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Regression is a common statistical method employed
by scientists to investigate relationships between

variables. Quantile regression (Koenker and Bassett 1978)
is a method for estimating functional relations between
variables for all portions of a probability distribution.
Although it has begun to be used in ecology and biology
(Table 1), many ecologists remain unaware of it, as it was
developed relatively recently and is rarely taught in statis-
tics courses at many universities. We present this intro-
duction both to encourage additional applications in ecol-
ogy and to educate those who are already contemplating
using the method.

Typically, a response variable y is some function of pre-
dictor variables X, so that y = f(X). Most regression appli-
cations in the ecological sciences focus on estimating rates
of change in the mean of the response variable distribu-
tion as some function of a set of predictor variables; in
other words, the function is defined for the expected value
of y conditional on X, E(y|X). Mosteller and Tukey
(1977) noted that it was possible to fit regression curves to
other parts of the distribution of the response variable, but
that this was rarely done, and therefore most regression
analyses gave an incomplete picture of the relationships
between variables. This is especially problematic for
regression models with heterogeneous variances, which
are common in ecology. A regression model with hetero-
geneous variances implies that there is not a single rate of
change that characterizes changes in the probability distri-
butions. Focusing exclusively on changes in the means
may underestimate, overestimate, or fail to distinguish real
nonzero changes in heterogeneous distributions (Terrell et
al. 1996; Cade et al. 1999). 

The Dunham et al. (2002) analyses relating the abun-
dance of Lahontan cutthroat trout (Oncorhynchus clarki
henshawi) to the ratio of stream width to depth illustrates
the value of the additional information provided by quan-
tile regression (Figure 1). The ratio was used as a predictor
variable because it was an easily obtained measure of chan-
nel morphology that was thought to be related to the
integrity of habitat in small streams like those typically
inhabited by cutthroat trout. Quantile regression estimates
indicated a nonlinear, negative relationship with the upper
30% (≥ 70th percentiles, P ≤ 0.10 for H0: �1 = 0) of cut-
throat densities across 13 streams and 7 years. A weighted
least squares regression estimated zero change (90% confi-
dence intervals of –0.014 to 0.012, P = 0.901 for H0: �1 = 0)
in mean densities with stream width to depth. If the authors
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In a nutshell:
• Quantile regression is a statistical method that could be used

effectively by more ecologists
• Statistical distributions of ecological data often have unequal

variation due to complex interactions between the factors
affecting organisms that cannot all be measured and accounted
for in statistical models

• Unequal variation implies that there is more than a single
slope (rate of change) describing the relationship between a
response variable and predictor variables measured on a subset
of these factors 

• Quantile regression estimates multiple rates of change (slopes)
from the minimum to maximum response, providing a more
complete picture of the relationships between variables missed
by other regression methods  

• The ecological concept of limiting factors as constraints on
organisms often focuses on rates of change in quantiles near
the maximum response, when only a subset of limiting factors
are measured
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had used mean regression esti-
mates, they would have mistak-
enly concluded that there was no
relation between trout densities
and the ratio of stream width to
depth.

Many ecological applications
have used quantile regression as a
method of estimating rates of
change for functions along or near
the upper boundary of the condi-
tional distribution of responses
because of issues raised by Kaiser et
al. (1994), Terrell et al. (1996),
Thomson et al. (1996), Cade et al.
(1999), and Huston (2002). These
authors suggested that if ecological
limiting factors act as constraints
on organisms, then the estimated effects for the measured
factors were not well represented by changes in the means of
response variable distributions, when there were many other
unmeasured factors that were poten-
tially limiting. The response of the
organism cannot change by more than
some upper limit set by the measured
factors, but may change by less when
other unmeasured factors are limiting
(Figure 2). This analytical problem is
closely related to the more general sta-
tistical issue of hidden bias in observa-
tional studies due to confounding with
unmeasured variables (Rosenbaum
1995). Multiplicative interactions
among measured and unmeasured eco-
logical factors that contribute to this
pattern are explored in more detail rel-
ative to regression quantile estimates
and inferences in Cade (2003).

