evident in the network diagram there are many flavors of the bootstrap for quantile
regression and the task in this section is to try to make some sense out of which of them
are appropriate in various settings. Let’s begin with a brief description of the candidates, in
approximate order of introduction into the quantreg package:

xy The classical progenitor of all these methods is the “xy” bootstrap studied by Bickel
and Freedman (1981) for the mean regression model. Pairs (xi, yi) are drawn at ran-
dom with replacement, the model is reestimated for each of the R bootstrap samples
and a covariance matrix is estimated from the R by p estimates of the coefficients.

pwy the Parzen et al. (1994) bootstrap exploits the fact that the subgradient condition
for optimality of the quantile regression estimator is a pivotal statistic, so one can
resample Bernoulli random variables and again construct R new estimates of the
coefficients to produce a covariance matrix.

spwy a variant of the “pwy” method that uses the sparse Frisch-Newton method, intended
specially for the “cluster” bootstrap method and used automatically when the design
matrix of the fitted object is stored in sparse form.

wxy instead of the multinomial sampling of the “xy” method one can resample exponential
weights and construct weighted quantile regression estimates; this has the advantage
that all the observations appear in each replication, albeit with different weights,
so it avoids singularities of the resampled design matrices that can sometimes cause
problems.

jack a variant of the “xy” method that operates on subsamples proposed by Portnoy (2014).
wild a variant of the wild bootstrap that has proven valuable in other settings adapted to

the quantile regression and proposed by Feng et al. (2011).
MCMB a Markov chain resampling scheme proposed by Kocherginsky et al. (2004) that up-

dates one coefficient at a time to accelerate inference for large sample sizes,
BLB the “bag of little bootstraps” proposed by Kleiner et al. (2014) intended for large

samples.
cluster a variant of the wild bootstrap adapted to clustered observations proposed by Hage-

mann (2017)
conquer a variant of the “wxy” method implemented in the conquer package of He et al. (2020)

and using the smoothing methods developed there, intended for large problems.
extr a variant of the “pwy” bootstrap adapted for inference for extreme quantiles and

proposed by Chernozhukov et al. (2018)
pwxy A variant of the “wxy” bootstrap implemented in fortran and using preprocessing to

accelerate computation, suitable for large applications.

To compound the choice problem each of these options has several sub-options or tuning
parameters and potentially more than one implementation in terms of lower level languages.
The typical implementation draws random variables required to construct the bootstrap sam-
ples, and passes this information to a lower level, either Fortran or in the case of MCMB a C
routine, where the matrix of bootstrap coefficients is computed inside a loop. This strategy
keeps all the random number generation in R where it is subject to the usual reproducibility

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 9

mechanisms and avoids potential slow looping constructs in R. In large samples, however, it
is subject to memory constraints and overlooks potential opportunities for parallelization.

The selection of a bootstrap method is controlled by the bsmethod argument to the boot.rq
function and can be passed as a argument to summary. One of the earliest innovations in quan-
tile regression bootstrapping was introduced in Buchinsky (1994) who proposed computing
bootstrap replications on subsamples of the observations rather than on samples of the origi-
nal size n. This was later justified more formally in Bickel and Sakov (2008) and became the
subject of considerable subsequent research. I enjoy the irony that for Moshe it was a case
of “necessity as the mother of invention,” a way to speed up progress on his thesis research.
This “m out of n” version of the bootstrap is implemented with the mofn argument of the
boot.rq function. The number of bootstrap replications is also an important influence on
both the speed and reliability of the method; the default of R = 200 is probably somewhat
smaller than would be ideally specified.

