SparseM.hb Harwell-Boeing Format Sparse Matrices

Description

Read, write and extract components of data in Harwell-Boeing sparse matrix format.

Usage

read.matrix.hb(filename)

write.matrix.hb(filename = "hb.out", X, title, key, mxtype, rhs = NULL,
guess = FALSE, xsol = FALSE, ptrfmt = "(16I5)", indfmt = "(16I5)",
valfmt = "(5D16.9)", rhsfmt = "(5D16.9)")

model .matrix(object, ...)

model.response(data)

Arguments

filename file name to read from or write to

data, object an object of either matrix.csc.hb or matrix.ssc.hb class

type One of “any”, “numeric”, “’double”. Using the either of latter two
coerces the result to have storage mode “’double”.

X coefficient matrix stored in csc (for unsymmetric and rectangular matrix)
or ssc (for symmetric matrix) format

title 72-character title for the matrix

key 8-character identifier for the matrix

mxtype 3-character identifier for type of the coefficient matrix;

First character: currently only "R” for real matrix is supported; second
character: ”S” for symmetric, "U” for unsymmetric” and "R” for rectan-
gular matrix; third character: currently only ”"A” for assembled matrix is

supported

rhs vector or matrix of right-hand-side(s) including starting guesses and so-
lution vectors if present stored in full storage mode

guess logical flag for the presence of initial guess of the solutions; if TRUE, the
values of initial guess are appended to the end of rhs

xsol logical flag for the presence of exact solutions; if TRUE, the values of the
exact solutions are appended to the end of rhs

ptrimt printing format for the column pointers

indfmt printing format for the row indices

valfmt printing format for the values

rhsfmt printing format for the right-hand-sides

additional arguments

Details

Sparse coefficient matrices in the Harwell-Boeing format are stored in 80-column records.
Each file begins with a multiple line header block followed by two, three or four data
blocks. The header block contains summary information on the storage formats and storage
requirements. The data blocks contain information of the sparse coefficient matrix and data
for the right-hand-side of the linear system of equations, initial guess of the solution and the
exact solutions if they exist. The function model .matrix extracts the X matrix component.
The function model.response extracts the y vector (or matrix).

Value

The function read.matrix.hb returns a list of class matrix.csc.hb or matrix.ssc.hb
depending on how the coefficient matrix is stored in the file.

ra ra component of the csc or ssc format of the coefficient matrix, X.

ja ja component of the csc or ssc format of the coeflicient matrix, X.

ia ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra ra component of the right-hand-side, y, if stored in csc or ssc format;
right-hand-side stored in dense vector or matrix otherwise.

rhs.ja ja component of the right-hand-side, y, if stored in csc or ssc format; a
null vector otherwise.

rhs.ia ia component of the right-hand-side, y, if stored in csc or ssc format; a
null vector otherwise.

xexact vector of the exact solutions, b, if they exist; a null vector otherwise.

guess vector of the initial guess of the solutions if they exist; a null vector
otherwise.

dimension dimenson of the coefficient matrix, X.

rhs.dim dimenson of the right-hand-side, y.

rhs.mode storage mode of the right-hand-side; can be full storage or same format

as the coefficient matrix.
The function model.matrix returns the X matrix of class matrix.csr. The function
model .response returns the y vector (or matrix).
Author(s)
Pin Ng

References

Duff, L.S., Grimes, R.G. and Lewis, J.G. (1992) User’s Guide for Harwell-Boeing Sparse
Matrix Collection at http://math.nist.gov/MatrixMarket/collections/hb.html

See Also

s1m for sparse version of 1m

SparseM. ops for operators on class matrix.csr

SparseM. solve for linear equation solving for class matrix.csr
SparseM. image for image plotting of class matrix.csr
SparseM.ontology for coercion of class matrix.csr

