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Abstract. An algorithm for computing parametric linear quantile regression es-
timates subject to linear inequality constraints is described. The algorithm is a
variant of the interior point algorithm described in Koenker and Portnoy (1997) for
unconstrained quantile regression and is consequently quite efficient even for large
problems, particularly when the inherent sparsity of the resulting linear algebra is
exploited. Applications to qualitatively constrained nonparametric regression are
described in the penultimate section. Implementations of the algorithm are available
in MATLAB and R.

1. Introduction

An early application of median regression in economics can be found in Arrow
and Hoffenberg (1959). Their objective was to estimate input-output coefficients in a
regression setting, but it was obviously desirable to impose the restriction that the co-
efficients were all positive. This was a relatively simple task given linear programming
technology of the day provided that the conventional squared error fitting criterion
was replaced by the absolute error criterion.

There are many other applications in which linear inequality constraints play a
vital role in quantile regression. We will briefly describe some applications to non-
parametric quantile regression in Section 5. First, we will introduce the quantile
regression computational problem and briefly describe some basic duality theory and
its relevance. We will then describe a modification of the Frisch-Newton algorithm
introduced in Koenker and Portnoy (1997) that accommodates linear inequality con-
straints. Some details of the implementation of the algorithm and an evaluation of
performance is provided in Section 4.

2. Quantile Regression as a Linear Program

The quantile regression problem

(1) min
b∈Rp

n
∑

i=1

ρτ (yi − x>
i b)
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where ρτ (u) = u(τ − I(u < 0)) is easily seen to be a linear program.1 Let e denote
an n-vector of ones and rewrite (1) as

(2) min
(u,v,b)

{τe>u + (1 − τ)e>v|Xb + u − v = y, (u
>

, v
>

, b
>

) ∈ R
2n
+ × R

p}

In this formulation we seek the minimum of a linear function of the 2n + p vari-
ables (u

>

, v
>

, b
>

), subject to n linear equality constraints and 2n linear inequality
constraints. It turns out to be convenient to reformulate this primal version of the
problem in the following way

(3) max
d

{y>d|X>d = (1 − τ)X>e, d ∈ [0, 1]n}

Here, [0, 1]n denotes the n-field Cartesian product of the unit interval, and d may
be interpreted as a vector of Lagrange multipliers associated with the linear equality
constraints of the primal problem

To understand the transition from the primal problem (2) to the dual problem (3)
it is helpful to recall a somewhat more general version of the duality theory of linear
programming. Using the conventional notation of linear programming 2 and following
Berman (1973), consider the primal problem

(4) min
x

{c>x|Ax − b ∈ T, x ∈ S}

where the sets T = {y ∈ R
n} and S = {y ∈ R

2n ×R
p} can be arbitrary closed convex

cones. This canonical problem has dual

(5) max
y

{b>y|c − A>y ∈ S∗, y ∈ T ∗}

where S∗ = {y ∈ R
2n × R

p|x>y ≥ 0 if x ∈ S} is the dual of S and T ∗ = {y ∈ R
n}.

For our purposes it suffices to consider the following special case: T = {On}, S =
{R

2n
+ × R

p}, S∗ = {R
2n
+ × Op}, and T ∗ = {R

n}.

In our primal problem (2),
(

τe
>

, (1 − τ) e
>

, O
>

p

)>

and
(

u
>

, v
>

, b
>

)>

correspond

to, respectively, c and x in (4), and the relation Ax − b ∈ T in (4) becomes

(6) [I
... − I

...X]





u
v
b



 − y ∈ {On}

1This observation for median regression, i.e., τ = 1/2, can be traced to Charnes, Cooper, and
Ferguson (1955) and Wagner (1959)

2An inherent difficulty in describing numerical algorithms for statistical procedures is that we
are faced with two well established, but mutually incompatible notational schemes; one arising in
statistics, the other in numerical analysis. In Section 2 we will introduce the quantile regression
problem in its familiar statistical garb and then make the connection to linear programming. For
the serious business of describing the algorithm in detail in Section 3 we will revert to the well
established notational conventions of numerical analysis.
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while c − A>y ∈ S∗ becomes