An important aspect of the bootstrapping ecosystem in quantreg is the relation of boot-
strap methods and fitting methods. Early on it was recognized that doing bootstrap replica-
tions in an R loop was painfully slow as soon as samples became moderately large, so most
of the early methods were implemented by passing sampling weights to a wrapper function
that called an implementation of a simplified “br” method inside a fortran loop. This is
undesirable since if users have –in their wisdom – estimated their model with the “fn” option
or the “sfn” method they should be entitled to expect that the bootstrapping that is done
in with the summary method would use the same fitting procedure. An exception to this
state of affairs is the “cluster” bootstrap method, which uses either “fn” or “sfn” depending
upon whether the design matrix associated with the fitted object is an ordinary R matrix,
or special sparse matrix. There is also a prototype “pxy” bootstrap method that implements
a variant of the preprocessing strategy used for the “ppro” and “pfnb” fitting methods. It
would seem to be desirable to develop a fortran version of this intended for large problems.

To this end, I’ve coded a new boot.rq.pwxy option that implements the preprocessing
method within a fortran loop. Unlike earlier fortranizations of bootstrap methods that passed
a n by R array of data to construct the bootstrap samples, this implementation draws boot-
strap weights inside the fortran loop one replication at a time. The former strategy is fine for
small sample sizes, but is obviously impractical in terms of memory requirements when n is
large. One may worry that generating random variates from within fortran would disrupt the
usual reproducibility mechanisms of set.seed, etc. Fortunately, R provides functionality to
resolve this quite easily. In contrast to the prototype boot.rq.ppro which uses multinomial
sampling, this version uses the weighted bootstrap with standard exponential weights, which
should be more robust especially in settings with factor covariates.

Figure 6 compares timings for three bootstrap methods: “wxy” the fortran simplex version
using exponential weighting, “pxy” the Frisch-Newton R version using preprocessing and
multinomial sampling, and “pwxy” the fortran Frisch-Newton version using preprocessing
and exponential weighting. Timings are reported in seconds for R = 200 replications of the
bootstrap procedure. The simplex version is clearly not competitive except perhaps at lowest
sample size, n = 500. In the largest sample size of the experiment, n = 625, 000 the simplex
procedure is between 100 and 500 times slower than the preprocessed procedures. Somewhat
surprisingly, at least to me, the fortran preprocessing version is only slightly faster than the
R preprocessing version, and then only when the model dimension is moderate. Whether this
can be improved by better choice of tuning parameters remains an open question. There is
an obvious advantage in multinomial sampling in that it yields a further reduction in sample

10 ROGER KOENKER

n/1000

cp
u−

se
co

nd
s

0.1

1

10

100

1000

10000

10 100

 : p 2

10 100

 : p 5

10 100

 : p 10

10 100

 : p 20

wxy pxy pwxy

Figure 6. Comparison of Three Bootstrapping Methods

size, but this is offset – in my view – by the concomitant increase in risk of design matrix
singularities. There is a rather delicate balance in setting the width of the initial confidence
band in any implementation of the preprocessing approach; in our bootstrap experiment I’ve
used τ ±

√
(np)/2n. This choice trades off the advantage of reduced sample size against the

likelihood of violations of the predicted signs condition that require repeatedly solving the
globbed problem. Further investigation of this trade-off is clearly warranted. Some further
experimentation with the form of the confidence band has also been suggested by Portnoy
(1997). Clearly as p becomes larger the problem becomes more challenging; in many large p
applications one might hope that the design matrices would be sufficiently sparse to justify
using the sparse Frisch-Newton algorithm with preprocessing. This suggests yet another
option to add to the todo list.

5. Smoothing, Gradient Descent and Other Perturbations

Steve Portnoy organized a session at the 2010 JSM in Vancouver with Laurie Davies,
Emmanuel Candès and I. At lunch after the session Candès made a very persuasive case
for the obsolescence of interior point methods for “big data” applications, arguing that in
high dimensional problems it wasn’t practical to do repeated Cholesky factorization of large
Hessian matrices. Instead, one needed to rely on first order methods like gradient descent.
In my usual lackadaisical fashion I began reading and experimenting with such methods
originally motivated by Parikh and Boyd (2013) and the elegant R implementation of Fougner
(2014), I implemented a proximal gradient method for fitting quantile regression models. Some
experiments with this approach are reported in Koenker (2018). This was my introduction
to what we might call “spurious precision in statistical computing.” At the time I was very
conscious of precision in convex optimization because I was beginning to compare interior
point methods for computing the NPMLE for various mixture problems with solutions from
the EM algorithm. EM was very slow to converge, while interior point methods produced

