
NOTES ON THE IMPLEMENTATION OF RÉNYI
PENALIZED DENSITY ESTIMATION

ROGER KOENKER

medder, v. used in Bahamian dialect, mostly on the
Family Islands like Eleuthera and Cat Island meaning
”mess with” ”get involved,” ”get entangled,” ”fool around,”
”bother:” ”I don’t like to medder up with all kinda peo-
ple” ”Don’t medder with people (chirren)” ”Why you
think she medderin up in their business.”

[Urban Dictionary]

1. Introduction

Our medderin’ about with maximum entropy de-regularized density
estimation began with an exploration of total variation penalties for
smoothing density estimates in Koenker and Mizera (2007). This led
to subsequent work on shape constrained density estimation initially
focused on log-concavity and eventually to weaker concavity penalties
that required replacing the maximum likelihood objective by an alter-
native Rényi entropy criteria. From the beginning our implementations
of these methods relied on the convex optimization software Mosek, ini-
tially within a Matlab interface, and more recently within the Rmosek
interface to R. These notes were prepared mainly as an aide memoire
for the transition of the software implementation of the function medde

in the R package REBayes from Mosek V8 to V9. For additional details
one can consult ApS (2018) and ApS (2019).

2. Theory

Koenker and Mizera (2010) began with the variational formulation of
the log-concave MLE problem for given observationsX = {X1, · · · , Xn},
with Xi ∈ Rd:

(P1) min
{ 1

n

n∑
i=1

g(Xi) +

∫
e−g(x)dx

∣∣∣ g ∈ K(X)
}
,
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with K(X) denoting the set of closed convex functions on the convex
hull, H(X), of X. A solution ĝ : H(X) 7→ R yields a density estimate

f̂(x) = exp(−ĝ(x)) on H(X); the fact that this obviously positive
quantity is a probability density estimate, that is, its integral is equal
to one, is assured by the presence of the integral term in (P1) Outside

H(X), the solution ĝ(x) = −∞, implying that f̂(x) = 0. Interpreting
(P1) as a “primal” formulation in the context of convex programming,
the associated “dual” problem is,

(D1) max
{∫

−f log fdx
∣∣∣ f =

d(Q(X)−G)

dx
, G ∈ K(X)o

}
,

where Q(X) = n−1
∑n

i=1 δXi
is the empirical probability measure,

K(X)o =
{
G ∈ C∗(X)

∣∣∣ ∫
g dG ≤ 0, g ∈ K(X)

}
is the polar cone associated with K(X), and C∗(X) denotes the set of
(signed) Radon measures on H(X). The appearance of the Shannon
entropy in the dual formulation (D1) may be interpreted as the in-

tention to find f̂ closest in Kullback-Leibler divergence to the uniform
distribution on H(X) subject to the concavity constraint.

For the problem (P1), the solutions admit further characterization:
ĝ are piecewise linear on H(X), so estimated densities are piecewise
exponential. This feature motivated a search for larger classes of quasi-
concave densities that would accommodate heavier tails and more sharply
peaked densities than the log concaves. Such classes are provided by
s-concave functions. Loosely speaking, a function is called s-concave,
for s > 0, if its s-th power is concave. More precisely, a non-negative,
real function f , defined on a convex set C ⊂ Rd is s-concave, if there
is a convex function g such that

f =


(−g)1/s for s > 0,

e−g for s = 0,

g1/s for s < 0.

Note that log-concave functions are 0-concave, and concave functions
are 1-concave; also, if f is s-concave, then f is also s′-concave for
any s′ < s. The limiting class of −∞-concave, the union of all s-
concave classes for all s ∈ R, is the class of quasi-concave functions –
functions with upper level sets convex. In the one-dimensional case,
for d = 1, this class is identical with that of unimodal functions. In
higher dimensions this equivalence no longer holds.

