#figures for unit root rank tests paper #Test results are generated by the source file HK.s and stored in the #list HK.test.results, each item in the list is a 3x4x4 array for one of #the Nelson-Plosser time series. # #1. l: lag truncation parameter for Newey West computations #2. tests: Wilcoxon, Normal, Sign in figure they descend in this order #3. p order of autoregression in ADF model #4. variable number -- names of vars in vnames #set up the plot lagl_c(2,4,6,8) lagp_c(1,2,4,8) critval_qnorm(c(.01,.05,.1)) lambda_.33 #scaling factor for plot seg.length_.7 series_c(2,10,(1:14)[-c(2,10)]) #reorder the series for(k in 1:2){ s_HK.test.results[[series[k]]] out.file_paste("fig.",k,".ps",sep="") postscript(out.file,horizontal=F,width=6.5,height=4.5, font=7,pointsize=12) plot(c(5,5,1:9),0:10,xlab="lag truncation", ylab="order of autoregression",type="n") for(i in 1:4){ y1_kronecker(lagp,c(1,1,1))-.5*seg.length x1_kronecker(lagl[i],lambda*(-critval[2]+critval),fun="+") y2_kronecker(lagp,c(1,1,1))+.5*seg.length x2_kronecker(lagl[i],lambda*(-critval[2]+critval),fun="+") segments(x1,y1,x2,y2,col=2) for(j in 1:4){ points(lagl[i]+lambda*(-critval[2]+s[,i,j]), lagp[j]+seg.length*c(.4,0,-.4),cex=.5,pch="o") } } } postscript("fig.3.ps",horizontal=F,font=7,pointsize=10) par(mfrow=c(6,2)) for (k in 3:14){ s_HK.test.results[[series[k]]] plot(c(5,5,1:9),0:10,xlab="lag truncation", ylab="order of autoregression",type="n") for(i in 1:4){ y1_kronecker(lagp,c(1,1,1))-.5*seg.length x1_kronecker(lagl[i],lambda*(-critval[2]+critval),fun="+") y2_kronecker(lagp,c(1,1,1))+.5*seg.length x2_kronecker(lagl[i],lambda*(-critval[2]+critval),fun="+") segments(x1,y1,x2,y2,col=2) for(j in 1:4){ points(lagl[i]+lambda*(-critval[2]+s[,i,j]), lagp[j]+seg.length*c(.4,0,-.4),cex=.5,pch="o") } } title(NP.names[series[k]]) print(paste("s=",k)) }