τe
(1 − τ)e

Op



 −





I
−I
X>



λ ∈ {R
2n
+ × Op}

where λ denotes the n-vector of dual variables (Lagrange multipliers) associated with
the equality constraints of the primal problem in (1). The requirement y ∈ T ∗ in
(5) may be translated as λ ∈ R

n so the dual problem in (5) can be expressed more
concisely using the quantile regression notations as,

max{y>λ|X>λ = 0, λ ∈ [τ − 1, τ ]n}.

But this is equivalent to (3) after the transformation of variables, d = 1 − τ + λ.

2.1. Inequality Constraints. Now consider augmenting the constraints of the pri-
mal problem in (2) with the new constraints, Rb ≥ r. This is easily accommodated
into the Ax − b ∈ T constraint, (6) becomes,

(7)

[

I −I X
0 0 R

]





u
v
b



 −

[

y
r

]

∈ {On} × R
m
+

where m ≤ p denotes the row dimension of R. Now we have the dual variables
λ = (λ>

1 λ>
2 )> where λ1 is associated with equality constraints and λ2 is associated

with the inequality constraints. The dual constraint c − A>y ∈ S∗ becomes,

(8)





τe
(1 − τ)e

Op



 −





I 0
−I 0
X> R>





[

λ1

λ2

]

∈ {R
2n
+ × Op}

so the dual problem is

max
λ

{y>λ1 + r>λ2|X
>λ1 + R>λ2 = 0, λ1 ∈ [τ − 1, τ ]n, λ2 ≥ 0}.

Again, transforming variables d1 = 1 − τ + λ1, d2 = λ2 we have

(9) max
d

{y>d1 + r>d2|X
>d1 + R>d2 = (1 − τ)X>e, d1 ∈ [0, 1]n, d2 ≥ 0}.

It is this form of the inequality constrained problem for which we will describe a
solution algorithm.

3. A Frisch-Newton Algorithm

Until the mid 1980’s the method of choice for solving linear programs of the sort
described above was the simplex method. However, the work of Karmarker (1984)
brought to fruition the idea of interior point methods. Rather than travel along the
outer edges of the constraint set looking at each vertex for the direction of steepest
descent, one might burrow from the center toward the boundary. This paradigm
shift in thinking about linear programming has had a profound impact throughout
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the optimization literature. An influential observation by Gill, Murray, Saunders,
Tomlin, and Wright (1986) connected Karmarker’s interior point methods to earlier
log-barrier methods elaborated by Fiacco and McCormick (1968) and others.

A pioneering early advocate of log barrier methods was Ragnar Frisch. In a series
of Oslo technical reports, Frisch discovered interior point methods 30 years avant la

lettre. Frisch (1956) described it in the following vivid terms for a talk in Paris,

My method is altogether different than simplex. In this method we
work systematically from the interior of the admissible region and em-
ploy a logarithmic potential as a guide – a sort of radar – in order to
avoid crossing the boundary.

Despite considerable numerical experience with these methods, Frisch was unable
to establish convergence and the resolution of many practical apects of the implemen-
tation of the methods had to wait for the intensive research effort that occurred only
in the late 1980’s.

3.1. The Log-Barrier Formulation. The algorithm that we will describe in this
section is a variant of the log-barrier algorithm described in Koenker and Portnoy
(1997) for unconstrained quantile regression problems. Following prior usage, we will
refer to this as a Frisch-Newton method since the log-barrier formulation of Frisch,
by replacing the sharply demarcated boundary of the inequality constraints with an
objective function that smoothly tends to infinity as one approaches the boundary,
enables us to take Newton steps toward a boundary solution. The strategy used
to adjust the barrier parameter is based on the well-established Mehrotra (1992)
predictor-corrector approach.

