
Con�dence Intervals for Regression QuantilesRoger KoenkerUniversity of Illinois at Champaign-UrbanaAbstract. Several methods to construct con�dence intervals for regression quan-tile estimators (Koenker and Bassett (1978)) are reviewed. Direct estimation of theasymptotic covariance matrix requires an estimate of the reciprocal of the error den-sity (sparsity function) at the quantile of interest; some recent work on bandwidthselection for this problem will be discussed. Several versions of the bootstrap forquantile regression will be described as well as a recent proposal by Parzen, Wei, andYing (1992) for resampling from the (approximately pivotal) estimating equation.Finally, we will describe a new approach based on inversion of a rank test sug-gested by Gutenbrunner, Jure�ckov�a, Koenker, and Portnoy (1993) and introducedin Hu�skov�a(1994). The latter approach has several advantages: it may be computedrelatively e�ciently, it is consistent under certain heteroskedastic conditions and itcircumvents any explicit estimation of the sparsity function. A small monte-carloexperiment is employed to compare the competing methods.AMS 1980 Subject Classi�cation: 62G10, 62J10.Keywords: regression quantiles, con�dence intervals, rank tests, bootstrapping,sparsity estimation. 1. IntroductionQuantile regression, as introduced in Koenker and Bassett (1978), is gradually de-veloping into a comprehensive approach to the statistical analysis of linear and non-linear response models. By supplementing the exclusive focus of least-squares-basedmethods on the estimation of conditional mean functions with a general techniquefor estimating conditional quantile functions, it has expanded the exibility of bothparametric and non-parametric statistical methods.There is already a well-developed theory of asymptotic inference for quantile regres-sion and related L-statistics based on the Bahadur representation of the regressionquantile process. See for example Jure�ckov�a(1984) and Koenker and Portnoy (1987).However, when inference on discrete quantiles is desired, one is faced with a ratherbewildering array of methods based on direct estimation of the asymptotic covariancematrix, an approach which involves estimation of the reciprocal of the error density atthe quantile of interest, or some form of the bootstrap. Versions of both approachesare available in existing statistical packages. Recently, however, several alternativeapproaches to inference have emerged. The objective of this paper is to comparethe various methods and o�er some guidance from a practical perspective on whichmethods seem most promising.Consider the linear model for the � th conditional quantile function of a response



variable, Y , given covariates x 2 Rp,QY (� jx) = x0�(� )It will be assumed throughout that the �rst coordinate of x is identically one. We willfocus on constructing a con�dence interval for the pth coordinate of the parametervector, �p. A point estimate �̂(� ), of the parameter �(� ), is obtained by solvingminb2Rp nXi=1(yi � x0ib)where �� (u) = u(� � I(u < 0)). In the simplest case whereyi = x0i� + uiand the fuig are iid F with f = F 0 and f(F�1(� )) > 0 in a neighborhood of � . Undermild design conditions we have (Koenker and Bassett(1978))pn(�̂(� )� �(� )) N(0; !2(�; F )D�1)where �(� ) = � + F�1(� )e1, e1 = (1; 0; :::; 0)0, !2(�; F ) = � (1 � � )=f2(F�1(� )) andD = lim n�1Pxix0i.It is natural to begin the discussion with direct estimation of the covariance matrixof regression quantiles under iid error conditions. It is an somewhat unhappy fact oflife that the asymptotic precision of quantile estimates in general, and quantile regres-sion estimates in particular (Koenker and Bassett(1978)) depend upon the reciprocalof a density function evaluated at the quantile of interest { a quantity Tukey hastermed the \sparsity function" and Parzen calls the quantile-density function. It isperfectly natural that the precision of quantile estimates should depend on this quan-tity since it reects the density of observations near the quantile of interest. Thus, toestimate the precision of the � th quantile regression estimate directly, the