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ABSTRACT. Several methods to construct confidence intervals for regression quan-
tile estimators (Koenker and Bassett (1978)) are reviewed. Direct estimation of the
asymptotic covariance matrix requires an estimate of the reciprocal of the error den-
sity (sparsity function) at the quantile of interest; some recent work on bandwidth
selection for this problem will be discussed. Several versions of the bootstrap for
quantile regression will be described as well as a recent proposal by Parzen, Wei, and
Ying (1992) for resampling from the (approximately pivotal) estimating equation.
Finally, we will describe a new approach based on inversion of a rank test sug-
gested by Gutenbrunner, Jureckova, Koenker, and Portnoy (1993) and introduced
in Hugkova(1994). The latter approach has several advantages: it may be computed
relatively efficiently, it is consistent under certain heteroskedastic conditions and it
circumvents any explicit estimation of the sparsity function. A small monte-carlo
experiment is employed to compare the competing methods.
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1. INTRODUCTION

Quantile regression, as introduced in Koenker and Bassett (1978), is gradually de-
veloping into a comprehensive approach to the statistical analysis of linear and non-
linear response models. By supplementing the exclusive focus of least-squares-based
methods on the estimation of conditional mean functions with a general technique
for estimating conditional quantile functions, it has expanded the flexibility of both
parametric and non-parametric statistical methods.

There is already a well-developed theory of asymptotic inference for quantile regres-
sion and related L-statistics based on the Bahadur representation of the regression
quantile process. See for example Jureckova(1984) and Koenker and Portnoy (1987).
However, when inference on discrete quantiles is desired, one is faced with a rather
bewildering array of methods based on direct estimation of the asymptotic covariance
matrix, an approach which involves estimation of the reciprocal of the error density at
the quantile of interest, or some form of the bootstrap. Versions of both approaches
are available in existing statistical packages. Recently, however, several alternative
approaches to inference have emerged. The objective of this paper is to compare
the various methods and offer some guidance from a practical perspective on which
methods seem most promising.

Consider the linear model for the 7th conditional quantile function of a response



variable, Y, given covariates © € R?,
Qy(7|z) = 2'3(7)

It will be assumed throughout that the first coordinate of x is identically one. We will
focus on constructing a confidence interval for the pth coordinate of the parameter

vector, (3,. A point estimate ((7), of the parameter 3(7), is obtained by solving

. L /
poin (v = «ib)
where p-(u) = u(r — I(u < 0)). In the simplest case where
Yy = T+ u;

and the {u;} are iid F with f = F" and f(F~'(7)) > 0 in a neighborhood of 7. Under
mild design conditions we have (Koenker and Bassett(1978))

Va(B(r) = B(1)) ~ N0, w*(r, F) D7)
where (1) = 8+ F~Y7)er, ex = (1,0,...,0), &*(7, F) = 7(1 — 7)/f*(F~*(7)) and
D =1lim n™' Y z;al.

It is natural to begin the discussion with direct estimation of the covariance matrix
of regression quantiles under iid error conditions. It is an somewhat unhappy fact of
life that the asymptotic precision of quantile estimates in general, and quantile regres-
sion estimates in particular (Koenker and Bassett(1978)) depend upon the reciprocal
of a density function evaluated at the quantile of interest — a quantity Tukey has
termed the “sparsity function” and Parzen calls the quantile-density function. It is
perfectly natural that the precision of quantile estimates should depend on this quan-
tity since it reflects the density of observations near the quantile of interest. Thus, to
estimate the precision of the 7th quantile regression estimate directly, the nuisance
quantity

s(r) = [f(FH ()]~
must be estimated and therefore we must venture into the realm of smoothing. In
fact, it may be possible to pull oneself out of this swamp by the bootstraps, or other

statistical necromancy, but we defer the exploration of these strategies and explore
the direct approach in next section.