We adhere in this section to the notational conventions of Lustig, Marsden, and
Shanno (1994). We will consider the following pair of primal and dual problems:

min
(x1,x2)

{c>1 x1 + c>2 x2|A1x1 + A2x2 = b, 0 ≤ x1 ≤ u, 0 ≤ x2}

max
(y,w)

{b>y − u>w|A>
1 y + z1 − w = c1, A>

2 y + z2 = c2, (z1, z2, w) ≥ 0}.

Note that we have reversed the roles of primal and dual so our new primal problem
corresponds to the dual problem we derived in the previous section and vice-versa.
Note also that we have generalized the problem slightly to allow u to be an arbitrary
vector of (positive) upper bounds.
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The classical Karush-Kuhn-Tucker (KKT) conditions for an optimum are:

A>
1 y + z1 − w = c1

A>
2 y + z2 = c2

Ax = b

x1 + s = u

XZe = 0

SWe = 0

Here we employ the convention that upper case letters corresponding to vectors in
lower case are diagonal matrices with the elements of the vector along the diagonal,
so for example X = diag(x). An easy way to see the KKT conditions is to write the
primal problem above as the Lagrangian expression,

L = c>x − y>(Ax − b) − w>(u − x1 − s) − µ(
∑

log x1i +
∑

log x2i +
∑

log si).

This log-barrier formulation replaces the inequality constraints with a barrier function
that penalizes feasible solutions as they approach the boundary of the constraint set.
The parameter µ controls the severity of this penalization, and the strategy will be
to gradually reduce µ. As µ tends to zero we approach the solution on the boundary
of the constraint set. Differentiating with respect to x1 and x2 yields

A>
1 y − w + µX−1

1 e = c1

A>
2 y + µX−1

2 e = c2.

Writing z = µX−1e, we have the first two equations of the KKT system. Differen-
tiating with respect to y and w yields the next two. For fixed µ we have, from the
definitions of z,

XZe = µe

and, from differentiating with respect to s, we obtain,

w = µS−1e.

Substituting µ = 0 yields the last two KKT conditions. The motivation for setting
µ = 0 stems from the question: ’What is the best value for µ at each iteration toward
the optimal solution on the boundary of the constraint set?’ The affine-scaling step
described in Section 3.2 suggests computing the primal-dual step with µ = 0. When
the step thus obtained is feasible, we take it and continue the iteration. If it takes us
outside the feasible region determined by the inequality constraints, i.e., the barrier
function dominates the Lagrangian, we compute a Mehrotra predictor-corrector step
described in Section 3.3 to modify the affine-scaling step to bring us back into the
interior of the feasible region. The iterations stop when the duality gap is smaller
than a specified tolerance, which is the requirement for optimality implied by the
complementary slackness.
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3.2. The Affine Scaling Step. We are looking for a solution to the KKT equations,
say g(ξ) = 0. Suppose we have an initial point ξ0 = (y0, z0, x0, s0, w0), for which x0 is
feasible for our primal problem. Denote g(ξ0) = g0. We differentiate to get

g(ξ) ≈ ∇ξg(ξ0)dξ + g0

and we choose a direction by setting this equal zero, i.e.,

dξ = −[∇ξg(ξ0)]
−1g0.

This is just Newton’s Method. The linear system we obtain looks like


















A>
1 I 0 0 0 0 −I

A>
2 0 I 0 0 0 0
0 0 0 A1 A2 0 0
0 0 0 I 0 I 0
0 X1 0 Z1 0 0 0
0 0 X2 0 Z2 0 0
0 0 0 0 0 W S





































dy
dz1

dz2

dx1

dx2

ds
dw



















= −



















A>
1 y + z1 − w − c1

A>
2 y + z2 − c2

Ax − b
x1 + s − u

X1Z1e
X2Z2e
SWe



















≡



















r1

r2

r3

r4

r5

r6

r7



















To solve, substitute out dw and dz to get

Wds + Sdw = −SWe

dw = −S−1(SWe + Wds) = −We − S−1Wds

Xdz + Zdx = −XZe

dz = −X−1(XZe + Zdx) = −Ze − X−1Zdx.