Self-thinning of annual plants in
the Chihuahuan desert of the south-
western US (Cade and Guo 2000) is
an example of a limiting factor where
conventional mean regression was
inappropriate for estimating the
reduction in densities of mature plants
with increasing germination densities
of seedlings (Figure 3). The effects of
this density-dependent process were
best revealed at the higher plant den-
sities associated with upper quantiles,
where competition for resources was
greatest and effects of factors other
than intraspecific competition were
minimal. Changes in the upper quan-
tiles of densities of mature plants were
essentially a 1:1 mapping of ger-
mination density when it was low

(< 100/0.25-m2), whereas there was a strong decrease in
density of mature plants at higher germination densities
consistent with density-dependent competition.

Table 1. Applications of quantile regression in ecology and biology

Running speed and body mass of terrestrial mammals Koenker et al. 1994

Global temperature change over the last century Koenker and Schorfheide 1994

Animal habitat relationships Terrell et al. 1996; Haire et al. 2000;
Eastwood et al. 2001; Dunham et al.
2002

Prey and predator size relationships Scharf et al. 1998

Plant self-thinning Cade and Guo 2000

Vegetation changes associated with agricultural Allen et al. 2001
conservation practices

Mediterranean fruit fly survival Koenker and Geling 2001

Body size of deep-sea gastropods and dissolved McClain and Rex 2001
oxygen concentration

Variation in nuclear DNA of plants across Knight and Ackerly 2002
environmental gradients

Plant species diversity and invasibility Brown and Peet 2003

Figure 1. Quantile regression was used to estimate changes in Lahontan cutthroat trout
density (y) as a function of the ratio of stream width to depth (X) for 7 years and 13
streams in the eastern Lahontan basin of the western US. Photo is of a typical adult
Lahontan cutthroat from these small streams. (top left) A scatterplot of n = 71
observations of stream width:depth and trout densities with 0.95, 0.75, 0.50, 0.25, and
0.05 quantile (solid lines) and least squares regression (dashed line) estimates for the
model ln y = �0 + �1X + �. Weighted estimates used here were based on weights =
1/(1.310 –0.017X) but did not differ substantially from unweighted estimates used by
Dunham et al. (2002). Sample estimates, b0(�) (bottom left) and b1(�) (bottom right),
are shown as a red step function. Red dashed lines connect endpoints of 90% confidence
intervals.
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Quantile regression was developed in the 1970s by econo-
metricians (Koenker and Bassett 1978) as an extension of
the linear model for estimating rates of change in all parts of
the distribution of a response variable. The estimates are
semiparametric in the sense that no parametric distribu-
tional form (eg normal, Poisson, negative binomial, etc) is
assumed for the random error part of the model �, although
a parametric form is assumed for the deterministic portion
of the model (eg, �0X0 + �1X1). The conditional quantiles
denoted by Qy(�|X) are the inverse of the conditional
cumulative distribution function of the response variable,
Fy

-1(�|X), where � � [0, 1] denotes the quantiles (Cade et
al. 1999; Koenker and Machado 1999). For example, for � =
0.90, Qy(0.90|X) is the 90th percentile of the distribution
of y conditional on the values of X; in other words, 90% of
the values of y are less than or equal to the specified func-
tion of X. Note that for symmetric distributions, the 0.50
quantile (or median) is equal to the mean �.
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Here we consider functions of X that are linear
in the parameters; eg Qy(�|X) = �0(�)X0 +
�1(�)X1 + �2(�)X2 + , ... , + �p(�)Xp, where the (�)
notation indicates that the parameters are for a
specified � quantile. The parameters vary with �
due to effects of the �th quantile of the unknown
error distribution �. Parameter estimates in linear
quantile regression models have the same inter-
pretation as those in any other linear model.
They are rates of change conditional on adjusting
for the effects of the other variables in the model,
but now are defined for some specified quantile. 

