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Abstract. A penalized likelihood method for estimating the Bradley-Terry model for paired
comparison data is considered and a Mosek implementation is developed.

1. Introduction

In accordance with Stigler’s law of eponymy, the Bradley and Terry (1952) model for
ranking competitors based on paired comparisons was first proposed by Zermelo (1929) for
rating chess players.1 In the simplest setting we have n players of ability, α1, α2, . . . , αn who
meet in pairs; the probability that a player i defeats a player j is given by.

πij = αi/(αi + αj).

With a sufficient accumulated history of play, the α’s can be estimated by maximum likeli-
hood. Since n can be rather large there is an inducement to regularize and many proposals
have been made. Among these the proposal of Masarotto and Varin (2012) seems particularly
intriguing since it purports to group the estimated abilities into a few equivalence classes using
a variant of `1 penalization. The ranking penalty has already been used earlier for clustering
by Hocking et al. (2011), and in the context of quantile regression panel models by Gu and
Volgushev (2019).

2. Some Convex Optimization

It is convenient to reparameterize abilties so θi = logαi and πij , becomes,

πij =
1

1 + exp(−(θi − θj))
and to write the (logistic) log likelihood for m binary outcomes, y1, y2, . . . , ym, as,

`(θ|y) =

m∑
k=1

yk log(hθ(xk)) + (1− yk) log(1− hθ(xk))

where hθ(x) = 1/(1 + exp(−θ>xk)), xk is an n vector with ith element 1, and jth element
-1, and other elements 0. The “ranking lasso” of Masarotto and Varin (2012) proposes to
estimate the vector, θ = (θ1, . . . , θn) by minimizing,

R(θ) = −`(θ|y) + λ||Dθ||1,
where ||Dθ||1 =

∑
i<j |θi − θj |. There is an extensive literature on `1 penalized logistic

regression, notably Koh et al. (2007), but typically such methods are designed to shrink some
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1 Useful background on all this is provided by David (1988), Cattelan (2012) and Glickman (2013).
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or all of the coefficients toward zero. In contrast the ranking lasso tries to reduce differences
in the coefficients and thereby tries to identify groups of coefficients that take the same value.
Masarotto and Varin (2012) propose an EM approach to minimizing R(θ); I would like to
explore an alternative interior point approach that relies on Mosek ApS (2021a).

Since R is a convex function the problem can be reformulated to minimize a linear function
subject to convex cone constraints. This can be written as,

min{
m∑
k=1

tk + λr | tk ∈ Tk, k = 1, . . . ,m, r ≥ ||Dθ||1},

where Tk = {t|t ≥ yk log(hθ(xk) + (1− yk) log(1− hθ(xk)}. In Mosek terminology the Tk are
built with exponential cones. An exponential cone in R3 is the closure of the set of points
satisfying,

K = {x ∈ R3|x1 ≥ x2 exp(x3/x2), x1 > 0, x2 > 0}
or equivalently,

K = {x ∈ R3|x3 ≤ x2 log(x1/x2), x1 > 0, x2 > 0}.
For the logistic function f(x) = log(1 + ex) its epigraph, the points (t, x) such that t ≥
log(1 + ex), or equivalently, ex−t + e−t ≤ 1, so we have the cone,

C = {u+ v ≤ 1|(u, 1, x− t) ∈ K, (v, 1,−t) ∈ K}
from which we can construct all the tk constraints. The penalty term involving only lnear
inequality constraints poses no further problems. In Mosek the `1 norm can be treated
as a special case of the quadratic cone constraint since t ≥

∑
|xi| can be formulated as

{(zi, xi) ∈ Q2,
∑
zi = t} with Q2 = {x ∈ R2|x1 ≥

√
x22}. So this adds n quadratic cone

constraints with the role of x1 played by r and the x2’s by the elements of the vector Dθ. In
practice it seems simpler and may be faster to formulate the `1 constraint as linear inequality
constraints as illustrated in the next section.

An advantage of Mosek’s insistence that problems be formulated with linear objective
functions and cone constraints is that their dual formulation is straightforward. Given a
primal problem,

(P) min{c>x|Ax = b, x ∈ K}
then we have dual problem,

(D) min{b>y|c−A>y ∈ K∗}
where K∗ is the dual cone of K.