This reduces the system to,

A>
1 dy − X−1

1 Z1dx1 + S−1Wds = r1 − We + Z1e

A>
2 dy − X−1

2 Z2dx2 = r2 + Z2e

Adx = r3

dx1 + ds = r4,

which we can assemble as,








A>
1 −X−1

1 Z1 0 S−1W
A>

2 0 −X−1
2 Z2 0

0 A1 A2 0
0 I 0 I

















dy
dx1

dx2

ds









=









c1 + w − z1 − A>
1 y − w + z1

c2 − z2 − A>
2 y + z2

b − Ax
0









.

Note that we have assumed that we start with u = x1 + s. Now, substitute out ds =
−dx1 to reduce further the system, and set Q1 = X−1

1 Z1 + S−1W , and Q2 = X−1
2 Z2.

We now have,




A>
1 −Q1 0

A>
2 0 −Q2

0 A1 A2









dy
dx1

dx2



 =





c1 − A>
1 y

c2 − A>
2 y

b − Ax



 ≡





r̃1

r̃2

r̃3



 .
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Now solve for dx1 and dx2 in terms of dy in the first two equations:

A>
1 dy − Q1dx1 = r̃1 ⇒ dx1 = Q−1

1 (A>
1 dy − r̃1)

A>
2 dy − Q2dx2 = r̃2 ⇒ dx2 = Q−1

2 (A>
2 dy − r̃2)

Substitution gives us one equation3 in dy

(A1Q
−1
1 A>

1 + A2Q
−1
2 A>

2 )dy = r̃3 + A1Q
−1
1 r̃1 + A2Q

−1
2 r̃2

We can now write the solution to the linear system for the “affine step” as:

dy = (AQ−1A>)−1[r̃3 + A1Q
−1
1 r̃1 + A2Q

−1
2 r̃2]

dx1 = Q−1
1 (A>

1 dy − r̃1)

dx2 = Q−1
2 (A>

2 dy − r̃2)

ds = −dx1

dz = −z − X−1Zdx = −Z
(

e + X−1dx
)

dw = −w − S−1Wds = −W
(

e + S−1ds
)

.

The real effort at each iteration involves the Cholesky decomposition of the matrix
AQ−1A> where Q is the diagonal matrix with Q1 and Q2 on the diagonal. And in
this respect the algorithm is essentially the same as the case without the inequality
constraints.

3.3. The Mehrotra Predictor – Corrector Step. The tentative affine scaling
step length is given by,

(10) φp = min{1, σ min
i: dxi<0

{xi/dxi}, σ min
i: dsi<0

{si/dsi}}

(11) φd = min{1, σ min
i: dzi<0

{zi/dzi}, σ min
i: dwi<0

{wi/dwi}}

where the scaling factor σ determines how close the step is allowed to come to the
boundary of the constraint set. In accordance with Lustig, Marsden and Shanno
(1992, 1994) we take σ = .99995.

When the full affine scaling step is infeasible, that is when min{φp, φd} < 1, we
attempt to modify the length and direction of the step. For fixed µ > 0, the first

3Note that in prior implementations, Koenker and Portnoy (1997), we assumed that we had
initial primal-dual feasibility, i.e., that the equality constraints were all satisfied and the starting
value satisfied 0 ≤ x ≤ u. This was easy since x0 = (1−τ)e was a natural initial point. Here we have
not assumed initial primal feasibility so the right hand side becomes a bit more complicated. But
crucially we do not need to have Ax = b at the start; this simplifies life in the inequality constrained
case considerably.
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order conditions corresponding to our Lagrangian expression are,

A>
1 y + z1 − w = c1

A>
2 y + z2 = c2

Ax = b(12)

x1 + s = u

XZe = µe

SWe = µe

Substituting x → x + dx, y → y + dy etc., we obtain, assuming x1 + s = u

A>
1 dy + dz − dw = c1 − A>

1 y − z1 + w

A>
2 dy + dz2 = c2 − A>

2 y − z2

Adx = b − Ax

dx1 + ds = 0

Xdz + Zdx = µe − XZe − dXdZe

Sdw + Wds = µe − SWe − dSdWe.