nuisancequantity s(� ) = [f(F�1(� ))]�1must be estimated and therefore we must venture into the realm of smoothing. Infact, it may be possible to pull oneself out of this swamp by the bootstraps, or otherstatistical necromancy, but we defer the exploration of these strategies and explorethe direct approach in next section.2. Sparsity EstimationFortunately, there is a large literature on estimating s(� ) including Siddiqui (1960),Bo�nger (1975), Sheather and Maritz (1983), Welsh (1986) and Hall and Sheather(1988). Siddiqui's idea is simplest and has received the most attention in the literatureso we will focus on it. Di�erentiating the identity, F (F�1(t)) = t we haveddtF�1(t) = s(t)



so it is natural to estimate s(t) by using a simple di�erence quotient of the empiricalquantile function, i.e.,̂sn(t) = [F̂�1n (t+ hn) � F̂�1n (t� hn)]=2hnwhere F̂�1(�) is an estimate of F�1 and hn is a bandwidth which tends to zero asn!1. Bo�nger (1975) showed thathn = n�1=5  4:5s2(t)(s00(t))2!1=5was the optimal (minimum mean squared error) choice of hn under mild regularityconditions on F . This result follows from standard density estimation asymptotics.Of course, if we knew s(t) and s00(t) we wouldn't need hn, but fortunately s(t)=s00(t)is not very sensitive to F so little is lost if we choose hn for some typical distributionalshape - say, the Gaussian. Sheather and Maritz(1983) discuss preliminary estimationof s and s00 as a means of estimating a plug-in hn. In general,s(t)s00(t) = f22(f 0=f)2 + [(f 0=f)2 � f 00=f ]and, for example, if f is Gaussian, (f 0=f)(F�1(t)) = ��1(t) and the term in squarebrackets is 1 , so the optimal bandwidth becomes,hn = n�1=5  4:5�4(��1(t))(2��1(t)2 + 1)2!1=5 :In Figure 1, I have plotted this bandwidth, in the solid lines, as a function of n forthree distinct quantiles t = :50; 75; and :95: For symmetric F the hn's at t and 1 � tare obviously the same.The rule suggested above which is based upon standard density estimation asymp-totics has been recently questioned by Hall and Sheather (1988). Based on Edgeworthexpansions for studentized quantiles, they suggesthn = n�1=3z2=3� [1:5s(t)=s00(t)]1=3where z� satis�es �(z�) = 1� �=2 for the construction of 1� � con�dence intervals.This bandwidth rule is illustrated in Figure 1 by the dotted curves. It gives somewhatnarrower bandwidths for modest to large n. Since the Hall and Sheather rule is explic-itly designed for con�dence interval construction for the quantiles, rather than simplyoptimizing mse-performance for the sparsity estimate itself, it seems reasonable to useit for inference. Since the optimal constant in the Hall-Sheather expression dependson the same sparsity functional as the Bo�nger bandwidth, the same argument sug-gests that it may not be unreasonable to use the normal model version. Note thats(t)=s00(t) is location-scale invariant so only the shape of the distribution inuencesthis constant.Having chosen a bandwidth hn the next question is: how should we compute F̂�1?The simplest approach is to use the residuals from the quantile regression �t. Letri : i = 1; :::; n be these residuals, and r(i) : i = 1; :::; n be the corresponding orderstatistics. Then de�ne the usual empirical quantile function, F̂�1(t) = r(j) for t 2
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0.95Figure 1. Siddiqui Bandwidths for Gaussian Sparsity Estimation[(j � 1)=n; j=n ): Alternatively, one may wish to interpolate to get a piecewise linearversion~F�1(t) = 8><>: r(1) if t 2 [0; 1=2n)�r(j+1) + (1� �)r(j) if t 2 [(2j � 1)=2n; (2j + 1)=2n) j = 1; :::; n� 1r(n) if t 2 [(2n� 1)=2n; 1]where � = tn� j+1=2: Alternative schemes are obviously possible. A possible pitfallof the residual-based estimates of F�1 is that if the number of parameters estimated,say p, is large relative to n, then since there must be p residuals equal to zero at the�tted quantile we must make sure that the bandwidth is large enough to avoid thezero residuals. The simplest approach here seems to be to ignore the zero residualsin the construction of F̂�1 and ~F�1 and treat the e�ective sample size as n� p:An alternative, perhaps less obvious, approach to obtain F̂�1 is