2. SPARSITY ESTIMATION

Fortunately, there is a large literature on estimating s(7) including Siddiqui (1960),
Bofinger (1975), Sheather and Maritz (1983), Welsh (1986) and Hall and Sheather
(1988). Siddiqui’s idea is simplest and has received the most attention in the literature
so we will focus on it. Differentiating the identity, F'(F~!(¢)) = ¢ we have

d

EF‘l(t) = s(t)



so it is natural to estimate s(¢) by using a simple difference quotient of the empirical
quantile function, i.e.,

Sul) = [ (E 4 ha) = E7 (= ha)]/2h,

where F‘l(-) is an estimate of F'~! and h, is a bandwidth which tends to zero as

n — oo. Bofinger (1975) showed that

R (4.532(t))1/5
! (s"(1))?

was the optimal (minimum mean squared error) choice of h, under mild regularity
conditions on F'. This result follows from standard density estimation asymptotics.

Of course, if we knew s(¢) and s”(¢) we wouldn’t need h,,, but fortunately s(t)/s"(t)
is not very sensitive to [ so little is lost if we choose h,, for some typical distributional
shape - say, the Gaussian. Sheather and Maritz(1983) discuss preliminary estimation
of s and s” as a means of estimating a plug-in h,. In general,

s(t) f?

s'() 20+ =1 A
and, for example, if f is Gaussian, (f'/f)(F~'(t)) = ®'(¢) and the term in square
brackets is 1 , so the optimal bandwidth becomes,

R ( 15¢4(@1 (1)) )/
! (2071(1)% + 1)

In Figure 1, I have plotted this bandwidth, in the solid lines, as a function of n for
three distinct quantiles ¢ = .50, 75, and .95. For symmetric F' the h,’s at ¢t and 1 — ¢
are obviously the same.

The rule suggested above which is based upon standard density estimation asymp-
totics has been recently questioned by Hall and Sheather (1988). Based on Edgeworth
expansions for studentized quantiles, they suggest

hy = n~Y3223(1.5s(1) /5" (1)]/°

where z, satisfies ®(z,) = 1 — a/2 for the construction of 1 — « confidence intervals.
This bandwidth rule is illustrated in Figure 1 by the dotted curves. It gives somewhat
narrower bandwidths for modest to large n. Since the Hall and Sheather rule is explic-
itly designed for confidence interval construction for the quantiles, rather than simply

optimizing mse-performance for the sparsity estimate itself, it seems reasonable to use
it for inference. Since the optimal constant in the Hall-Sheather expression depends
on the same sparsity functional as the Bofinger bandwidth, the same argument sug-
gests that it may not be unreasonable to use the normal model version. Note that
s(t)/s"(1) is location-scale invariant so only the shape of the distribution influences
this constant. )
Having chosen a bandwidth A, the next question is: how should we compute F'~17
The simplest approach is to use the residuals from the quantile regression fit. Let
r; 11 = 1,...,n be these residuals, and 7 : ¢ = 1,...,n be the corresponding order

statistics. Then define the usual empirical quantile function, F‘l(t) = r(;) for t €
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FIGURE 1. Siddiqui Bandwidths for Gaussian Sparsity Estimation

[(7 —1)/n, j/n ). Alternatively, one may wish to interpolate to get a piecewise linear
version

. (1) if t e [0, 1/2n)
FH ) = Argany + (L= Nrgy if €2 —1)/2n, (25 + 1)/20) j=1,..,n— 1
T(n) ifte [(2n — 1)/2n, 1]

where A = tn — j 4 1/2. Alternative schemes are obviously possible. A possible pitfall
of the residual-based estimates of /"~! is that if the number of parameters estimated,
say p, is large relative to n, then since there must be p residuals equal to zero at the
fitted quantile we must make sure that the bandwidth is large enough to avoid the
zero residuals. The simplest approach here seems to be to ignore the zero residuals
in the construction of #=! and F=! and treat the effective sample size as n — p.