Note that our provisional affine scaling step has been computed by solving almost the
same system except that the bilinear terms dXdZe and dSdWe were ignored and µ
was set to zero. The Mehrotra predictor-corrector step brings both of these aspects
of the problem back into play by solving:

A>
1 δy + δz1 − δw = 0

A>
2 δy + δz2 = 0

Aδx = 0

δx1 + δs = 0

Xδz + Zδx = µe − dXdZe

Sδw + Wδs = µe − dSdWe

Solving, we proceed as before,

Wδs + Sδw = µe − dSdWe

δw = −S−1Wδs + S−1(µe − dSdWe)

Xδz + Zδx = µe − dXdZe

δz = −X−1Zδx + X−1(µe − dXdZe)
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substituting, and eliminating δs as before, we have

A>
1 δy − Q1δx1 = S−1(µe − dSdWe) − X−1

1 (µe − dX1dZ1e)

A>
2 δy − Q2δx2 = −X−1

2 (µe − dX2dZ2e)

Aδx = 0,

rewritten in matrix form,




A>
1 −Q1 0

A>
2 0 −Q2

0 A1 A2









δy
δx1

δx2



 =





r̂1

r̂2

0





where

r̂1 = S−1(µe − dSdWe) − X−1
1 (µe − dX1dZ1e)

= µ(S−1 − X−1
1 )e + X−1

1 dX1dZ1e − S−1dSdWe

r̂2 = −X−1
2 (µe − dX2dZ2e)

Now solve again for δx in terms of δy, and substituting we have

δy = (AQ−1A>)[A1Q
−1
1 r̂1 + A2Q

−1
2 r̂2]

δx1 = Q−1
1 (A>

1 δy − r̂1)

δx2 = Q−1
2 (A>

2 δy − r̂2)

δs = −δx1

δz = −X−1Zδx + X−1(µe − dXdZe)

δw = −S−1Wδs + S−1(µe − dSdWe)

We can interpret the solution of this system for the vector (δy, δz, δx, δs, δw) as simply
taking another Newton step, this time starting from the proposed affine scaling point.
Since the left hand sides of the two linear systems are exactly the same, only the right
hand side has been altered, a solution to the new system can be found by backsolving
the triangular system using the Cholesky factorization of the affine step.

The crucial remaining question is: how does µ get updated? The duality gap is
given by the expression,

γ = x>z + s>w.

Complementary slackness requires that the duality gap vanish at an optimum, so γ
provides a direct measure of progress toward the solution. Iterations stop when γ is
reduced below a prespecified tolerance. Solving the last two equations of the system
(12) for µ we obtain,

µ = γ/(2n1 + n2)
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where n1 is the dimension of the vectors: x1, z1, s, w, and n2 is the dimension of the
vectors: x2, z2. Were we to take the affine scaling step the duality gap would be

γ̂ = (x + φpdx)>(z + φddz) + (s + φpds)>(w + φddw)

If γ̂ << γ the step has made considerable progress toward the solution and it is
reasonable to reduce µ considerably. On the other hand, if the duality gap is only
slightly reduced, we should consider the affine step to be poor and conclude that µ
should not be substantially reduced. Note that repeated Newton steps with a fixed
value of µ bring the iterations toward a point on the “central path”, that is a point
that minimizes the Lagrangean for a fixed µ.