to employ theempirical quantile function suggested in Bassett and Koenker (1982). In e�ect thisamounts to using F̂�1 = x0�̂(t) where �̂(�) is the usual regression quantile process.Like the EQF based on residuals, this is a piecewise constant function, but now thejumps are no longer equally spaced on [0; 1]. Nevertheless, the same ideas still applyand either the piecewise constant form of the function or the linear interpolant canbe used. See Bassett and Koenker(1989) for a detailed treatment of the (strong)consistency of this method.Finally, we should address the question: what happens if t�hn falls outside [0; 1]?This can easily happen when n is small. Obviously, some ad hoc adjustment is neededin this case, with perhaps a warning to users that the plausibility of the asymptotic



theory is strained in such situations. In Figure 2.1 the attening out of the bandwidthfunctions for small n reects a simple rule of this sort.3. Inversion of Rank TestsIn Gutenbrunner, Jure�ckov�a, Koenker and Portnoy (1993) we have developed a newapproach to rank-based inference for the linear regression model. The classical theoryof rank tests as exposited in the monograph of H�ajek and �Sid�ak (1967) begins withthe so-called rankscore functions,âni(t) = 8><>: 1 if t � (Ri � 1)=nRi � tn if (Ri � 1)=n < t � Ri=n0 if Ri=n < twhere Ri is the rank of the ith observation, Yi; in the sample fY1; : : : ; Yng. Integratingâni(t) with respect to various score generating functions ' yields vectors of rank-likestatistics which may be used for constructing tests. For example, integrating withrespect to Lebesgue measure yields the Wilcoxon scores,bi = Z 10 âni(t)dt = (Ri � 1=2)=n i = 1; :::; n;while using '(t) = sgn(t� 1=2) yields the sign scores, bi = âni(1=2).How can this idea be extended to regression when, under the null, a nuisanceregression parameter is present? This question was answered by Gutenbrunner andJure�ckov�a(1992) who observed that the H�ajek-�Sid�ak rankscores may be viewed as aspecial case of a more general formulation for the linear model in which the functionsâni(t) are de�ned in terms of the linear programmaxfy0ajX 0a = (1� t)X 01; a 2 [0; 1]ng (3.1)This problem is formally dual to the linear program de�ning the regression quantiles.Algorithmic details are given in Koenker and d'Orey (1993). Tests of the hypothesis�2 = 0 2 Rq in the model y = X1�1 + X2�2 + u based on the regression rankscoreprocess may be constructed by �rst computing fâni(t)g at the restricted model,y = X1�1 + ucomputing the n-vector b with elements bi = R âni(t)d'(t), forming the q-vector,Sn = n�1=2X 02b, and noting that, under the null Sn  N(0; A2(')Q) where A2(') =R 10 '2(t)dt, Q = limn!1Qn, Qn = (X2�X̂2)0(X2�X̂2)=n and X̂2 = X1(X 01X1)�1X 01X2.So the test statistic Tn = S 0nQ�1Sn=A2(') has an asymptotic �2q null distribution, andnoncentral �2q distribution under appropriate contiguous alternatives.In the special case that X1 is simply a column vector of ones this reduces to theoriginal formulation of H�ajek and �Sid�ak. When '(t) = sgn(t � 1=2) it specializes tothe score-test proposed for `1-regression in Koenker and Bassett (1982). An importantfeature of these rank tests is that they require no estimation of nuisance parameters,since the functionalA(') depends only on the score function and not on the (unknown)distribution of the vector u: This is familiar from the theory of elementary rank tests,but stands in sharp contrast with other methods of testing in the linear model where,



typically, some estimation of a scale parameter, e.g., �2, is required to compute thetest statistic.This raises the question: could we invert a rank test of this form to provide amethod of estimating a con�dence interval for quantile regression, thus circumventingthe problem of estimating s(t). Hu�skov�a(1994) considers this problem in considerablegenerality establishing the validity of sequential �xed-width con�dence intervals forgeneral score functions '. Unfortunately, for general score functions these intervalsare di�cult to compute. However, in the case of a �xed quantile one particularlynatural choice of ' yields extremely tractable computations