An alternative, perhaps less obvious, approach to obtain F'~! is to employ the
empirical quantile function suggested in Bassett and Koenker (1982). In effect this
amounts to using F~! = T’B(t) where B() is the usual regression quantile process.
Like the EQF based on residuals, this is a piecewise constant function, but now the
jumps are no longer equally spaced on [0,1]. Nevertheless, the same ideas still apply
and either the piecewise constant form of the function or the linear interpolant can
be used. See Bassett and Koenker(1989) for a detailed treatment of the (strong)
consistency of this method.

Finally, we should address the question: what happens if ¢ + &, falls outside [0, 1]7
This can easily happen when n is small. Obviously, some ad hoc adjustment is needed
in this case, with perhaps a warning to users that the plausibility of the asymptotic



theory is strained in such situations. In Figure 2.1 the flattening out of the bandwidth
functions for small n reflects a simple rule of this sort.

3. INVERSION OF RANK TESTS

In Gutenbrunner, Jureckova, Koenker and Portnoy (1993) we have developed a new
approach to rank-based inference for the linear regression model. The classical theory
of rank tests as exposited in the monograph of Hajek and Sidak (1967) begins with
the so-called rankscore functions,

1 ift <(R,—1)/n
&m(t): R, —tn i (Rz—l)/n<t§RZ/n
0 if RZ/TL <1
where R; is the rank of the 7' observation, Y;, in the sample {Y7,...,Y,}. Integrating

dni(t) with respect to various score generating functions ¢ yields vectors of rank-like
statistics which may be used for constructing tests. For example, integrating with
respect to Lebesgue measure yields the Wilcoxon scores,

1
bi:/ ()t = (Ri —1/2)/n i=1,...n,
0

while using ¢(t) = sgn(t — 1/2) yields the sign scores, b; = @,;(1/2).

How can this idea be extended to regression when, under the null, a nuisance
regression parameter is present? This question was answered by Gutenbrunner and
Jureckova(1992) who observed that the Hajek-Sidak rankscores may be viewed as a
special case of a more general formulation for the linear model in which the functions
dni(t) are defined in terms of the linear program

max{y'a|X'a = (1 —#)X'l, a €10,1]"} (3.1)

This problem is formally dual to the linear program defining the regression quantiles.
Algorithmic details are given in Koenker and d’Orey (1993). Tests of the hypothesis
P2 = 0 € R? in the model y = X 131 + X332 + u based on the regression rankscore
process may be constructed by first computing {G.;(¢)} at the restricted model,

y=Xi5i+u

computing the n-vector b with elements b, = [an(t)dp(t), forming the ¢-vector,
S, = n~Y2X!b, and noting that, under the null S, ~» (0, A%(©)Q) where A?(p) =
fol 992(t)dt7 Q= lim, @, Qn = (X2_X2)/(X2_X2)/n and XQ = XI(X{XI)_IX{XQ-
So the test statistic 7, = 5] Q~"S5,/A%(¢) has an asymptotic x? null distribution, and
noncentral X? distribution under appropriate contiguous alternatives.

In the special case that X; is simply a column vector of ones this reduces to the
original formulation of Héjek and Sidak. When (1) = sgn(t — 1/2) it specializes to
the score-test proposed for {1-regression in Koenker and Bassett (1982). An important
feature of these rank tests is that they require no estimation of nuisance parameters,
since the functional A(¢) depends only on the score function and not on the (unknown)
distribution of the vector u. This is familiar from the theory of elementary rank tests,
but stands in sharp contrast with other methods of testing in the linear model where,



2 is required to compute the

typically, some estimation of a scale parameter, e.g., o
test statistic.

This raises the question: could we invert a rank test of this form to provide a
method of estimating a confidence interval for quantile regression, thus circumventing
the problem of estimating s(t). Huskova(1994) considers this problem in considerable
generality establishing the validity of sequential fixed-width confidence intervals for
general score functions . Unfortunately, for general score functions these intervals
are difficult to compute. However, in the case of a fixed quantile one particularly
natural choice of ¢ yields extremely tractable computations and we will focus on this
case.