Examples

read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o
class(hb.o) # -> [1] "matrix.csc.hb"

model .matrix(hb.o)->X

class(X) # -> "matrix.csr"

dim(X) # -> [1] 1850 712

y <- model.response(hb.o) # extract the rhs

length(y) # [1] 1850

SparseM. image Image Plot for Sparse Matrices

Description

Display the pattern of non-zero entries of a matrix of class matrix.csr or matrix.csc

Usage
image(x, col=c("white","gray"),xlab="column",ylab="row", ...)
Arguments
X a matrix of class matrix.csr or matrix.csc.
col alist of colors such as that generated by ‘rainbow’. Defaults to c("white”,”gray”)
xlab,ylab each a character string giving the labels for the x and y axis.
additional arguments.
Details

The pattern of the non-zero entries of a sparse matrix is displayed. By default nonzero
entries of the matrix appear as gray blocks and zero entries as white background.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,

http://www.econ.uiuc.edu/ roger/research

See Also

SparseM.ops, SparseM.solve, SparseM.ontology

Examples

a <- rnorm(20%5)

A <- matrix(a,20,5)
Alrow(A)>col(A)+4|row(A)<col(A)+3] <- O

b <- rnorm(20%*5)

B <- matrix(b,20,5)
Blrow(A)>col(A)+2|row(A)<col(A)+2] <- O
image (as.matrix.csr(A)%+*%as.matrix.csr(t(B)))

SparseM.ontology Sparse Matriz Class

Description

This group of functions evaluates and coerces changes in class structure.

Usage
as.matrix.csr(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
as.matrix.csc(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
as.matrix.ssr(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
as.matrix.ssc(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
is.matrix.csr(x, ...)
is.matrix.csc(x, ...)
is.matrix.ssr(x, ...)
is.matrix.ssc(x,)
Arguments
X is a matrix, or vector object, of either dense or sparse form
nrow number of rows of matrix
ncol number of columns of matrix
eps A tolerance parameter: elements of x such that abs(x) < eps set to zero.
This argument is only relevant when coercing matrices from dense to
sparse form. Defaults to eps = .Machine$double.eps

other arguments

Details

The function matrix.csc acts like matrix to coerce a vector object to a sparse matrix
object of class matrix.csr. The generic functions as.matrix.xxx coerce a matrix x into a
matrix of storage class matrix.xxx. The argument matrix x may be of conventional dense
form, or of any of the four supported classes: matrix.csr, matrix.csc, matrix.ssr,
matrix.ssc. The generic functions is.matrix.xxx evaluate whether the argument is of
class matrix.xxx. The function as.matrix transforms a matrix of any sparse class into
conventional dense form. The primary storage class for sparse matrices is the compressed
sparse row matrix.csr class. An n by m matrix A with real elements a;;, stored in
matrix.csr format consists of three arrays:

ra: areal array of nnz elements containing the non-zero elements of A, stored in row order.
Thus, if i<j, all elements of row i precede elements from row j. The order of elements
within the rows is immaterial.

ja: an integer array of nnz elements containing the column indices of the elements stored
in ra.

ia: an integer array of n+1 elements containing pointers to the beginning of each row in
the arrays ra and ja. Thus ia[i] indicates the position in the arrays ra and ja where the
ith row begins. The last, (n+1)st, element of ia indicates where the n+1 row would start,
if it existed.

The compressed sparse column class matrix.csc is defined in an analogous way, as are the
matrix.ssr, symmetric sparse row, and matrix.ssc, Ssymmetric sparse column classes.

Note

as.matrix.ssr and as.matrix.ssc should ONLY be used with symmetric matrices.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/ roger/research

See Also

SparseM.hb for handling Harwell-Boeing sparse matrices.