Good performance of any interior point algorithm must balance the objectives
of trying to stay close to the central path while trying to rapidly reduce the barrier
parameter µ and thus moving toward the boundary. See Gonzago (1992) for a detailed
analysis. The heuristics described above are embodied in the updating rule,

µ(k+1) → (γ̂/γ)3γ/(2n1 + n2)

Substituting this new value of µ into the system and solving we obtain the modified
step. The step length is again determined by the rules (10) and (11). The step
is taken, and the iterations continue until the duality gap is reduced to satisfy the
specified tolerance.

4. Implementation

The algorithm described above has been implemeted in four distinct versions.4

Versions written in “R” and “Matlab” provide accessible and convenient tools for
studying qualitative features of performance since they are written in higher-level,
matrix-oriented languages. R, Ihaka and Gentleman (1996), is a open source dialect
of the statistical language S developed by Chambers (1998). We have used the pure
“R” version primarily as a debugging tool, but the Matlab version is reasonably
efficient for problems of moderate size.5

Two distinct versions of the algorithm have also been written in Fortran and linked
to “R”. One employs standard (dense) linear algebra routines from LAPACK, the
other uses more specialized sparse linear algebra to improve performance for prob-
lems having a high proportion of zeros in the matrix A. The latter formulation is
particularly well-suited to the non-parametric regression problems we describe in the
next section. We discuss in more detail the sparse matrix implementation aspects in
Koenker and Ng (2004).

4Code is available at: http://www.econ.uiuc.edu∼/roger/rq/rq.html for all four versions.
5Careful examination of the Matlab code reveals that some additional efficiency gain would be

possible by reusing the Cholesky factorization in the computation of the modified step, as described
in the preceding section.
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5. Quantile Smoothing Splines

In Koenker, Ng, and Portnoy (1994) we proposed a variant of the classical cubic
smoothing spline solving

min
g∈G2

∑

(yi − g(xi))
2 + λ

∫

(g′′(x))2dx.

This quantile smoothing spline was constructed by solving,

(13) min
g∈G1

∑

ρτ (yi − g(xi)) + λ
∨

(g′).

Here
∨

(f) denotes the total variation of the function f . Recall, e.g., Natanson (1955)
for absolutely continuous f : < → <,

∨

(f) =

∫

|f ′(x)|dx.

Thus, for sufficiently smooth g, we can interpret the roughness penalty in (13) as L1

norm of the second derivative,

∨

(g′) =

∫

|g′′(x)|dx.

However, solutions of the variational problem (13) turn out to take the form of piece-
wise linear functions, so the total variation interpretation of the penalty is preferable.6

The problem (13) has a simple linear programming formulation. Writing

g(x) = αi + βi(x − xi) for x ∈ [xi, xi+1)

for the ordered, distinct values x1, . . . , xn, we have by the continuity of g, that

βi = (αi+1 − αi)/hi i = 1, 2, . . . , n − 1

where hi = xi+1 − xi. So the penalty becomes

∨

(g′) =

n−2
∑

i=1

|βi+1 − βi| =

n−2
∑

i=1

|(αi+2 − αi+1)/hi+1 − (αi+1 − αi)/hi|,

and the original problem may be written as,

min
α∈<n

n
∑

i=1

ρτ (yi − αi) + λ
n−2
∑

j=1

|d>
j α|

6The L1 interpretation can be extended to the piecewise linear case, but we then need to interpret
the integral as a limiting form in the sense of (Schwartz) distributions. See Koenker and Mizera
(2002) for details.
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where d>
j = (0, . . . , 0, h−1

j , (h−1
j+1−h−1

j ), h−1
j+1, 0, . . . , 0). In the important median special

case, τ = 1/2, we can view this as simply a data-augmented `1 regression. We have
the pseudo-design matrix,

X =

[

In

D

]

where d>
j is the jth row of D, and the pseudo response is y> = (y1, . . . , yn, 0, . . . , 0) ∈

<2n−2. In the case that τ 6= 1/2 the situation is almost the same, except that in the
dual formulation of the problem we have equality constraints whose right hand side
is (1 − τ)en + 1/2D>en−2 rather than 1/2en + 1/2D>en−2.