Once log-concavity is imposed, maximizing log likelihood in (P1) ap-
pears to be especially convenient, as it leads to a convex program with
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the only nonlinearity arising from the integrability constraint. How-
ever, when weaker forms of concavity are considered, it proves more
convenient to adapt the fitting criterion – in particular to retain the
convexity of the optimization formulation. This was already apparent
in an earlier work of Groeneboom, Jongbloed, and Wellner (2001) who
employed least squares fitting rather than log-likelihood when impos-
ing the stronger requirement of concavity of the density itself. While
it is not really obvious how to adapt (P1) to obtain a viable fitting for-
mulation, the appearance of the Kullback-Leibler divergence in (D1)
suggests the possibility of replacing it by one of the abundant assort-
ment of alternative divergences. Koenker and Mizera (2008, 2010)
pointed out that for s-concave densities, this turns out to produce a
lucky match. They proposed replacing the Shannon entropy in (D1)
by a variationally equivalent form of the Rényi entropy, a move that
yielded a family of new dual and primal pairings,

(Dα) max
{ 1

α

∫
fα(y) dy

∣∣∣ f =
d(Q(X)−G)

dy
, G ∈ K(X)o

}
,

and

(Pα) min
{ n∑

i=1

g(Xi) +
|1− α|

α

∫
gβ dx

∣∣∣ g ∈ K(X)
}
.

The Rényi exponent α here corresponds to Avriel’s s = α−1, and β is
conjugate to α in the usual sense: 1/α + 1/β = 1.

Among the Rényi entropies, the ones enjoying particular connec-
tions to the existing literature are those with α being a multiple of
1/2. Koenker and Mizera (2010) focused primarily on the log concave,
α = 1, case and the Hellinger, α = 1/2, case; the latter imposes the
weaker constraint that −1/

√
f be concave. The implementation de-

scribed here also allows us to venture into the netherworld of α ≤ 0.
It should be noted that since α = 0.5 already already subsumes tail
behavior like Cauchy smaller α may be considered somewhat patho-
logical. Sceptics, however, are encouraged to consider the examples in
Koenker and Mizera (2019).

3. Praxis

Earlier implementations of these methods were developed in the stan-
dalone package MeddeR. However, a unification of the methods seemed
desirable and has now been realized in a single function medde pro-
vided by the R package REBayes available on CRAN. These notes are
intended as further documentation of this implementation for the con-
vex optimization software Mosek. Because Mosek underwent a quite
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dramatic transition from Version 8 to 9, we treat both implementations
here. We will begin by treating the shape constrained case and then
turn to norm constraints. Some connections to the NPMLE methods
for mixture models will be described briefly in a final section.

3.1. Mosek 8. The separable convex optimization scopt formalism
of Mosek 8 allows additive objective functions with nonlinear compo-
nents that can take the following types: “ent” fx log(x); “exp” fegx+h;
“log” f log(gx + h) and “pow” f(x + h)g, where f, g, h are specified
constants. For our dual formulation these terms appear only in the
objective function not in the constraints, so they are represented in
the Mosek formulation in the “opro” matrix of dimension 5 by p and
type “list” with rows containing respectively: “type”, the index j of the
coordinate of x, and the corresponding elements, f , g, and h. Thus,
for example for the log-concave case with α = 1 we would have the
matrix: 

”ent” ”ent” · · · ”ent”
1 2 · · · p
−1 −1 · · · −1
0 0 · · · 0
0 0 · · · 0

 .

Whereas for α = 0 we have
”log” ”log” · · · ”log”
1 2 · · · p
1 1 · · · 1
1 1 · · · 1
0 0 · · · 0

 .

and for other α we have
”pow” ”pow” · · · ”pow”

1 2 · · · p
−sgn(β) −sgn(β) · · · −sgn(β)

α α · · · α
0 0 · · · 0

 .

where, as usual, 1/α + 1/β = 1. In contrast, the primal versions for
α ∈ {0, 1} are 

”exp” ”exp” · · · ”exp”
1 2 · · · p
1 1 · · · 1
−1 −1 · · · −1
0 0 · · · 0

 ,
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and 
”log” ”log” · · · ”log”
1 2 · · · p
−1 −1 · · · −1
1 1 · · · 1
0 0 · · · 0

 .

For other α the primal form is: check this!!
”pow” ”pow” · · · ”pow”

1 2 · · · p
sgn(β) sgn(β) · · · sgn(β)

β β · · · β
0 0 · · · 0

 .