Examples

nl <- 10

p<-5

a <- rnorm(ni*p)
a[abs(a)<0.5] <- 0

A <- matrix(a,nl,p)

<- t(A)%*%A

.csr <- as.matrix.csr(A)
.csc <- as.matrix.csc(A)
.ssr <- as.matrix.ssr(B)
.ssc <- as.matrix.ssc(B)
is.matrix.csr(A.csr) # -> TRUE

oW

is.matrix.csc(A.csc) # -> TRUE

is.matrix.ssr(B.ssr) # -> TRUE

is.matrix.ssc(B.ssc) # -> TRUE

as.matrix(A.csr)

as.matrix(A.csc)

as.matrix(B.ssr)

as.matrix(B.ssc)

as.matrix.csr(rep(0,9),3,3) #sparse matrix of all zeros

SparseM. ops Basic Linear Algebra for Sparse Matrices

Description

Basic linear algebra operations for sparse matrices of class matrix.csr.

Usage
t(x); diag(x, nrow); diag(x) <- value; ncol(x); nrow(x); dim(x);rbind(...);
cbind(...);x[i,j]; x %% y; x W% y; x W/%h y; x +y; X - y; X * y;
x/y;x Ty x>y x>=y; x<y;x<=y;x=y;x!=y; x&y; x|y

Arguments
X matrix of class matrix.csr.
y matrix of class matrix.csr or a dense vector.
value replacement values.
i,j vectors of elements to extract or replace.
nrow optional number of rows for the result.
Details

Linear algebra operations for matrices of class matrix.csr are designed to behave exactly
as for regular matrices. In particular, matrix multiplication, addition, subtraction and
various logical operations work as with the conventional dense form of matrix storage, as
does indexing, rbind, cbind, and diagonal assignment and extraction.

References
Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/ roger/research

See Also

s1m for sparse linear model fitting. SparseM.ontology for coercion and other class relations
involving the sparse matrix classes.

Examples

nl <- 10
n2 <- 10
p< 6

y <- rnorm(nl)
a <- rnorm(ni*p)

alabs(a)<0.5] <-

0

A <- matrix(a,nl,p)
A.csr <- as.matrix.csr(A)

b <- rnorm(n2*p)

blabs(b)<1.0] <-

0

B <- matrix(b,n2,p)
B.csr <- as.matrix.csr(B)

matrix transposition and multiplication

A.csr)*x%t(B.csr)

SparseM.solve

Linear Equation Solving for Sparse Matrices

Description

chol performs a Cholesky decomposition of a symmetric positive definite sparse matrix x
of class matrix.csr.
backsolve performs a triangular back-fitting to compute the solutions of a system of linear

equations.

solve combines chol and backsolve and will compute the inverse of a matrix if the right-
hand-side is missing.

Usage
chol(x, pivot = FALSE, nsubmax, nnzlmax, tmpmax, ...)
backsolve(r, x, k, upper.tri, transpose)
solve(a, b,)
Arguments
a symmetric positive definite matrix of class matrix.csr.
r object of class matrix.csr.chol returned by the function chol.
x,b vector(regular matrix) of right-hand-side(s) of a system of linear equa-
tions.
k inherited from the generic; not used here.
pivot inherited from the generic; not used here.

nsubmax,nnzlmax,tmpmax

dimensions of work arrays, in normal operation these are determined in-
side the algorithm.

upper.tri inherited from the generic; not used here.
transpose inherited from the generic; not used here.

further arguments passed to or from other methods.

Details

chol performs a Cholesky decomposition of a symmetric positive definite sparse matrix x
of class matrix.csr using the block sparse Cholesky algorithm of Ng and Peyton (1993).
backsolve does triangular back-fitting to compute the solutions of a system of linear equa-
tions. For systems of linear equations that only vary on the right-hand-side, the result from
chol can be reused. solve combines chol and backsolve, and will compute the inverse of
a matrix if the right-hand-side is missing.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,

http://www.econ.uiuc.edu/ roger/research

Ng, E. G. and B. W. Peyton (1993), "Block sparse Cholesky algorithms on advanced unipro-
cessor computers”, SIAM J. Sci. Comput., 14, pp. 1034-1056.