In the 1-sample setting with no predictor vari-
ables, quantiles are usually estimated by a process
of ordering the sample data. The beauty of the
extension to the regression model was the recog-
nition that quantiles could be estimated by an
optimization function minimizing a sum of
weighted absolute deviations, where the weights
are asymmetric functions of � (Koenker and
Bassett 1978; Koenker and d’Orey 1987).
Currently, the statistical theory and computa-
tional routines for estimating and making infer-
ences on regression quantiles are best developed
for the linear model (Gutenbrunner et al. 1993;
Koenker 1994; Koenker and Machado 1999;
Cade 2003), but are also available for parametric
nonlinear (Welsh et al. 1994; Koenker and Park
1996) and nonparametric, nonlinear smoothers
(Koenker et al. 1994; Yu and Jones 1998). 

Quantile regression models present many new
possibilities for the statistical analysis and inter-
pretation of ecological data. With those new
possibilities come new challenges related to
estimation, inference, and interpretation. Here
we provide an overview of several of the issues
ecologists are likely to encounter when con-
ducting and interpreting quantile regression
analyses. More technical discussion is provided

in papers cited in References.

� Quantiles and ordering in the linear model

Regression quantile estimates are an ascending sequence
of planes that are above an increasing proportion of sam-
ple observations with increasing values of the quantiles �
(Figure 4). It is this operational characteristic that extends
the concepts of quantiles, order statistics, and rankings to
the linear model (Gutenbrunner et al. 1993; Koenker and
Machado 1999). The proportion of observations less than
or equal to a given regression quantile estimate – for
example, the 90th percentile given by Qy(0.90|X) in
Figure 4 – will not in general be exactly equal to �. The
simplex linear programming solution minimizing the sum
of weighted absolute deviations ensures that any regres-
sion quantile estimate will fit through at least p + 1 of the
n sample observations for a model with p + 1 predictor

Figure 2. The top graph represents the ideal statistical situation where an
organism response is driven primarily by the measured factor(s) included in
the linear regression model; ie all other potential limiting factors are at
permissive levels. As we proceed from top to bottom, an increasing number
of factors that were not measured become limiting at some sample locations
and times, increasing the heterogeneity of organism response with respect to
the measured factor(s) included in the regression model.

Ideal: only measured
factor limiting

1 unmeasured factor
limiting at some sites

2 unmeasured factors
limiting at some sites

Unmeasured factors
limiting at many sites
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variables X. This results in a set of inequalities defining a
range for the proportion of observations less than or equal
to any selected quantile �, given n and p (Cade et al. 1999;
Koenker and Machado 1999).

Regression quantiles, like the usual 1-sample quantiles
with no predictor variables, retain their statistical proper-
ties under any linear or nonlinear monotonic transforma-
tion of y as a consequence of this ordering property; that is,
they are equivariant under monotonic transformation of y
(Koenker and Machado 1999). Thus it is possible to use a
nonlinear transformation (eg logarithmic) of y to estimate
linear regression quantiles and then back transform the
estimates to the original scale (a nonlinear function) with-
out any loss of information. This, of course, is not true with
means, including those from regression models.

� Homogeneous and heterogeneous models

The simplest, unconstrained form of regression quantile
estimates allows the predictor variables (X) to exert
changes on the central tendency, variance, and shape of
the response variable (y) distribution (Koenker and
Machado 1999). When the only estimated effect is a
change in central tendency (for example, means) of the
distribution of y conditional on the values of X, we have
the familiar homogeneous variance regression model asso-
ciated with ordinary least squares regression (Figure 4,
top). All the regression quantile slope estimates b1(�) are
for a common parameter, and any deviation among the
regression quantile estimates is simply due to sampling
variation (Figure 4, bottom). An estimate of the rate of
change in the means from ordinary least squares regression
is also an estimate of the same parameter as for the regres-
sion quantiles. The intercept estimates b0(�) of the quan-
tile regression model are for the parametric quantile �0(�)
of y when X1, X2, ..., Xp = 0, which differ across quantiles
and for the mean � (Figure 4, middle). Here the primary
virtue of the regression quantile estimates of the intercept
is that they are not dependent on an assumed form of the
error distribution as when least squares regression is used,
which assumes a normal error distribution.