and we will focus on thiscase.Specializing to the scalar �2 case and using the � -quantile score function'�(t) = � � I(t < � )and proceeding as above, we �nd thatb̂ni = � Z 10 '� (t)dâni(t) = âni(� )� (1� � ) (3.2)with �' = Z 10 '� (t)dt = 0A2('� ) = Z 10 ('�(t)� �')2dt = � (1� � ):Thus, a test of the hypothesis Ho : �2 = � may be based on ân from solving,maxf(y � x2�)0ajX 01a = (1� � )X 011; a 2 [0; 1]ng (3.3)and the fact that Sn(�) = n�1=2x02b̂n(�) N(0; A2('�)q2n) (3.4)under Ho; where q2n = n�1x02(I�X1(X 01X1)�1X 01)x2. That is we may compute Tn(�) =Sn(�)=(A('� )qn) and reject Ho if jTn(�)j > ��1(1 � �=2): This takes us back to thelinear program (3.3) which may now be viewed as a one parameter parametric linearprogramming problem in �. In � the dual vector ân(�) is piecewise constant; � maybe altered without compromising the optimality of ân(�) as long as the sign of theresiduals in the primal quantile regression problem do not change. When � gets tosuch a boundary the solution does change, but may be restored by taking one simplexpivot. The process may continue in this way until Tn(�) exceeds the speci�ed criticalvalue. Since Tn(�) is piecewise constant we interpolate in � to obtain the desiredlevel for the con�dence interval. See Beran and Hall (1993) for a detailed analysisof the e�ect of interpolation like this in the case of con�dence intervals for ordinaryquantiles. This interval, unlike the Wald type sparsity intervals, is not symmetric;but it is centered on the point estimate �̂2(� ) in the sense that Tn(�̂2(� )) = 0. Thisfollows immediately from the constraint X 0â = (1� � )X 01 in the full problem.The primary virtue of this approach is that it inherits the scale invariance of the teststatistic Tn and therefore circumvents the problem of estimating the sparsity function.Implemented in S, using an adaptation of the algorithm described in Koenker andd'Orey (1993), it has essentially the same computational e�ciency as the sparsity



methods. More computationally intensive resampling methods o�er an alternativeroute which we explore in the next section.4. Resampling MethodsThere has been considerable recent interest in resampling methods for estimatingcon�dence intervals for quantile-type estimators. However, despite the fact that con-�dence intervals for quantiles was one of the earliest success stories for the bootstrap(in contrast to the delete-1 jackknife which fails in this case) recent results have beenconsiderably more guarded in their enthusiasm. Hall and Martin (1989) conclude:It emerges from these results that the standard bootstrap techniquesperform poorly in constructing con�dence intervals for quantiles... Thepercentile method does no more than reproduce a much older methodwith poor coverage accuracy at a �xed level: bias corrections fail for thesame reason; bootstrap iteration fails to improve the order of coverageaccuracy; and percentile-t is hardly an e�cacious alternative because ofnon-availability of suitable variance estimates.Nevertheless, there has been considerable recent interest, particularly among econo-metricians, in using the bootstrap to compute standard errors in quantile regressionapplications. See Buchinsky(1994), Hahn(1993) and Fitzenberger(1993) for examples.There are several possible implementations of the bootstrap for quantile regressionapplications. As in other regression applications we have a choice between the residualbootstrap and the xy-pairs bootstrap. The former resamples with replacement fromthe residual vector and adds this to the �tted vector X�̂n(� ) and reestimates, inso doing it assumes that the error process is iid. The latter resamples xy pairs,and therefore is able to accomodate some forms of heteroskedasticity. As in thesparsity estimation approaches we may consider replacing the residual EQF by theEQF obtained directly from the the regression quantile process, but this maintainsthe iid error assumption. More interesting is the possibility of resampling directlyfrom the full regression quantile process which we will call the Heqf bootstrap. Bythis I mean for each bootstrap realization of n observations we draw n p-vectors