See Also

s1m for sparse version of 1m

Examples

lsq.rra is real rectangular stored in csc (compressed sparse column) format
read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o
class(hb.o) # -> [1] "matrix.csc.hb"

model.matrix(hb.o)->design.o

class(design.o) # -> "matrix.csr"

dim(design.o) # -> [1] 1850 712

y <- model.response(hb.o) # extract the rhs

length(y) # [1] 1850

t(design.o)%*¥%design.o -> XpX

t(design.o)¥*%y —-> Xpy

chol (XpX)->chol.o

backsolve(chol.o,Xpy)-> bl # least squares solutions in two steps

solve (XpX,Xpy) -> b2 # least squares estimates in one step

character or NULL-class

Class “character or NULL”

Description

A virtual class needed by the "matrix.csc.hb” class

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "character or NULL” in the signature.

1sq Least Squares Problems in Surveying

Description

One of the four matrices from the least-squares solution of problems in surveying that were
used by Michael Saunders and Chris Paige in the testing of LSQR

Usage
data(lsq)

Format

A list of class matrix.csc.hb or matrix.ssc.hb depending on how the coefficient matrix
is stored with the following components:

ra ra component of the csc or ssc format of the coefficient matrix, X.

ja ja component of the csc or ssc format of the coefficient matrix, X.

ia ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra ra component of the right-hand-side, y, if stored in csc or ssc format; right-hand-side
stored in dense vector or matrix otherwise.

rhs.ja ja component of the right-hand-side, y, if stored in csc or ssc format; a null vector
otherwise.

rhs.ia ia component of the right-hand-side, y, if stored in csc or ssc format; a null vector
otherwise.

xexact vector of the exact solutions, b, if they exist; a null vector o therwise.
guess vector of the initial guess of the solutions if they exist; a null vector otherwise.
dim dimenson of the coefficient matrix, X.
rhs.dim dimenson of the right-hand-side, y.

rhs.mode storage mode of the right-hand-side; can be full storage or same format as the coefficient
matrix.

References
Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/ roger/research

Matrix Market, http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/1sq/1sq.
html

See Also

read.matrix.hb, write.matrix.hb

Examples

data(lsq)

class(1lsq) # -> [1] "matrix.csc.hb"
model.matrix(1lsq)->X

class(X) # -> "matrix.csr"

dim(X) # -> [1] 1850 712

y <- model.response(lsq) # extract the rhs
length(y) # [1] 1850

matrix.csc-class Class "matriz.csc”

Description

A new class for sparse matrices stored in compressed sparse column format

Objects from the Class

Objects can be created by calls of the form new("matrix.csc", ...).

Slots

ra: Object of class "numeric", from class "matrix.csr" a real array of nnz elements
containing the non-zero elements of A, stored in row order. Thus, if i<j, all elements of
row i precede elements from row j. The order of elements within the rows is immaterial.

ja: Object of class "numeric", from class "matrix.csr" an integer array of nnz ele-
ments containing the column indices of the elements stored in ‘ra’.

ia: Object of class "numeric", from class "matrix.csr" an integer array of n+1 ele-
ments containing pointers to the beginning of each row in the arrays ‘ra’ and ‘ja’. Thus
‘ia[i]’” indicates the position in the arrays ‘ra’ and ‘ja’ where the ith row begins. The
last, (n+1)st, element of ‘ia’ indicates where the n+1 row would start, if it existed.

dimension: Object of class "numeric", from class "matrix.csr" dimension of the ma-
trix

Extends

Class "matrix.csr", directly.

10

Methods

as.matrix.csr signature(x = "matrix.csc"): ...
as.matrix.ssc signature(x = "matrix.csc"): ...
as.matrix.ssr signature(x = "matrix.csc"): ...
as.matrix signature(x = "matrix.csc"): ...
chol signature(x = "matrix.csc"): ...
dim signature(x = "matrix.csc"): ...
t signature(x = "matrix.csc"): ...

See Also

matrix.csr-class

matrix.csc.hb-class Class “matriz.csc.hb”

Description

A new class consists of the coefficient matrix and the right-hand-side of a linear system of
equations, initial guess of the solution and the exact solutions if they exist stored in external
files using the Harwell-Boeing format.