3. Implementation

After embarking on this mini-project I discovered that the documentation for the Mosek
APIs for C, python and java all contained code for an `2, aka ridge, penalized version of logistic
regression. So the remaining task seemed to be to translate one of these implementations into
R and replace the penalty with the ranking lasso penalty. Unfortunately, this proved to be
more difficult than it first appeared, and closer reading of Koh et al. (2007) suggested that
perhaps Mosek wasn’t an ideal vehicle for future development anyway. At that point I toyed
with the idea of making an implementation based on the C code from Koh et al. (2007). If
I were more conversant with C this probably would have been a reasonable strategy, but in
the end I decided to take the coward’s way out and construct something based on code that I
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already had considerable experience with – to wit quantile regression. Further details about
this adventure are provided in the Appendix.

Fortunately, just as my initial experimentation with this median regression implementation
was drawing to a close, I received a personal communication Adamaszek (2021) with illustra-
tive Rmosek code for the `2 penalized version of the logistic regression problem. From there
it was easy to implement an alternative version with an `1 penalty on Dθ. The implementa-
tion in R using the Rmosek package,Mosek ApS (2021b), is quite concise, further bells and
whistles, notably weighting effects can be easily added.

# Regularized logistic regression

# L2 version by Michal Adamaszek Aug 16, 2021

# See: https://groups.google.com/g/mosek/c/T2MYKTc8uD4

# L1 version slightly modified by Roger Koenker

# Problem: min{ -l(theta) + lambda || D theta ||_1 }
RLR <- function(X, y, D, lambda)

{
prob <- list(sense="min")

n <- nrow(X)

p <- ncol(X)

m <- nrow(D)

# Variables: r, theta(d), u(m), t(n), z1(n), z2(n)

prob$c <- c(lambda, rep(0,p+m), rep(1, n), rep(0,n), rep(0,n))

prob$bx <-rbind(rep(-Inf,1+p+m+3*n), rep(Inf,1+p+m+3*n))

# l1 constraints

A1 <- rbind(cbind(0, D, diag(m), Matrix(0, m, 3*n)),

cbind(0, -D, diag(m), Matrix(0, m, 3*n)),

c(1,rep(0,p),rep(-1,m),rep(0, 3*n)))

# z1 + z2 <= 1

A2 <- sparseMatrix( rep(1:n, 2),

c((1:n)+1+p+m+n, (1:n)+1+p+m+2*n),

x = rep(1, 2*n))

prob$A <- rbind(A1,A2)

prob$bc <- rbind(c(rep(0,1+2*m), rep(-Inf, n)),

c(rep(Inf,1+2*m),rep(1, n)))

# (z1(i), 1, -t(i)) \in \EXP,
# (z2(i), 1, (1-2y(i))*X(i,) - t(i)) \in \EXP
FE <- Matrix(nrow=0, ncol = 1+p+m+3*n)

for(i in 1:n) {
FE <- rbind(FE, sparseMatrix( c(1, 3, 4, rep(6, p), 6),

c(1+p+m+n+i, 1+p+m+i, 1+p+m+2*n+i, 2:(p+1), 1+p+m+i),

x = c(1, -1, 1, (1-2*y[i])*X[i,], -1),

dims = c(6, 1+p+m+3*n) ) )

}
gE <- rep(c(0, 1, 0, 0, 1, 0), n)
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prob$F <- FE

prob$g <- gE

prob$cones <- matrix(list("PEXP", 3, NULL), nrow=3, ncol=2*n)

rownames(prob$cones) <- c("type","dim","conepar")

# Solve, no error handling!

# r <- mosek(prob, list(soldetail=1))

r <- mosek(prob, list(verbose = 0))

# Return theta

r$sol$itr$xx[2:(p+1)]

}

A simple test problem using the classical ||θ||1 penalty produces a typical lasso shrinkage
plot.

require(Matrix)

## Loading required package: Matrix

require(Rmosek)

## Loading required package: Rmosek

set.seed(1729)

n = 100

p = 10

X <- matrix(rnorm(n*p),n,p)

y <- sample(0:1, n, replace = TRUE)

lambdas <- 1:25/3

B <- matrix(0, length(lambdas),10)

for(i in 1:length(lambdas))

B[i,] <- RLR(X,y,diag(p),lambdas[i])

matplot(lambdas, B, type = "l", xlab = expression(lambda),ylab = "Coefficients")

title("A Logistic Regression Lasso Plot")
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A Logistic Regression Lasso Plot

In our intended applications the matrix, D, would be slightly more complicated as illus-
trated in the median regression implementation in the Appendix.