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 11

●

●

●

●

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
2

5
10

20
50

10
0

20
0

50
0

n = 10,000, p = 100

Accuracy (decimal digits)

C
P

U
 s

ec
on

ds

●

●

●

●

2.0 2.5 3.0 3.5 4.0 4.5 5.0
1

2
5

10
20

50
10

0
20

0
50

0

n = 10,000, p = 300

Accuracy (decimal digits)

C
P

U
 s

ec
on

ds

●

●

●

●

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
2

5
10

20
50

10
0

20
0

50
0

n = 10,000, p = 500

Accuracy (decimal digits)

C
P

U
 s

ec
on

ds

Figure 7. Accuracy vs. Computational Effort: CPU effort (in seconds) is
plotted against accuracy in the number of correct decimal digits, averaged
over the p coefficients for the POGS GPU solutions to the primal quantile
regression problem. Baseline accuracy is determined by the interior point so-
lution depicted by the horizontal (red) line, which is accurate to at six decimal
digits. Although the POGS procedure is quite quick to produce a solution
with two to three digit accuracy, the effort required to produce better accu-
racy increases rapidly. In contrast, there is little advantage observed in the
interior point timings when the convergence tolerance is relaxed.

much more accurate solutions very quickly. In the mixture setting since one was estimating
a distribution function on a relatively fine grid of a few hundred points, the differences in
precision were very apparent visually: EM even after a few thousand iterations still produced
a rather smooth approximation of the mixing distribution, while the interior point method
rapidly converged to solutions with just a few point masses, as expected from the theory.

Something similar happens with the QR computing in the sense that simplex and interior
point methods converge to essentially identical solutions, say up to 7 or 8 decimal digits,
whereas the proximal method was quite quick to achieve 2 or 3 digits of precision, but very
slow to make further progress. This is depicted in Figure 5 taken from Koenker (2018).
However, in the case of the mixture problems accuracy seems important because it reveals a
qualitative difference in the nature of the solutions, in the QR setting it is less clear. If we are
plotting results, or even if we are reporting tables of results, it is unclear that we need more
than a few “significant” digits. After all the original data is rarely more accurate than that.
Maybe accuracy is just a fetish? It should be noted, especially so since it wasn’t noted in the
original source, that the problem dimensions of Figure 5 are modest by modern standards,
and much greater computational gains could be made in larger problems with better GPU
hardware and thus more parallelism. I recall Candès mentioning daily CCTV footage from
Beijing.

There have been several proposals for implementation of the ADMM (alternating direction
method of multipliers) and related first order approaches for quantile regression, but none
really attracted my attention until Xuming He sent a preprint of He et al. (2020). Drawing
on prior work of Fernandes et al. (2021) and Barzilai and Borwein (1988), Xuming and his

12 ROGER KOENKER

n/1000

cp
u−

se
co

nd
s

0.1

1

10

10 100

 : p 2

10 100

 : p 5

10 100

 : p 10

10 100

 : p 20

pwxy conq

Figure 8. Comparison of Two More Bootstrapping Methods

coauthors develop a scalable gradient descent based algorithm that performs very efficiently
on large problems. Their approach has been implemented in the R package, conquer and I
have created a hook in quantreg so that both fitting and summary methods can easily access
it. In contrast to the interior point methods implemented in quantreg that can be seen as
taking full Newton steps for a log-barrier formulation of the underlying linear programming
problem, their approach adopts a quasi-Newton, gradient descent approach that avoids the
full Cholesky factorization at each iteration. Step sizes are chosen according to a proposal
of Barzilai and Borwein (1988). A crucial aspect of the new method is the smoothing of the
usual quantile objective function as recently proposed by Fernandes et al. (2021). In contrast
to other proposed strategies for smoothing their convolution method preserves the convexity
of the objective function and leads to improved performance. Of course a consequence of this
smoothing, is that the original problem is somewhat perturbed, but this too may have a silver
lining. Provided that the conditional density of the response with respect to the covariates
satisfies weak smoothness conditions, smoothing the objective function results in a modest
efficiency gain. This is analogous to other methods of smoothing as discussed in Koenker
(2005) Section 5.2. The experiments in Fernandes et al. (2021) and He et al. (2020) bear out
this theoretical finding.