Objects from the Class

Objects can be created by calls of the form new("matrix.csc.hb", ...).

Slots

ra: Object of class "numeric" ra component of the csc or ssc format of the coefficient
matrix, X.

ja: Object of class "numeric" ja component of the csc or s sc format of the coefficient
matrix, X.

ia: Object of class "numeric" ia component of the csc or ssc format of the coefficient
matrix, X.

rhs.ra: Object of class "numeric" ra component of the right-hand-side, y, if stored in csc
or ssc format; right-hand-side stored in dense vector or matrix otherwise.

guess: Object of class "numeric or NULL" vector of the initial guess of the solutions if
they exist; a null vector otherwise.

xexact: Object of class "numeric or NULL" vector of the exact solutions, b, if they exist;
a null vector otherwise.

dimension: Object of class "numeric" dimenson of the coefficient matrix, X.
rhs.dim: Object of class "numeric" dimenson of the right-hand-side, y.

rhs.mode: Object of class "character or NULL" storage mode of the right-hand-side; can
be full storage or same format as the coefficient matrix.

11

Methods

model.matrix signature(object = "matrix.csc.hb"): ...
See Also
model .matrix, model.response, read.matrix.hb, write.matrix.hb, matrix.ssc.hb-
class
matrix.csr-class Class "matriz.csr”
Description

A new class for sparse matrices stored in compressed sparse row format

Objects from the Class

Objects can be created by calls of the form new("matrix.csr", ...).

Slots

ra: Object of class "numeric", from class "matrix.csr" a real array of nnz elements
containing the non-zero elements of A, stored in row order. Thus, if i<j, all elements of
row i precede elements from row j. The order of elements within the rows is immaterial.

ja: Object of class "numeric", from class "matrix.csr" an integer array of nnz ele-
ments containing the column indices of the elements stored in ‘ra’.

ia: Object of class "numeric", from class "matrix.csr" an integer array of n+1 ele-
ments containing pointers to the beginning of each row in the arrays ‘ra’ and ‘ja’. Thus

‘ia[i]’ indicates the position in the arrays ‘ra’ and ‘ja’ where the ith row begins. The
last, (n+1)st, element of ‘ia’ indicates where the n+1 row would start, if it existed.

dimension: Object of class "numeric", from class "matrix.csr" dimension of the ma-

trix

Methods
%*% signature(x = "matrix.csr", y = "matrix.csr"): ..
%*% signature(x = "matrix.csr", y = "numeric"): ...
as.matrix.csc signature(x = "matrix.csr"): ...
as.matrix.ssc signature(x = "matrix.csr"): ...
as.matrix.ssr signature(x = "matrix.csr"): ...
as.matrix signature(x = "matrix.csr"): ...
chol signature(x = "matrix.csr"): ...
diag signature(x = "matrix.csr"): ..
diag<- signature(x = "matrix.csr"): ...

12

dim signature(x = "matrix.csr"): ...

image signature(x = "matrix.csr"): ..
solve signature(a = "matrix.csr"): ...
t signature(x = "matrix.csr"): ...

See Also

matrix.csc-class

matrix.csr.chol-class
Class “matriz.csr.chol”

Description

A class of objects returned from Ng and Peyton’s (1993) block sparse Cholesky algorithm

Objects from the Class

Objects can be created by calls of the form new("matrix.csr.chol", ...).

Slots

nrow: Object of class "numeric" number of rows in the linear system of equations
nnzlindx: Object of class "numeric" number of non-zero elements in lindx
nsuper: Object of class "numeric" number of supernodes

lindx: Object of class "numeric" vector of integer containing, in column major order, the
row subscripts of the non-zero entries in the Cholesky factor in a compressed storage
format

x1lindx: Object of class "numeric" vector of integer of pointers for lindx

nnzl: Object of class "numeric" number of non-zero entries, including the diagonal entries,
of the Cholesky factor stored in Inz

1nz: Object of class "numeric" contains the entries of the Cholesky factor

x1nz: Object of class "numeric" column pointer for the Cholesky factor stored in Inz
invp: Object of class "numeric" vector of integer of inverse permutation vector
perm: Object of class "numeric" vector of integer of permutation vector

xsuper: Object of class "numeric" array containing the supernode partioning

ierr: Object of class "numeric" error flag

time: Object of class "numeric" execution time

Methods

backsolve signature(r = "matrix.csr.chol"): ...