fromthe estimated process �̂n(t). There are, say, J distinct such realizations�̂n(t) = �̂n(tj) for tj � t < tj+1j = 1; :::; J and each is drawn with probability �j = tj+1 � tj: For each design rowxi we associate the bootstrapped y observation which is the inner product of thatdesign row and the corresponding ith draw from the regression quantile process. Thisprocedure has the virtue that it is again capable of accommodating certain forms ofheteroskedastic regression models, in particular those with linear conditional quantilefunctions.Finally, we will describe a new resampling method due to Parzen, Wei and Ying(1993) which is quite distinct from the bootstrap. It arises from the observation thatthe function S(b) = n�1=2 nXi=1 xi(� � I(yi � x0ib)) (4.1)



which is the estimating equation for the � th regression quantile is a pivotal quantityfor the true � th quantile regression parameter b = �� . That is, its distribution may begenerated exactly by a random vector U which is a weighted sum of independent, re-centered Bernoulli variables which play the role of the indicator function. They showfurther that for large n the distribution of �̂n(� )��� can be approximated by the con-ditional distribution of �̂U � �̂n(� ), where �̂U solves an augmented quantile regressionproblem with n + 1 observations and xn+1 = �n1=2u=� and yn+1 is su�ciently largethat I(yn+1 � z0n+1b) is always zero. This is essentially the same as solving S(b) = �ufor given realization of u. This approach, by exploiting the asymptotically pivotal roleof the quantile regression \gradient condition", also achieves a robustness to certainheteroskedastic quantile regression models. In practice, one might be able to exploitthe fact that the solution to the augmented problems is close to the original one, sincethey di�er by only one observation, but we have not tried to do this in our simulationexperiments which are reported in the next section.5. Monte-Carlo Comparison of MethodsIn this �nal section we report on a small monte-carlo experiment to compare theperformance of the methods described above. We focus primarily on the compu-tationally less demanding sparsity estimation and inverted rankscore methods, butsome results are reported for three of the resampling methods. Preliminary resultsindicated that the Hall and Sheather bandwidths performed considerably better thanthe Bo�nger choice so we have restricted our reported results mainly to this form ofsparsity estimation. We also focus exclusively on the problem of con�dence inter-vals for the median regression parameters, partly because this is the most commonpractical problem, and also because it restricts the amount of computation and re-porting required. In subsequent work, it is hoped to provide a much more exhaustivemonte-carlo experiment.We considered �rst an iid error model in which both x's and y's were generatedfrom the Student t distribution. The degrees of freedom parameter varies over the setf1; 3; 8g for both x's and y's. The �rst column of the design matrix is ones, all otherentries are iid draws from the speci�ed t distribution. For each cell of the experimentthe design matrix is drawn once, and 1000 replications of the response vector, y,are associated with this �xed design matrix. Throughout, we have studied only thesample size n = 50.All of the computations were carried out in the `S' language of Becker, Chambers,and Wilks(1988) on a Sun workstation. Further details on the experiment are avail-able from the author on request, since space limitations dictate a rather abbreviatedtreatment here.In Table 1 we report observed monte-carlo coverage frequencies for nine situationsand three non-resampling methods. Con�dence intervals are computed for all threeslope coe�cients for each situation so in each cell we report the number of times theinterval covers the true parameter (zero in all cases) in 3000 trials. Throughout theexperiment the nominal size is .10. In these iid error situations we see that the sizeof the rank inversion method is quite accurate throughout, as is the Hall-Sheathersparsity estimate. However the Bo�nger results are considerably less satisfactory.