The improvement in computational speed is particularly important in accelerating boot-
strap computations, so I was obviously interested to see how this new gradient descent ap-
proach compared to the preprocessing approach described above as “pwxy.” Figure 8 reveals
that, indeed, gradient descent as implemented in the conquer package is substantially quicker
than “pwxy,” although it appears that for very large sample sizes perhaps it is catching up.

A final comparison for this section involves the “bag of little bootstraps” of Kleiner et al.
(2014) designed for “big data” applications. The implementation of this approach in quantreg
is somewhat cheesy in the sense that there is no real parallelism as one might expect given
the original description of the method. On the other hand, I was curious to see how it might

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 13

n/1000

cp
u−

se
co

nd
s

0.1

1

10

10 100

 : p 2

10 100

 : p 5

10 100

 : p 10

10 100

 : p 20

pwxy BLB

Figure 9. Comparison of Two More Bootstrapping Methods

compare with the preprocessing approach of boot.rq.pwxy. Figure 9 illustrates comparison.
The “BLB” method adopts the suggested default using groups of size bn0.7c and for each
group generating a bootstrap sample using boot.rq.pwxy, so effectively we are comparing
doing many smaller sample size preprocessed bootstraps and then aggregating them, to doing
one larger preprocessed bootstrap. Curiously, at least over our problem domain, the timings
are almost identical! Of course, this suggests that in a world where one has access to many
cores the “BLB” option seems quite promising. If/when I decide to upgrade to a M1 Apple
Mini, I may try to revisit this comparison.

6. Conclusion

What have we learned? When the sample size is less than about 10,000, the ancient
simplex machinery is quite serviceable even for conventional bootstrapping. However, for
larger sample sizes it is advantageous to turn to interior point methods especially when one
wants solutions for a large number of quantiles, or when bootstrapping is desired. In both
cases preprocessing can help to significant speed up the computations. Further exploration of
the tuning parameter selection for preprocessing is certainly warranted. When the parametric
dimension of the model is large, but the design matrix is sparse as in our experiment for Figure
3, there is a large gain to using the sparse version of the Frisch-Newton method. Unfortunately,
there is (as yet) no preprocessed sparse version for multiple taus, or for bootstrapping so this
is something that should probably be on the todo list. Finally, there is significant scope for
further exploration of first order methods along the lines of the conquer package.

Some progress has been made with the introduction of the fortran versions called by
rq.fit.pfnb and boot.rq.pwxy, although this has the obvious downside that it adds to
the clutter of options for both fitting and inference. It is difficult with only a handful of ex-
perimental settings to be precise about problem dimension boundaries and choice of methods.

14 ROGER KOENKER

As always, I would appreciate hearing about user experience, both good and bad. This is
main mechanism for improvement.

References

Barrodale, I. and Roberts, F. (1974), ‘Solution of an overdetermined system of equations in
the `1 norm’, Communications of the ACM 17, 319–320.

Barzilai, J. and Borwein, J. M. (1988), ‘Two-point step size gradient methods’, IMA J.
Numerical Analysis 8, 141–48.

Bickel, P. J. and Freedman, D. A. (1981), ‘Some asymptotic theory for the bootstrap’, The
Annals of Statistics 9, 1196–1217.

Bickel, P. J. and Sakov, A. (2008), ‘On the choice of m in the m out of n bootstrap and
confidence bounds for extrema’, Statistica Sinica 18, 967–985.

Buchinsky, M. (1994), ‘Changes in US wage structure 1963-87: An application of quantile
regression’, Econometrica 62, 405–458.