Appendix A. Regularized Median Logistic (Binomial) Regression

What you might ask does `1 regularized logistic regression have to do with quantile regres-
sion? The obvious answer is: When you have a hammer everthing looks like a nail. But two
factors conspired to make the RLR problem look more like a nail than one might think. The
first factor was that I had no intention of dealing with applications that involved the usual
binary response model in its pure Boolean form, rather my applications were all focused on
models for which I could aggregate responses into binomial form with relatively large cell
counts. Thus, the idea of exploiting the Gaussian approximation to the binomial offered an
escape route from Mosek’s exponential cones. After all, even in my introductory applied
econometrics course hadn’t I taught that with frequency data one could get by estimating
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models with weighted least squares? See e.g. Koenker (2016). But why least squares, when it
would be much easier to attach the `1 penalty to median regression? All of a sudden, we have
a simple data augmentation formulation with a very sparse design structure that is ideally
suited to the algorithms already available in the R package quantreg.

The canonical implementation I want to consider looks like this,

min
θ
{
n∑
i=1

wiρτ (yi − x>i θ) + λ‖Dθ‖1},

where wi’s denote weights that would be typically the square root of the weights one would
use in the associated least squares problem. The matrix D might also incorporate weights of
the form used in Masarotto and Varin (2012) designed to shrink coordinates more when their
unconstrained estimates was already close to zero. The intention is to restrict applications to
τ = 1/2, but you never know when the temptation to stray from this intention might arise.

Appendix B. An Illustrative Example

To illustrate the approach consider the simple baseball example of Turner and Firth (2012)
based on results from the 1987 season involving the 7 teams in the eastern division of the
American League. Each pair of teams play 13, 6 at home and 7 away, or vice versa. The
unconstrained Bradley Terry model can be estimated easily in R with the following code:

library(BradleyTerry2)

MBTm <- BTm(cbind(home.wins, away.wins), home.team, away.team,

data = baseball, id = "team")

MBTm$coef

## teamBoston teamCleveland teamDetroit teamMilwaukee teamNew York

## 1.1076977 0.6838528 1.4364084 1.5813559 1.2476178

## teamToronto

## 1.2944851

The fitting is accomplished with the aid of base R’s glm.fit function and uses the default
family = binomial option with the logistic link function. By default the first team is as-
signed rating zero. The BTm package is somewhat opaque when revealing how the model is
actually constructed and fed into the glm.fit function so in an effort to demystify things a
bit, one can also do this:

X <- model.matrix(~home.team-1, data = baseball) -

model.matrix(~away.team-1, data = baseball)

Y <- with(baseball,cbind(home.wins, away.wins))

Mglm <- glm(Y ~ X[,-1] - 1, family = binomial)

Mglm$coef

## X[, -1]home.teamBoston X[, -1]home.teamCleveland X[, -1]home.teamDetroit

## 1.1076977 0.6838528 1.4364084

## X[, -1]home.teamMilwaukee X[, -1]home.teamNew York X[, -1]home.teamToronto

## 1.5813559 1.2476178 1.2944851

Note that we have dropped the first column of the X matrix and removed the intercept in
the formula of the glm call. Except for different labeling of the coefficients the fits seem to
agree. An unweighted, unregularized median regression version looks like this:
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logit <- function(p, eps = 0.01) {
p <- pmax(eps, pmin(1-eps,p))

log(p/(1-p))

}
y <- logit(Y[,1]/apply(Y,1,sum))

Mrq <- rq(y ~ X[,-1] - 1)

Mrq$coef

## X[, -1]home.teamBoston X[, -1]home.teamCleveland X[, -1]home.teamDetroit

## 1.3217558 0.9162907 1.6094379

## X[, -1]home.teamMilwaukee X[, -1]home.teamNew York X[, -1]home.teamToronto

## 1.8971200 1.6094379 1.3217558

The usual estimate of the variance of logit of p̂i is 1/(nipi(1− pi)) so we should weight the

median regression objective function by
√
nipi(1− pi).