Generally, the rank-inversion intervals are shorter than the sparsity intervals exceptfor the anomalous cases of Cauchy design.Table 1. Con�dence Interval Performance { IID Errorscoverage lengthdfy= 1 dfy= 3 dfy= 8 dfy= 1 dfy= 3 dfy= 8dfx= 1rank-inverse 0.892 0.923 0.922 0.320 0.392 0.359sparsity-HS 0.893 0.907 0.909 0.240 0.142 0.079sparsity-BS 0.932 0.927 0.931 0.288 0.153 0.083dfx= 3rank-inverse 0.875 0.904 0.890 0.625 0.504 0.501sparsity-HS 0.923 0.911 0.923 0.614 0.505 0.544sparsity-BS 0.954 0.932 0.937 0.736 0.544 0.577dfx= 8rank-inverse 0.887 0.885 0.884 0.791 0.617 0.585sparsity-HS 0.941 0.920 0.919 0.921 0.683 0.640sparsity-BS 0.968 0.948 0.935 1.107 0.737 0.680To compare the performance of the resampling methods we report in Table 2 resultsfor 3 iid error situations and 5 methods. Since the resampling methods are quite slow,500 resamples are done for each of them, we restrict attention to only the diagonalcases of the previous table with the degrees of freedom parameter for x's and y'sequal. We are primarily interested in resampling as a means of acheiving consistentcon�dence intervals in heteroskedastic situations so we restrict attention to the Parzen-Wei-Ying (PWY) approach, the heteroskedastic empirical quantile function bootstrap(Heqf), and the xy-pairs bootstrap. It can be seen from the table that again therank-inversion method is quite reliable in terms of size, and also performs well withrespect to length. The PWY resampling method has empirical size less than half thenominal 10 percent, while the xy-bootstrap is also undersized. The Heqf-bootstrap isaccurately sized except for the Cauchy situation. It is obviously di�cult to comparethe lengths acheived by various methods, given the discrepancies in size, however therank inversion approach seems to perform reasonably well in this respect.Table 2. Con�dence Interval Performance { IID Errorscoverage lengthdf= 1 df= 3 df= 8 df= 1 df= 3 df= 8rank-inverse 0.900 0.893 0.879 0.335 0.427 0.558sparsity-HS 0.872 0.922 0.915 0.217 0.455 0.613PWY 0.961 0.957 0.957 0.411 0.520 0.680Heqf-BS 0.802 0.881 0.895 0.220 0.380 0.512XY-BS 0.929 0.948 0.945 0.331 0.486 0.640A more challenging problem for estimation of con�dence intervals for quantile re-gression problems involves heteroskedastic situations. We consider a simple case which



bears a close resemblance to the previous iid error situations. Again, we generate 3columns of the design matrix X as iid draws, this time from the lognormal distribu-tion. The response vectors are then drawn from a Student t distribution with location0 and scale given by �i = P4i=1 xi=5. For all i, x1i = 1. Again the design is �xed for agiven con�guration, and hence scale is �xed. In this model all the conditional quantilefunctions are linear, so the Heqf-bootstrap is applicable, however the simple sparsityestimation approach is obviously not consistent under these conditions.Table 3. Con�dence Interval Performance { Heteroskastic Errorscoverage lengthdf= 1 df= 3 df= 8 df= 1 df= 3 df= 8rank-inverse 0.887 0.902 0.878 1.196 0.793 0.621sparsity-HS 0.763 0.717 0.656 0.702 0.552 0.357PWY 0.953 0.950 0.946 1.557 0.907 0.715Heqf-BS 0.754 0.813 0.804 0.971 0.655 0.486XY-BS 0.907 0.911 0.897 1.332 0.799 0.612Again the rank-inversion approach seems to perform well. As expected the sparsityapproach fails miserably. The Parzen-Wei-Ying resampler is again substantially un-dersized { a rather puzzling result. The xy bootstrap also performs very well, but theHeqf version of the bootstrap has very poor coverage frequencies suggesting that thisapproach is probably not reliable. Since the rank-inversion method is on the order of10 times faster than any of the bootstrap methods even for moderate sized problemsit appears to have a substantial advantage.ReferencesBassett, G.W. and Koenker, R.W. (1982). An empirical quantile function for linearmodels with iid errors. Journal of the American Statistical Association. 77,407-415.Bassett, G.W. and Koenker, R.W. (1986). Strong consistency of regression quantilesand related empirical processes Econometric Theory, 2, 191-201.Beran, R. and Hall, P. (1993). Interpolated nonparametric prediction intervals andcon�dence intervals, J. Royal Stat. Soc. (B), 55, 643-652.Bo�nger, E. (1975). Estimation of a density function using order statistics, Aus-tralian J. of Statistics, 17, 1-7.Buchinsky, M. (1991) The Theory and Practice of Quantile Regression, Ph.d. Thesis,Department of Economics, Harvard University.Gutenbrunner, C. and Jure�ckov�a, J. (1992) Regression quantile and regression rankscore process in the linear model and derived statistics, Ann. Statist. 20,
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