Specializing to the scalar 3 case and using the 7-quantile score function
ety =7—=1(t<T)

and proceeding as above, we find that

bi = — /01 or (1) ditni(t) = dni(r) — (1 — 7) (3.2)
with )
o= [ et =0

A(er) = [ (orlt) = )t = 7(1 7).
Thus, a test of the hypothesis H, : 3 = £ may be based on a, from solving,
max{(y — x2¢)'a|Xja = (1 — 7)X{1,a € [0,1]"} (3.3)
and the fact that
Su(€) = n7 2 ba(€) ~ N0, A(7)q2) (3-4)

under H,; where ¢ = n~ a,(I — X;(X]X1)" ' X])xs. That is we may compute T,,({) =
Sa(€)/(Alpr)qn) and reject H, if |T,(§)| > ®'(1 — «/2). This takes us back to the
linear program (3.3) which may now be viewed as a one parameter parametric linear
programming problem in £. In ¢ the dual vector a,(€) is piecewise constant; { may
be altered without compromising the optimality of @,(£) as long as the sign of the
residuals in the primal quantile regression problem do not change. When ¢ gets to
such a boundary the solution does change, but may be restored by taking one simplex
pivot. The process may continue in this way until T,,({) exceeds the specified critical
value. Since T, (&) is piecewise constant we interpolate in ¢ to obtain the desired
level for the confidence interval. See Beran and Hall (1993) for a detailed analysis
of the effect of interpolation like this in the case of confidence intervals for ordinary
quantiles. This interval, unlike the Wald type sparsity intervals, is not symmetric;
but it is centered on the point estimate (5(7) in the sense that T,(52(7)) = 0. This
follows immediately from the constraint X’a = (1 — 7)X’1 in the full problem.

The primary virtue of this approach is that it inherits the scale invariance of the test
statistic T, and therefore circumvents the problem of estimating the sparsity function.
Implemented in S, using an adaptation of the algorithm described in Koenker and
d’Orey (1993), it has essentially the same computational efficiency as the sparsity



methods. More computationally intensive resampling methods offer an alternative
route which we explore in the next section.

4. RESAMPLING METHODS

There has been considerable recent interest in resampling methods for estimating
confidence intervals for quantile-type estimators. However, despite the fact that con-
fidence intervals for quantiles was one of the earliest success stories for the bootstrap
(in contrast to the delete-1 jackknife which fails in this case) recent results have been
considerably more guarded in their enthusiasm. Hall and Martin (1989) conclude:

It emerges from these results that the standard bootstrap techniques
perform poorly in constructing confidence intervals for quantiles... The
percentile method does no more than reproduce a much older method
with poor coverage accuracy at a fixed level: bias corrections fail for the
same reason; bootstrap iteration fails to improve the order of coverage
accuracy; and percentile-t is hardly an efficacious alternative because of
non-availability of suitable variance estimates.

Nevertheless, there has been considerable recent interest, particularly among econo-
metricians, in using the bootstrap to compute standard errors in quantile regression
applications. See Buchinsky(1994), Hahn(1993) and Fitzenberger(1993) for examples.

There are several possible implementations of the bootstrap for quantile regression
applications. As in other regression applications we have a choice between the residual
bootstrap and the zy-pairs bootstrap. The former resamples with replacement from
the residual vector and adds this to the fitted vector Xf3,(7) and reestimates, in
so doing it assumes that the error process is iid. The latter resamples zy pairs,
and therefore is able to accomodate some forms of heteroskedasticity. As in the
sparsity estimation approaches we may consider replacing the residual EQF by the
EQF obtained directly from the the regression quantile process, but this maintains
the 1id error assumption. More interesting is the possibility of resampling directly
from the full regression quantile process which we will call the Heqf bootstrap. By
this I mean for each bootstrap realization of n observations we draw n p-vectors from
the estimated process (3, (t). There are, say, J distinct such realizations

But) = Bulty) for t; <t <ty

J =1,...,J and each is drawn with probability 7; = ¢;4; — t;. For each design row
x; we associate the bootstrapped y observation which is the inner product of that
design row and the corresponding ¢th draw from the regression quantile process. This
procedure has the virtue that it is again capable of accommodating certain forms of
heteroskedastic regression models, in particular those with linear conditional quantile
functions.