See Also

chol, backsolve

13

matrix.ssc-class Class "matriz.ssc”

Description

A new class for sparse matrices stored in symmetric sparse column format

Objects from the Class

Objects can be created by calls of the form new("matrix.ssc", ...).

Slots

ra: Object of class "numeric", from class "matrix.csr" a real array of nnz elements
containing the non-zero elements of A, stored in row order. Thus, if i<j, all elements of
row i precede elements from row j. The order of elements within the rows is immaterial.

ja: Object of class "numeric", from class "matrix.csr" an integer array of nnz ele-
ments containing the column indices of the elements stored in ‘ra’.

ia: Object of class "numeric", from class "matrix.csr" an integer array of n+1 ele-
ments containing pointers to the beginning of each row in the arrays ‘ra’ and ‘ja’. Thus
‘ia[i]’ indicates the position in the arrays ‘ra’ and ‘ja’ where the ith row begins. The
last, (n+1)st, element of ‘ia’ indicates where the n+1 row would start, if it existed.

dimension: Object of class "numeric", from class "matrix.csr'" dimension of the ma-
trix

Extends

Class "matrix.csr", directly.

Methods
as.matrix.csc signature(x = "matrix.ssc"): ...
as.matrix.csr signature(x = "matrix.ssc"): ...
as.matrix.ssr signature(x = "matrix.ssc"): ...
as.matrix signature(x = "matrix.ssc"): ...
dim signature(x = "matrix.ssc"): ...

See Also

matrix.csr-class

14

matrix.ssc.hb-class Class "matriz.ssc.hb”

Description

A new class consists of the coefficient matrix and the right-hand-side of a linear system of
equations, initial guess of the solution and the exact solutions if they exist stored in external
files using the Harwell-Boeing format.

Objects from the Class

Objects can be created by calls of the form new("matrix.ssc.hb", ...).

Slots

ra: Object of class "numeric" ra component of the csc or ssc format of the coefficient
matrix, X.

ja: Object of class "numeric" ja component of the csc or s sc format of the coefficient
matrix, X.

ia: Object of class "numeric" ia component of the csc or ssc format of the coefficient
matrix, X.

rhs.ra: Object of class "numeric" ra component of the right-hand-side, y, if stored in csc
or ssc format; right-hand-side stored in dense vector or matrix otherwise.

guess: Object of class "numeric or NULL" vector of the initial guess of the solutions if
they exist; a null vector otherwise.

xexact: Object of class "numeric or NULL" vector of the exact solutions, b, if they exist;
a null vector otherwise.

dimension: Object of class "numeric" dimenson of the coefficient matrix, X.
rhs.dim: Object of class "numeric" dimenson of the right-hand-side, y.

rhs.mode: Object of class "character or NULL" storage mode of the right-hand-side; can
be full storage or same format as the coefficient matrix.

Extends

Class "matrix.csc.hb", directly.

Methods

model.matrix signature(object = "matrix.ssc.hb"): ...

See Also

model .matrix, model.response, read.matrix.hb, write.matrix.hb, matrix.csc.hb-
class

15

matrix.ssr-class Class "matriz.ssr”

Description

A new class for sparse matrices stored in symmetric sparse row format

Objects from the Class

Objects can be created by calls of the form new("matrix.ssr", ...).

