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Abstract. Nonparametric maximum likelihood estimation of general mixture models
pioneered by the work of Kiefer and Wolfowitz (1956) has been recently reformulated as
an exponential family regression spline problem in Efron (2016). Both approaches yield
a low dimensional estimate of the mixing distribution, g-modeling in the terminology
of Efron. Some casual empiricism suggests that the Efron approach is preferable when
the mixing distribution has a smooth density, while Kiefer-Wolfowitz is preferable for
discrete mixing settings. In the classical Gaussian deconvolution problem both maximum
likelihood methods appear to be preferable to (Fourier) kernel methods. Kernel smoothing
of the Kiefer-Wolfowitz estimator appears to be competitive with the Efron procedure for
smooth alternatives.

1. Introduction

Efron (2016) has recently introduced the phrase “Bayesian deconvolution” to describe a
maximum likelihood procedure for estimating mixture models of the general form,

f(y) =

∫
ϕ(y|θ)dG(θ),

where ϕ denotes a known parametric “base” model and G denotes an unknown, nonpara-
metric mixing distribution. Such models are fundemental in empirical Bayes compound
decision settings where we have the (iid) hierarchical structure,

Yi ∼ ϕ(y|θi); θi ∼ G.

When θ is a location parameter, so ϕ(y|θi) = ϕ(y− θi) this is a conventional deconvolu-
tion problem usually evoking characteristic function methods, however Efron’s maximum
likelihood procedure recalls the NPMLE of Kiefer and Wolfowitz (1956) except rather than
producing a discrete estimate of G it yields a smooth estimate.

This note contrasts the foregoing methods in a very simple, special case and argues
that maximum likelihood offers considerable advantages over prior (Fourier) deconvolution
methods, perhaps most significantly by extending the domain of applications beyond the
location shift model.
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2. The Kiefer-Wolfowitz NPMLE

In Koenker and Mizera (2014) we have advocated the Kiefer-Wolfowitz NPMLE approach
to estimating G and constructing estimates of the θi’s for compound decision problems. In
sharp contrast to finite dimensional mixture problems with highly multimodel likelihoods,
discrete formulations of the general nonparametric mixture problem are strictly convex and
therefore admit unique solutions. Consider a grid t0, t1, · · · , tm with associated masses
{g ∈ Rm|gi > 0,

∑m
i=1 gi∆ti = 1}, we can approximate the log likelihood by,

`(G) =

n∑
i=1

log fi

where the n vector f = Ag and A is the n by m matrix with typical element ϕ(yi, tj). As

is well known from Laird (1978) or Lindsay (1983) the NPMLE, Ĝ, has p 6 n positive mass
points, while in practice this p is usually closer to logn than n. Interior point methods for
solving such problems are considerably more efficient than earlier EM approaches greatly
facilitating the study of their performance in simulation experiments. Unfortunately, little
is known about their statistical efficiency from a theoretical perspective beyond the basic
consistency results of Kiefer and Wolfowitz (1956) and Pfanzagl (1988).

3. Efron’s NPMLE

Efron (2016) has proposed an alternative approach to estimating G that expresses its
log derivative by a regression spline,

g(y|θ) = exp{

p∑
j=1

θjψj(y) −ψ0(θ)},

as in the pure density estimation methods of Stone (1990) and Barron and Shue (1991).
We can maintain the same discretization for the support of G, and set,

g = (gj) = (g(tj|θ)),

so the log likelihood can be expressed as above, except that now we are estimating a finite
dimensional parameter θ of predetermined dimension. Efron suggests natural splines for
the ψj functions and the penalization,

`n(Gθ) + λ‖θ‖

by the Euclidean norm of the vector θ, thereby shrinking θ toward the origin and Ĝ toward
the uniform distribution.

A striking feature of both the Efron and Kiefer-Wolfowitz proposals is that neither
depend upon the mixture model being a formal convolution. Of course when θ is a location
parameter so ϕ(y|θ) = ϕ(y− θ) then classical deconvolution methods are also applicable.
Efron compares the performance of his procedure with the kernel deconvolution method of
Stefanski and Carroll (1990), and concludes that the latter is “too variable in the tails.”
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Figure 1. Four estimates of the mixing distributions G: In the left panel
the true mixing distribution is smooth, in the left panel it is discrete as
described in the text.

4. An Illustration

To compare performance of the three estimators of G described above, I have considered
a slight variant of the simulation setting of Efron. The observed Yi are N(θ, 1) with θi’s
drawn iidly either a.) from the mixture of Gaussian and uniform distributions,

G(θ) = (1 − ε)Φ(θ/σ) + εθI(0 > θ < M)/M

with ε = 1/7, σ = 1/2 and M = 6, or from b.) the discrete mixing distribution with
ε = 1/7 and,

G(θ) = (1 − ε)I(0 6 θ) + εI(2 6 θ)

Figure 1 depicts typical realizations with sample size n = 1000. Following Efron we have
set the dimension of the natural spline model to p = 5, and his penalty parameter to
one. The scaling parameter for the Stefanski-Carroll procedure was 1/3, also following
Efron’s suggetion. For all three estimators the grid was equally spaced on the support of
the observed Yi with m = 300 distinct values. Wasserstein distance, L1 distance between
distribution functions, is reported above the figure for each of three estimates.
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The performance of Efron’s estimator is very impressive, while the oscillation of the
kernel method in the tails confirms Efron’s criticism. The Kiefer-Wolfowitz estimator is
respectable, at least the estimated Ĝ stays within the [0,1] bounds, but it is clearly inferior
to the smoother Efron procedure. When the target G is discrete with a small number of
mass points, the performance advantage, not surprisingly is reversed. One might count
the lack of tuning parameters for the Kiefer-Wolfowitz NPMLE as an advantage over its
competitors, or not, depending on one’s outlook on minimalism.

In the spirit of competition, I couldn’t resist trying to smooth the Kiefer Wolfowitz
NPMLE to see whether one might be able to approach the performance of the Efron
estimator, so the last (cyan) curve is a biweight kernel smooth with bandwidth equal 0.7.
This does almost as well as the default Efron procedure for our test case for the smooth
alternative, but spoils the auspicious performance for the discrete case. Encouraged by the
former improvement I decided to wade a little further out in the water by replicating the
experiment. In 1000 trials of the experiment with the smooth G0 the mean Wasserstein
error was 0.186 for the Efron estimator, 0.342 for the unsmoothed KW-NPMLE and 0.18
for the smoothed KW-NPMLE. Of course, this result proves nothing at all, except perhaps
that I’m acquainted with an excellent bandwidth oracle.
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