Finally, we will describe a new resampling method due to Parzen, Wei and Ying
(1993) which is quite distinct from the bootstrap. It arises from the observation that
the function

S(b) = n~1/? Z zi(7 — I(y; < xtb)) (4.1)

=1



which is the estimating equation for the 7th regression quantile is a pivotal quantity
for the true 7th quantile regression parameter b = .. That is, its distribution may be
generated exactly by a random vector U which is a weighted sum of independent, re-
centered Bernoulli variables which play the role of the indicator function. They show
further that for large n the distribution of 3,(7)— /3, can be approximated by the con-
ditional distribution of BU — Bn(T), where BU solves an augmented quantile regression
problem with n + 1 observations and x,y1 = —nl/Zu/T and y,41 1s sufficiently large
that I(y,41 < 2,,,,b) is always zero. This is essentially the same as solving S(b) = —u
for given realization of u. This approach, by exploiting the asymptotically pivotal role
of the quantile regression “gradient condition”, also achieves a robustness to certain
heteroskedastic quantile regression models. In practice, one might be able to exploit
the fact that the solution to the augmented problems is close to the original one, since
they differ by only one observation, but we have not tried to do this in our simulation
experiments which are reported in the next section.

5. MONTE-CARLO COMPARISON OF METHODS

In this final section we report on a small monte-carlo experiment to compare the
performance of the methods described above. We focus primarily on the compu-
tationally less demanding sparsity estimation and inverted rankscore methods, but
some results are reported for three of the resampling methods. Preliminary results
indicated that the Hall and Sheather bandwidths performed considerably better than
the Bofinger choice so we have restricted our reported results mainly to this form of
sparsity estimation. We also focus exclusively on the problem of confidence inter-
vals for the median regression parameters, partly because this is the most common
practical problem, and also because it restricts the amount of computation and re-
porting required. In subsequent work, it is hoped to provide a much more exhaustive
monte-carlo experiment.

We considered first an iid error model in which both 2’s and y’s were generated
from the Student ¢ distribution. The degrees of freedom parameter varies over the set
{1,3,8} for both a’s and y’s. The first column of the design matrix is ones, all other
entries are iid draws from the specified ¢ distribution. For each cell of the experiment
the design matrix is drawn once, and 1000 replications of the response vector, vy,
are associated with this fixed design matrix. Throughout, we have studied only the
sample size n = 50.

All of the computations were carried out in the ‘S’ language of Becker, Chambers,
and Wilks(1988) on a Sun workstation. Further details on the experiment are avail-
able from the author on request, since space limitations dictate a rather abbreviated
treatment here.

In Table 1 we report observed monte-carlo coverage frequencies for nine situations
and three non-resampling methods. Confidence intervals are computed for all three
slope coefficients for each situation so in each cell we report the number of times the
interval covers the true parameter (zero in all cases) in 3000 trials. Throughout the
experiment the nominal size is .10. In these iid error situations we see that the size
of the rank inversion method is quite accurate throughout, as is the Hall-Sheather
sparsity estimate. However the Bofinger results are considerably less satisfactory.



Generally, the rank-inversion intervals are shorter than the sparsity intervals except
for the anomalous cases of Cauchy design.