Slots

ra: Object of class "numeric", from class "matrix.csr" a real array of nnz elements
containing the non-zero elements of A, stored in row order. Thus, if i<j, all elements of
row i precede elements from row j. The order of elements within the rows is immaterial.

ja: Object of class "numeric", from class "matrix.csr" an integer array of nnz ele-
ments containing the column indices of the elements stored in ‘ra’.

ia: Object of class "numeric", from class "matrix.csr" an integer array of n+1 ele-
ments containing pointers to the beginning of each row in the arrays ‘ra’ and ‘ja’. Thus
‘ia[i]’ indicates the position in the arrays ‘ra’ and ‘ja’ where the ith row begins. The
last, (n+1)st, element of ‘ia’ indicates where the n+1 row would start, if it existed.

dimension: Object of class "numeric", from class "matrix.csr'" dimension of the ma-
trix

Extends

Class "matrix.csr", directly.

Methods
as.matrix.csc signature(x = "matrix.ssr"): ...
as.matrix.csr signature(x = "matrix.ssr"): ...
as.matrix.ssc signature(x = "matrix.ssr"): ...
as.matrix signature(x = "matrix.ssr"): ...
dim signature(x = "matrix.ssr"): ...

See Also

matrix.csr-class

16

numeric or NULL-class
Class "numeric or NULL”

Description

A virtual class needed by the "matrix.csc.hb” class

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "numeric or NULL” in the signature.

slm-class Class slm”

Description

A sparse extension of 1m

Objects from the Class

Objects can be created by calls of the form new("slm", ...).

Slots

coefficients: Object of class "numeric" estimated coeflicients

chol: Object of class "matrix.csr.chol" Cholesky object from fitting
residuals: Object of class "numeric" residuals

fitted: Object of class "numeric" fitted values

Extends

Class "1m", directly. Class "oldClass", by class "Im”.

Methods

coef signature(object = "slm"): ...
fitted signature(object = "slm"): ...
residuals signature(object = "slm"): ...

summary signature(object = "slm"): ...

See Also

slm

17

slm

Fit a linear regression model using sparse matriz algebra

Description

This is a function to illustrate the use of sparse linear algebra to solve a linear least squares
problem using Cholesky decomposition. The syntax and output attempt to emulate 1m()
but may fails to do so fully satisfactorily. Ideally, this would eventually become a method

for 1m.
Usage
slm(formula, data, weights, na.action, method = "csr", contrasts = NULL,
Arguments
formula a formula object, with the response on the left of a ~ operator, and the
terms, separated by + operators, on the right.
data a data.frame in which to interpret the variables named in the formula,
or in the subset and the weights argument. If this is missing, then the
variables in the formula should be on the search list. This may also be a
single number to handle some special cases — see below for details.
weights vector of observation weights; if supplied, the algorithm fits to minimize

na.action

method

contrasts

Value

the sum of the weights multiplied into the absolute residuals. The length
of weights must be the same as the number of observations. The weights
must be nonnegative and it is strongly recommended that they be strictly
positive, since zero weights are ambiguous.

a function to filter missing data. This is applied to the model.frame after
any subset argument has been used. The default (with na.fail) is to
create an error if any missing values are found. A possible alternative
is na.omit, which deletes observations that contain one or more missing
values.

there is only one method based on Cholesky factorization

a list giving contrasts for some or all of the factors default = NULL appear-
ing in the model formula. The elements of the list should have the same
name as the variable and should be either a contrast matrix (specifically,
any full-rank matrix with as many rows as there are levels in the factor),
or else a function to compute such a matrix given the number of levels.

additional arguments for the fitting routines

A list of class s1m consisting of:

coefficients

chol

estimated coefficients

cholesky object from fitting

18

L)

residuals residuals

fitted fitted values

terms terms

call call
Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,

http://www.econ.uiuc.edu/ roger/research

See Also

slm.methods for methods summary, print, fitted, residuals and coef associated with
class sIm, and slm.fit for lower level fitting functions

