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Abstract. An attempt is made to demystify the Dantzig decoding procedure of Candes
and Randall (2008).

1. Introduction

As a secret agent of the deep state, your job is to transmit messages back to your superiors
who are in exile somewhere in wilderness of Idaho. Messages consist of a vector of real
numbers, x ∈ Rp. Transmission is over a noisy channel so the following protocol has been
developed. You and your superiors share knowledge of a n by p matrix A with n ≫ p. You
send the enlarged message y = Ax through the noisy channel. On good days they receive the
message ŷ = y + u where u ∈ Rn is a n-vector with iid (standard) Gaussian components. On
such good days decoding the messages is relatively simple: the receiver can just compute the
least squares projection of ŷ on the column space of A,

x̂ = (A⊤A)−1A⊤ŷ,

and the message will be denoised relatively accurately, depending to some degree on the choice
of n and A.

However, on bad days the noise in transmission can be much worse. In particular, it
may contain a limited number of very large errors that can severely disrupt the quality of
the x̂ solution. More explicitly, suppose that on bad days, instead of ŷ the vector ỹ =
y+ u+ v is received with v being arbitrary, but relatively sparse in the sense that most of its
coordinates are zero. Decoding under these conditions is considerably more difficult, but you
have developed the following alternative protocol. Let,

x̃ = (A⊤A)−1A⊤(ỹ − ṽ),

where

ṽ = argmin{∥v∥1 such that ∥Q(ỹ − v)∥∞ ≤ K}

and Q = I −A(A⊤A)−1A⊤. This form of denoising is closely related to the so-called Dantzig
selector of Candes and Tao (2007), which we will now describe in more detail.

July 20, 2024. An earlier version this note was written in 2007 for an exercise in my Econometric The-
ory course. An extensive collection of references and code for related methods can be found at Candes
(2007). A genre manifesto for R Vinaigrettes is available at http://davoidofmeaning.blogspot.com/2016/
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2. The Dantzig Selector

The basic idea of the Dantzig selector is to solve regression problems that look like this:

min{∥b∥1 | ∥X⊤r∥∞ < K}.
where r = y −Xb. This looks a lot like the familiar lasso penalized least squares regression
problem, and that’s because it is very similar. Rather than adding an ℓ1 penalty to the usual
least squares regression objective we minimize the ℓ1 norm of the coefficients subject to a ℓ∞
norm constraint on the gradient of the least squares criterion. Rather than solving a quadratic
programming problem we have a somewhat simpler linear programming problem instead.

We consider a slightly more general version:

min{∥b∥1 | K ≤ X⊤r ≤ K}.
for vector valued K. We can implement this version with the inequality constrained quantile
regression function, rq.fit.fnc(X, y, R, r) from the R package quantreg. This function
solves problems of the form:

min{∥y −Xb∥1 | Rb >= r}

If we set, X = Ip the p dimensional identity matrix and y = 0 ∈ Rp with R = [X⊤X
...−X⊤X]

and r = [(X⊤y − K)⊤, [(−X⊤y − K)⊤]⊤ we have the Dantzig selector as a special case.
Obviously, the parameter K controls the amount of shrinkage of the coefficients b.

3. Dantzig Decoding

Returning to our denoising problem, let V denote the subspace spanned by the columns
of A and V ⊥ the orthocomplement of V . We first construct a matrix, Q, whose columns
form an orthobasis for V ⊥, so Q⊤A = 0. Now, we can solve for ṽ with the Dantzig selector,
setting X = Q⊤ and y = Q⊤ỹ. It only remains to choose the tuning parameter K. This
can be somewhat delicate, since it depends upon the scale of the Gaussian noise vector, u,
and other features of the problem. We adopt a simple expedient in the illustrative code
below. Actually, this isn’t quite the end of it. Like the well-known feature/bug of the lasso,
the Dantzig selector also tends to act too agressively on some coordinates, so Candes and
Randall (2008) recommend a “reprojection” step that adjusts for this. Code for both the
Dantzig selector and the Dantzig Decoder in the R languange appears in the next section.