TABLE 1. Confidence Interval Performance — I1D Errors

coverage length

dty=1|dfy= 3 | dfy= 8 || dfy=1 | dfy= 3 | dfy= 8

dfx=1
rank-inverse || 0.892 0.923 0.922 0.320 0.392 | 0.359
sparsity-HS || 0.893 | 0.907 | 0.909 0.240 | 0.142 | 0.079
sparsity-BS 0.932 | 0.927 | 0.931 0.288 | 0.153 | 0.083
dfx= 3
rank-inverse || 0.875 0.904 | 0.890 0.625 0.504 | 0.501
sparsity-HS || 0.923 | 0.911 | 0.923 0.614 | 0.505 | 0.544
sparsity-BS 0.954 | 0.932 | 0.937 0.736 | 0.544 | 0.577
dfx= 8
rank-inverse || 0.887 | 0.885 | 0.884 0.791 0.617 | 0.585
sparsity-HS || 0.941 | 0.920 | 0.919 0.921 | 0.683 | 0.640
sparsity-BS 0.968 | 0.948 | 0.935 1.107 | 0.737 | 0.680

To compare the performance of the resampling methods we report in Table 2 results
for 3 iid error situations and 5 methods. Since the resampling methods are quite slow,
500 resamples are done for each of them, we restrict attention to only the diagonal
cases of the previous table with the degrees of freedom parameter for z’s and y’s
equal. We are primarily interested in resampling as a means of acheiving consistent
confidence intervals in heteroskedastic situations so we restrict attention to the Parzen-
Wei-Ying (PWY) approach, the heteroskedastic empirical quantile function bootstrap
(Heqf), and the xy-pairs bootstrap. It can be seen from the table that again the
rank-inversion method is quite reliable in terms of size, and also performs well with
respect to length. The PWY resampling method has empirical size less than half the
nominal 10 percent, while the xy-bootstrap is also undersized. The Heqf-bootstrap is
accurately sized except for the Cauchy situation. It is obviously difficult to compare
the lengths acheived by various methods, given the discrepancies in size, however the
rank inversion approach seems to perform reasonably well in this respect.

TABLE 2. Confidence Interval Performance — 1D Errors

coverage length
di=1|df=3|dt=8| df=1|df= 3| dt=38
rank-inverse || 0.900 | 0.893 | 0.879 || 0.335 | 0.427 | 0.558
sparsity-HS || 0.872 | 0.922 | 0.915 || 0.217 | 0.455 | 0.613

PWY 0.961 | 0.957 | 0.957 || 0.411 | 0.520 | 0.680
Heqf-BS 0.802 | 0.881 | 0.895 || 0.220 | 0.380 | 0.512
XY-BS 0.929 | 0.948 | 0.945 || 0.331 | 0.486 | 0.640

A more challenging problem for estimation of confidence intervals for quantile re-
gression problems involves heteroskedastic situations. We consider a simple case which



bears a close resemblance to the previous iid error situations. Again, we generate 3
columns of the design matrix X as iid draws, this time from the lognormal distribu-
tion. The response vectors are then drawn from a Student ¢ distribution with location
0 and scale given by o; = 2?21 x; /5. For all 7, x1; = 1. Again the design is fixed for a
given configuration, and hence scale is fixed. In this model all the conditional quantile
functions are linear, so the Heqf-bootstrap is applicable, however the simple sparsity
estimation approach is obviously not consistent under these conditions.

TABLE 3. Confidence Interval Performance — Heteroskastic FErrors

coverage length
df=1|df=3|df=8| df=1|df=3 | df=8
rank-inverse || 0.887 | 0.902 | 0.878 || 1.196 | 0.793 | 0.621
sparsity-HS || 0.763 | 0.717 | 0.656 || 0.702 | 0.552 | 0.357

PWY 0.953 | 0.950 | 0.946 || 1.557 | 0.907 | 0.715
Heqf-BS 0.754 | 0.813 | 0.804 || 0.971 | 0.655 | 0.486
XY-BS 0.907 | 0.911 | 0.897 || 1.332 | 0.799 | 0.612

Again the rank-inversion approach seems to perform well. As expected the sparsity
approach fails miserably. The Parzen-Wei-Ying resampler is again substantially un-
dersized — a rather puzzling result. The zy bootstrap also performs very well, but the
Heqt version of the bootstrap has very poor coverage frequencies suggesting that this
approach is probably not reliable. Since the rank-inversion method is on the order of
10 times faster than any of the bootstrap methods even for moderate sized problems
it appears to have a substantial advantage.
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