The parameter λ in (13) controls the smoothness of the fitted function ĝ. The
parametric dimension of ĝ can be associated with the number of points interpolated
exactly by ĝ, i.e., #{i : yi = ĝ(xi)}. Koenker, Ng, and Portnoy (1994) discuss us-
ing this quantity in a Schwartz-type model selection criterion. They also suggest
that further qualitative constraints on the fitted function such as monotonicity or
convexity could be imposed by adding linear inequality constraints. This approach
was implemented in He and Ng (1999b) using the Bartels and Conn (1980) projected
gradient/Simplex algorithm.

5.1. Monotonicity. There is a vast literature on estimating non-parametric regres-
sion relationships subject to monotonicity constraints. The classical reference is Bar-
low, Bartholomew, Bremner, and Brunk (1972), recent developments are treated in
Robertson, Wright, and Dykstra (1988). See also the survey of Matzkin (1994).
Much of the early work focused on minimizing a squared error objective subject to
a monotonicity constraint, but more recently there has been interest in adding a
smoothing objective as well. Mammen (1991), for example, considers kernel smooth-
ing followed by a pool-adjacent-violators step as well as a procedure that reverses the
order of these operations. More in line with the approach suggested here is the work
of Utreras (1985), Villalobos and Wahba (1987), Ramsay (1988), Mammen, Marron,
Turlach, and Wand (2001), and most closely He and Ng (1999a) who all explore
smoothing spline methods subject to linear inequality constraints as a way to impose
monotonicity

Adding a monotonicity constraint to the quantile smoothing spline problem is quite
straightforward given the algorithm described in the earlier sections. The function g
is monotone increasing if

βi = (αi+1 − αi)/hi ≥ 0 i = 1, 2, . . . , n − 1

so our constraint Rb ≥ r becomes,








−1 1 0 . . . . . . 0
0 −1 1 . . . . . . 0
...
0 . . . . . . . . . −1 1



















α1
...
...

αn











≥ 0.
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To illustrate the method, in Figure 1 we plot observations from the model

yi = xi + ui

where the xi are equally spaced on [0, 5], and the ui are Student t on 2 degrees of
freedom. There are 100 observations. The pool adjacent violators curve appears in
gray, and the monotone median smoothing spline with λ = 0.1 appears in black.
Note that the outliers in the response tend to produce extended flat segments in
the PAV fit. There are several advantages of the spline: it has a “knob” to control
the smoothness of the fitted function, it has an inherent robustness that PAV fitting
based on Gaussian fidelity does not, and there is also a knob to control the desired
conditional quantile of the fit.

5.2. Convexity. There is also an extensive literature on estimating functions con-
strained to be convex, or concave. Such conditions are also easy to impose. Convexity
is equivalent in our setting of linear splines to the monotonicity of the slope parame-
ters, βi, i.e. to the conditions,

βi+1 − βi ≥ 0 i = 1, 2, ..., n − 1.

So to impose convexity we need simply to add the constraint,

Dα ≥ 0,

where D is the matrix defining the total variation roughness penalty introduced above.
For concavity, D is replaced by −D. In Figure 2 we illustrate a simple application to
fitting the quadratic model,

yi = xi + x2
i + ui

where the ui are iid N (0, 4). The plot illustrates two median smoothing spline fits,
both with λ chosen to be 0.08, one with the convexity constraint, the other without the
constraint. Clearly the convexity constraint acts as a powerful additional smoothing
effect.

5.3. L∞ Roughness Penalty. In earlier work, Koenker and Ng (1992), we have
suggested that L∞ penalties on the roughness of the fitted function,

sup
x

|g′′(x)|

might serve as a useful alternative to the total variation penalty for some applications.
For linear splines we may interpret this as,

sup
i

|βi+1 − βi| ≤ ν.