w <- Mrq$fitted

w <- sqrt(apply(Y,1,sum) * exp(w)/(1 + exp(w))^2)

Mwrq <- rq(y ~ X[,-1] - 1, weights = w)

Mwrq$coef

## X[, -1]home.teamBoston X[, -1]home.teamCleveland X[, -1]home.teamDetroit

## 1.0340738 0.6286087 1.6094379

## X[, -1]home.teamMilwaukee X[, -1]home.teamNew York X[, -1]home.teamToronto

## 1.6094379 1.3217558 1.0340738

The ranking, or grouping, penalty is easily implemented as a data augmentation device,
we simply introduce pseudo observations corresponding to the penalty terms: Since the first
team is assigned rating zero, the penalty matrix includes an identity term that shrinks all the
remaining coefficients towards this value, as well as rows that shrink the remaining coefficients
toward one another. It is conventional to weight the coordinates of the penalty contribution
by the reciprocals of their unconstrained estimates, but these weights can be introduced in the
call to rq as indicated above. The λ that controls the global shrinkage will be incorporated
into the D matrix as shown below.

teams <- factor(levels(baseball[,2])[-1])

pairs <- t(combn(teams,2))

D <- model.matrix(~ pairs[,1] + 0) - model.matrix(~ pairs[,2] + 0)

D <- rbind(diag(length(teams)),D)

lambda = 0.1

penw <- abs(D %*% Mwrq$coef) + 1

yp <- c(y, rep(0, length(penw)))

Xp <- rbind(X[,-1], lambda * D)

wp <- c(w, 1/penw)

Mprq <- rq(yp ~ Xp - 1, weights = wp)

Mprq

## Call:

## rq(formula = yp ~ Xp - 1, weights = wp)

##
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## Coefficients:

## Xphome.teamBoston Xphome.teamCleveland Xphome.teamDetroit

## 1.0340738 0.6931472 1.6094379

## Xphome.teamMilwaukee Xphome.teamNew York Xphome.teamToronto

## 1.6094379 1.3217558 1.0340738

##

## Degrees of freedom: 63 total; 57 residual

In this example, two of the proposed penalty weights were zero, so I’ve introduced a arbi-
trary additive factor of one to all the weights. With a λ = 0.1 we get a solution that ranks
Detroit and Milwaukee as equivalent and Boston and Toronto as equivalent. Of course, as
usual we do not have a principled way to choose λ. Further experimentation with this is
clearly needed.

Appendix C. Regularized Logistic Binomial Median Regression

Assembling the foregoing code we can construct a unified function for future reference.

RLBMR <- function(D, lambda = 1){
# D is a data.frame with columns W,L,T1,T2

X <- model.matrix(~ T1 - 1, data = D) - model.matrix(~ T2 - 1, data = D)

Y <- with(D,cbind(W, L))

n <- nrow(X)

M <- glm(Y ~ X[,-1] - 1, family = binomial)

logit <- function(p, eps = 0.01) {
p <- pmax(eps, pmin(1-eps,p)) # Somewhat Kludgy

log(p/(1-p))

}
y <- logit(Y[,1]/apply(Y,1,sum))

M <- rq(y ~ X[,-1] - 1)

w <- M$fitted

w <- sqrt(apply(Y,1,sum) * exp(w)/(1 + exp(w))^2)

M <- rq(y ~ X[,-1] - 1, weights = w)

teams <- factor(levels(D$T2)[-1])

pairs <- t(combn(teams,2))

P <- model.matrix(~ pairs[,1] - 1) - model.matrix(~ pairs[,2] - 1)

P <- rbind(diag(length(teams)),P)

penw <- abs(P %*% M$coef) + 1 # Very kludgy

yp <- c(y, rep(0, length(penw)))

Xp <- rbind(X[,-1], lambda * P)

wp <- c(w, 1/penw)

f <- rq(yp ~ Xp - 1, weights = wp)

coef <- c(0,f$coef)

names(coef) <- levels(D$T1)

list(coef = coef, resid = f$resid[1:n], lambda = lambda)

}
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