4. A Simulated Example

In this section we illustrate the use of the Dantzig decoder with a simple example. The
original message consists of a p = 256 iid Gaussian vector. The shared matrix A is n = 2p by
p with iid Gaussian entries. A fraction ρ = 0.1 of the coordinates of the vector, y = Ax, to
be transmitted are contaminated by replacing their intended values by the negative of those
values. Finally, Gaussian noise is added to the transmitted vector.

In Figure 1 we show three scatter plots each plotting a decoded version of the message
against its true values, x. In the left panel we plot x̂ using the naive least squares decoding.
In the middle panel we plot the Dantzig decoding, x̃. And in the right panel we plot an
oracle decoding achievable if the contamination component v were known. In each panel we
report root mean squared error of the respective decodings. It can be seen that the Dantzig
decoding is almost as good as the oracle decoding, while the Gaussian decoding is roughly 10
times noisier than the Dantzig method.



THE DANTZIG DECODER RING: AN R VINAIGRETTE 3

DantzigSelector <- function(X,y,K){
require(quantreg)

n <- nrow(X)

p <- ncol(X)

A <- crossprod(X)

R <- rbind(A, -A)

a <- crossprod(X,y)

r <- c(a-K, -a-K)

zp <- rep(0,p)

Ip <- diag(p)

f <- rq.fit.fnc(Ip, zp, R=R, r=r)

return(f)

}
DantzigDecoder <- function(A,y,sigma,Kval = 3){

NullSpace <- function(A){
S <- svd(A,nrow(A))

r <- length(S$d)

S$u[,(r+1):nrow(A),drop=FALSE]

}
Q <- t(NullSpace(A))

Qy <- Q %*% y

K <- sqrt(diag(crossprod(Q))) * sigma * Kval

f <- DantzigSelector(Q, Qy, K)

# Reprojection Step

s <- abs(f$coef) > sigma

e <- rep(0,nrow(A))

e[s] <- lm(Qy ~ Q[,s] -1)$coef

xhat <- lm((y-e) ~ A - 1)$coef

return(xhat)

}

p <- 256

n <- 2 * p

set.seed(1729)

A <- matrix(rnorm(p*n),n,p)

rho <- 0.10

k <- round(rho * n)

x <- rnorm(p)

y <- A %*% x

yt <- y

sigma <- median(abs(y))/16

s <- sample(1:n,k)

yt[s] <- -yt[s] # Original Candes example

u <- rnorm(n)*sigma

yt <- yt + u

xhat <- DantzigDecoder(A, yt, sigma)
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Figure 1. RMSE Effectiveness of Gaussian and Dantzig Decoding

par(mfrow=c(1,3))

g <- coef(lm(yt ~ A -1))

rmseG <- round(sqrt(var(x-g)),3)

plot(x,g,ylab=expression(hat(x)),main="Gauss")

text(1,-2,paste("RMSE = ",rmseG))

plot(x,xhat,ylab=expression(hat(x)),main="Dantzig")

rmseD <- round(sqrt(var(x-xhat)),3)

text(1,-2,paste("RMSE = ",rmseD))

h <- coef(lm((y + u) ~ A - 1))

plot(x,h,ylab=expression(hat(x)),main="Oracle")

rmseH <- round(sqrt(var(x-h)),3)

text(1,-2,paste("RMSE = ",rmseH))

5. Conclusion

“OK, so it seems to work, but why?” To answer this question it is necessary to delve
a bit deeper into the inner workings of median regression estimator. A hint about this is
provided by the sparseness of the contamination vector, v. The Dantzig decoder acts like the
connventional ℓ1 regression estimator. As long as there are only a few non-zero entries in v,
it is capable of easily identifying them, and once they are removed decoding is essentially as
good as the oracle operating on purely Gaussian data.
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