Chernozhukov, V., Fernandez-Val, I. and Kaji, T. (2018), Extremal quantile regression, in
R. Koenker, V. Chernozhukov, X. He and L. Peng, eds, ‘Handbook of Quantile Regression’,
CRC Press.

Chernozhukov, V., Fernandez-Val, I. and Melly, B. (2020), ‘Fast algorithms for the quantile
regression process’, Empirical Economics ?, ?–?

Feng, X., He, X. and Hu, J. (2011), ‘Wild bootstrap for quantile regression’, Biometrika
98, 995–999.

Fernandes, M., Guerre, E. and Horta, E. (2021), ‘Smoothing quantile regressions’, Journal of
Business & Economic Statistics 39, 338–357.

Fougner, C. (2014), POGS: Proximal Operator Graph Solver. https://github.com/foges/

pogs.
Gutenbrunner, C. and Jurečková, J. (1992), ‘Regression quantile and regression rank score

process in the linear model and derived statistics’, Ann. Statist. 20, 305–330.
Hagemann, A. (2017), ‘Cluster-robust bootstrap inference in quantile regression models’,
Journal of the American Statistical Association 112, 446–456.

He, X., Pan, X., Tan, K. M. and Zhou, W.-X. (2020), conquer: Convolution-Type Smoothed
Quantile Regression. https://CRAN.R-project.org/package=conquer.

Kleiner, A., Talwalkar, A., Sarkar, P. and Jordan, M. (2014), ‘A scalable bootstrap for massive
data’, J. Royal Statistical Society (B) 76, 795–816.

Kocherginsky, M., He, X. and Mu, Y. (2004), ‘Practical confidence intervals for regression
quantiles’, J. of Comp. and Graphical Stat. . forthcoming.

Koenker, R. (2005), Quantile Regression, Cambridge U. Press.
Koenker, R. (2018), Computational methods for quantile regression, in R. Koenker, V. Cher-

nozhukov, X. He and L. Peng, eds, ‘Handbook of Quantile Regression’, CRC Press.
Koenker, R. and d’Orey, V. (1987), ‘Computing regression quantiles’, Applied Statistics
36, 383–393.

Mehrotra, S. (1992), ‘On the implementation of a primal-dual interior point method’, SIAM
J. of Optimization 2, 575–601.

Parikh, N. and Boyd, S. (2013), ‘Proximal algorithms’, Foundations and Trends in Optimiza-
tion 1, 123–221.

Parzen, M. I., Wei, L. and Ying, Z. (1994), ‘A resampling method based on pivotal estimating
functions’, Biometrika 81, 341–350.

https://github.com/foges/pogs
https://github.com/foges/pogs
https://CRAN.R-project.org/package=conquer

QUANTILE REGRESSION METHODS: AN R VINAIGRETTE 15

Portnoy, S. (1997), On computation of regression quantiles: Making the laplacian tortoise
faster, in Y. Dodge, ed., ‘L1-statistical procedures and related topics’, Institute of Mathe-
matical Statistics, Hayward, CA, pp. 187–200.

Portnoy, S. (2014), ‘The jackknife’s edge: Inference for censored regression quantiles’, Com-
putational Statistics & Data Analysis 72, 273–281.

Portnoy, S. and Koenker, R. (1997), ‘The Gaussian hare and the Laplacian tortoise: Com-
putability of squared-error versus absolute-error estimators, with discusssion’, Statistical
Science 12, 279–300.

Powell, J. L. (1991), Estimation of monotonic regression models under quantile restrictions, in
W. Barnett, J. Powell and G. Tauchen, eds, ‘Nonparametric and Semiparametric Methods
in Econometrics’, Cambridge U. Press: Cambridge.

R Core Team (2020), Writing R Extensions, R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/.

https://www.R-project.org/

	1. Introduction
	2. Algorithms for Point Estimation
	2.1. Estimation with Many 's

	3. Summary Methods
	4. Bootstrap Methods for Quantile Regression
	5. Smoothing, Gradient Descent and Other Perturbations
	6. Conclusion
	References