Rather than assigning a Lagrange multiplier to determine the relative weight received
by the roughness penalty we may choose a value for ν and vary the smoothness of
the fitted function by adjusting the ν knob. It is well known that there is a one
to one correspondance between the solutions determined by the Lagrange multiplier
formulation and those indexed by the constraint parameter ν. Again the matrix D
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Figure 5.1. A comparison of the pool adjacent violators estimate (in
gray) and a monotone median smoothing spline fit (in black). Note the
sensitivity of the PAV solution to outliers in the response y, and the
need for further smoothing.

plays a crucial role, and we may express the constraints as restricting both Dα and
−Dα to exceed −ν times a vector of ones.

5.4. Boundary Constraints. In many smoothing problems there are natural con-
straints on the function being estimated near the boundary of the region of support.
These might entail inequality constraints on the function itself, or on its derivitives,
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Figure 5.2. A comparison of the convex constrained median smooth-
ing spline (in black) and the unconstrained median smoothing spline
(in gray). Both of the fitted curves use the same smoothing parameter
λ = 0.08.

or even equality constraints. Note that equality constraints, say Rβ = r can easily
be imposed by requiring both Rβ ≥ r and Rβ ≤ r.

6. An Engel Curve Example

To illustrate the approach of the preceeding section we consider an application to
the estimation of Engel curves. The data is taken from the U.K. Family Expenditure
Survey for 1995. There are 3296 observations. The observations on household income
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were rounded to 4 significant digits; this yielded 1537 distinct values representing the
parametric dimension of the the model prior to smoothing. Expenditure on alcohol
and tobacco is modeled solely as a function of household total expenditure with both
variables taken in natural logarithms, so the slope of the estimated curves can be
taken as an estimate of the Engel elasticity. We estimate six distinct conditional
quantile functions for τ ∈ {.15, .25, .50, .75, .95, .99}. Quantiles below .15 can not be
estimated since the proportion of reported zeros exceeds this level at lower household
expenditure levels. Note that the treatment of the zero expenditure households when
taking logarithms is not an issue for the estimation of these upper quantiles. Such
observations can be notionally coded at −∞. Only the the sign of their residuals
influences the estimate of the model, so the actual coding only has to insure the
they lie below the fitted function. In Figure 3 we depict six families of estimated
conditional quantile Engel curves. All of the estimates are based on the total variation
penalty method (13). We illustrate results for two different values of the smoothing
parameter λ: the upper panels use λ = 1.0, while the lower panels use λ = 0.5.
The left panels of the figure depict the unconstrained estimates, the middle panels
illustrates the estimates constrained to be monotone increasing, and the right panels
were constrained to be increasing and concave. It is apparent that the qualitative
constraints are effective in imposing some additional discipline on the fitting and
this is even more clear as one explores fitting with smaller values of the smoothing
parameter, λ.

Here the fitting was carried out using the sparse versions of the algorithms described
above in R, as a consequence it would be straightforward to add further complexity
to the model in the form of parametric or nonparametric components. See the doc-
umentation for the function rqss in the quantreg package for R, Koenker (1991–),
and the SparseM package for sparse linear algebra, Koenker and Ng (2003). The use
of sparse algebra is quite essential since without it the size of underlying regression
problems with column dimension 1537 and up to about 10,000 rows would be prohib-
itive on many machines; with it, required cpu time for fitting is about half a second
on a Sun Ultra 2 for each quantile.

7. Prospects and Conclusions

Inequality constraints are relatively easy to impose in the context of quantile re-
gression estimation and provide a flexible means of imposing qualitative restrictions
in non-parametric quantile regression problems. Interior point methods based on
Frisch’s log-barrier approach offer an extremely efficient approach to the computa-
tion of such estimators. And sparse linear algebra leads to significant further gains
in efficiency of computation.

There are several important open problems associated with inequality constrained
quantile regression. There is an extensive literature on inference in the classical
Gaussian regression setting subject to inequality restrictions, and there is also an
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extensive literature on tests of qualitative features in nonparametric mean regression.
It would be useful to extend this inference apparatus to the present context.
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