3.2. Mosek 9. For Mosek 9 a major revision occurred that replaced
the scopt formulation with an alternative scheme that allowed users
greater flexibility, but required them to express nonlinear components
of the objective function in terms of convex cone constraints. Now
there are two essential types of cone constraints: exponential cones
and power cones.

The canonical exponential cone is,

Ke = {x ∈ R3|x1 ≥ x2 exp(x3/x2), x1, x2 ≥ 0},

or equivalently,

Ke = {x ∈ R3|x3 ≤ x2 log(x1/x2), x1, x2 ≥ 0}.

Thus, if we introduce auxiliary variables, t1, · · · , tp, and require that, e⊤i 0
0 0
0 e⊤i

(
x
t

)
+

 0
1
0

 ∈ Ke

we have effectively imposed that log(xi) ≥ ti, so if we can now replace
our nonlinear objective function with a linear one in the auxiliary t
variables. This is precisely what is required for our α = 0 case. If
instead, we require that 0 0

e⊤i 0
0 e⊤i

(
x
t

)
+

 1
0
0

 ∈ Ke

we have imposed that ti ≤ xi log(1/xi) = −xi log(xi). This corresponds
to our primal problem with α = 1. For other settings of α we must
rely on the Mosek implementation of power cones.
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The canonical three variable power cone is

Kα = {x ∈ R3|xα
1x

1−α
2 ≥ |x2|, x1, x2 ≥ 0}.

Such cones can be employed to formulate our problem for α /∈ {0, 1}.
Three cases are considered separately. For α ∈ (0, 1) we can simply
use:  e⊤i 0

0 0
0 e⊤i

(
x
t

)
+

 0
1
0

 ∈ Kα

which implies that xα
i ≥ |ti|. For α > 1 we simply flip the role of x and

t and replace α by its reciprocal. And for α < 0 we impose, e⊤i 0
0 e⊤i
0 0

(
x
t

)
+

 0
0
1

 ∈ Kα

which implies that ti ≥ xα
i . In all cases we scale the summands of the

now linear objective by the factor, −sgn(β)

4. Odds and Ends

The foregoing discussion was intentionally focused on transition from
nonlinear objective functions in Mosek 8 to the reformulation of in
terms of cone constraints in which the parameter α plays a crucial
role. This has been motivated primarily by the family of concavity
shape constraints. It is worth noting the flexibility of the Rényi fitting
criteria can also be applied to the norm constrained estimation of den-
sities. The parameter lambda in the medde function when it is negative
imposes some form concavity restriction determined by the specifica-
tion of alpha, when it is positive it controls the degree of smoothing
imposed by the total variation penalty on some transformation of the
density. When alpha is 1, this transformation is logarithmic.

Finally, it should be noted that medde also provides an opportunity
to control the degree of the differential operator determining the con-
straints. Thus far, we have implicitly assumed that Dorder took the
value 1, implying either a concavity constraint, or a norm constraint
on the total variation of the first derivative of the fitted density. How-
ever, one can also set Dorder = 0, which imposes monotonicity on the
estimated density when lambda is negative, or penalizes total variation
of a transformation of the density when it is positive. When Dorder =

2 one can impose TV smoothing on the second derivative of the trans-
formed density as illustrated in the demo(Silverman). This effectively
imposes an L1 penalty on the third derivative of the log density.



Koenker 7

References

ApS, M. (2018): Rmosek Release 8.1.47.
(2019): Rmosek Release 9.0.89.

Groeneboom, P., G. Jongbloed, and J. A. Wellner (2001): “Estimation
of a Convex Function: Characterizations and Asymptotic Theory,” Annals of
Statistics, 29(6), 1653–1698.

Koenker, R., and I. Mizera (2007): “Density estimation by total variation
regularization,” in Advances in statistical modeling and inference, Essays in honor
of Kjell A. Doksum, ed. by V. Nair, pp. 613–633. World Scientific, Singapore.

(2008): “Primal and dual formulations relevant for the numerical estima-
tion of a probability density via regularization,” in Tatra Mountains Mathematical
Publications, ed. by A. Pázman, J. Volaufová, and V. Witkovský, vol. 39, pp. 255–
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