Examples

lsq.rra is real rectangular matrix stored in compressed sparse column format
read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o
X <- model.matrix(hb.o) #extract the design matrix

y <- model.response(hb.o) # extract the rhs

X1 <- as.matrix(X)

slm.time <- unix.time(slm(y~X1-1) -> slm.o) # pretty fast

lm.time <- unix.time(lm(y~X1-1) -> 1lm.o) # very slow

cat("slm time =",slm.time,"\n")

cat("slm Results: Reported Coefficients Truncated to 5 ","\n")

sum.slm <- summary(slm.o)

sum.slm$coef <- sum.slm$coef[1:5,]

sum.slm

cat("lm time =",1lm.time,"\n")

cat("lm Results: Reported Coefficients Truncated to 5 ","\n")

sum.1lm <- summary(lm.o)

sum.1lm$coef <- sum.lm$coef[1:5,]

sum.lm

slm.fit Internal slm fitting functions

Description

Fitting functions for sparse linear model fitting.

19

Usage

slm.fit(x,y,method, ...)
slm.wfit(x,y,weights,...)

slm.fit.csr(x, y, ...)
Arguments
X design matrix.
y vector of response observations.
method only csr is supported currently
weights an optional vector of weights to be used in the fitting process. If specified,

weighted least squares is used with weights ‘weights’ (that is, minimizing

E w,-*e?

additional arguments.

Details

slm.fit and slm.wfit call slm.fit.csr to do Cholesky decomposition and then backsolve
to obtain the least squares estimated coefficients. These functions can be called directly if
the user is willing to specify the design matrix in matrix.csr form. This is often advanta-
geous in large problems to reduce memory requirements.

Value

A list of class s1lm consisting of:

coef estimated coefficients
chol cholesky object from fitting
residuals residuals
fitted fitted values
terms terms
call call
Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,

http://www.econ.uiuc.edu/ roger/research

See Also

slm

20

slm.methods Methods for slm objects

Description

Summarize, print, and extract objects from s1lm objects.

Usage

summary (object, correlation = FALSE, ...)

print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor = p > 4, signif.stars = getOption("show.signif.stars"),
el

fitted(object, ...)

residuals(object, ...)

coef (object, ...)

Arguments
object,x object of class s1m.
digits minimum number of significant digits to be used for most numbers.

symbolic.cor logical; if TRUE, the correlation of coefficients will be printed. The default
is FALSE

signif.stars logical; if TRUE, P-values are additionally encoded visually as “significance
stars” in order to help scanning of long coefficient tables. It defaults to
the ‘show.signif.stars’ slot of ‘options’.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is
returned and printed.

additional arguments passed to methods.

Value

print.slm and print.summary.slm return invisibly. fitted.slm, residuals.slm, and
coef .slm return the corresponding components of the s1lm object.

Author(s)
Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,

http://www.econ.uiuc.edu/ roger/research

See Also

slm

21

Examples

lsq.rra is real rectangular matrix stored in compressed sparse column format
read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o
X <- model.matrix(hb.o) #extract the design matrix

y <- model.response(hb.o) # extract the rhs

X1 <- as.matrix(X)

slm.time <- unix.time(slm(y~X1-1) -> slm.o) # pretty fast

cat("slm time =",slm.time,"\n")

cat("slm Results: Reported Coefficients Truncated to 5 ","\n")

sum.slm <- summary(slm.o)

sum.slm$coef <- sum.slm$coef[1:5,]

sum.slm

fitted(slm.o) [1:10]

residuals(slm.o) [1:10]

coef (slm.o) [1:10]

summary.slm-class Class "summary.slm”

Description

Sparse version of summary.lm

Objects from the Class

A virtual Class: No objects may be created from it.

Methods
print signature(x = "summary.slm"): ...
triogramX A Design Matriz for a Triogram Problem
Description

This is a design matrix arising from a bivariate smoothing problem using penalized triogram
fitting. It is used in the SparseM vignette to illustrate the use of the sparse matrix image
function.

Usage

data(triogramX)

Format

A 375 by 100 matrix stored in compressed sparse row format

22

