\name{ranks} \alias{ranks} \title{ Quantile Regression Ranks } \description{ Function to compute ranks from the dual (regression rankscore) process. } \usage{ ranks(v, score="wilcoxon", tau=0.5) } \arguments{ \item{v}{ object of class \code{"rq.process"} generated by \code{rq()} } \item{score}{ The score function desired. Currently implemented score functions are \code{"wilcoxon"}, \code{"normal"}, and \code{"sign"} which are asymptotically optimal for the logistic, Gaussian and Laplace location shift models respectively. Also implemented are the \code{"tau"} which generalizes sign scores to an arbitrary quantile, and \code{"interquartile"} which is appropriate for tests of scale shift. } \item{tau}{ the optional value of \code{tau} if the \code{"tau"} score function is used. }} \value{ The function returns two components. One is the ranks, the other is a scale factor which is the \eqn{L_2} norm of the score function. All score functions should be normalized to have mean zero. } \details{ See GJKP(1993) for further details. } \references{ Gutenbrunner, C., J. Jureckova, Koenker, R. and Portnoy, S. (1993) Tests of linear hypotheses based on regression rank scores, \emph{Journal of Nonparametric Statistics}, (2), 307--331. } \seealso{ \code{\link{rq}}, \code{\link{rrs.test}} } \examples{ data(stackloss) ranks(rq(stack.loss ~ stack.x, tau=-1)) } \keyword{regression} } % Converted by Sd2Rd version 0.3-3.