The properties associated with the intercept translate to
any other specified value of the predictors X1, X2, ..., Xp as
when estimating prediction intervals (Neter et al. 1996).
The interval between the 0.90 and 0.10 regression quan-
tile estimates in Figure 4 (top) at any specified value of X1

= x1 is an 80% prediction interval for a single future obser-
vation of y. Prediction intervals (for some number of
future observations) based on assuming a normal error dis-
tribution, as is done in ordinary least squares regression,
are sensitive to departures from this assumption (Neter et
al. 1996). Quantile regression avoids this distributional
assumption altogether. Given the skewed response distrib-
ution in Figure 4 (top), it is easy to see that a symmetric
prediction interval about an estimate of the mean based
on a normal error distribution model would not have cor-
rect coverage. For example, at X1 = 70.5 the 80% predic-
tion interval for a single new observation is 8.43–10.97,
based on the least squares estimate assuming a normal
error distribution, whereas the interval based on the 0.90
and 0.10 regression quantile estimates is 8.85–10.88.

When the predictor variables X exert both a change in
means and a change in variance on the distribution of y,
we have a regression model with unequal variances (a
“location-scale model” in statistical terminology). As a
consequence, changes in the quantiles of y across X can-
not be the same for all quantiles (Figure 5). Slope esti-
mates b1(�) differ across quantiles because the parameters
�1(�) differ, since the variance in y changes as a function
of X (Figure 5, bottom). Note that the pattern of changes
in estimates b0(�) mirror those for b1(�) (Figure 5, middle

Figure 3. Quantile regression estimates (0.99 and 0.90) were
used to describe changes in survival of Chihuahuan desert
annuals by modeling changes in mature plant density (y) as a
function of germination density of seedlings (X). Here the
modified Ricker function, y = �0X

�1e�2X�, was estimated in its
linearized form, ln (y + 1) = ln(�0) + �1 ln(X) + �2X + ln(�)
for Haplopappus gracilis in n = 346 0.25-m2 quadrats at
Portal, AZ (Cade and Guo 2000). The 1:1 relationship is
shown as a dotted black line. Photo is Eriogonum abertianum,
another common annual plant found in the Chihuahuan desert. 
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and bottom). In this situation, ordinary least squares
regression is commonly modified by incorporating weights
(which usually have to be estimated) in inverse propor-
tion to the variance function (Neter et al. 1996).
Typically, the use of weighted least squares is done to
improve estimates of the sampling variation for the esti-
mated mean function, and not done specifically to esti-
mate the different rates of change in the quantiles of the
distributions of y conditional on X. However, Hubert et al.
(1996) and Gerow and Bilen (1999) described applica-
tions of least squares regression where this might be done.
Estimating prediction intervals based on weighted least
squares estimates implicitly recognize these unequal rates
of change in the quantiles of y (Cunia 1987).

Generalized linear models offer alternative ways to link
changes in the variances (�2) of y with changes in the
mean (�) based on assuming some specific distributional
form in the exponential family – for example, Poisson,
negative binomial, or gamma (McCullagh and Nelder
1989). But again, the purpose is usually to provide better
estimates of rates of change in the mean (�) of y rather
than estimates in the changes in the quantiles of y that
must occur when variances are heterogeneous. Estimating
prediction intervals for generalized linear models would
implicitly recognize that rates of change in the quantiles
of y cannot be the same for all quantiles, and these inter-
val estimates would be linked to and sensitive to viola-
tions of the assumed error distribution.

An advantage of using quantile regression to model het-
erogeneous variation in response distributions is that no
specification of how variance changes are linked to the
mean is required, nor is there any restriction to the expo-
nential family of distributions. Furthermore, we can also
detect changes in the shape of the distributions of y across
the predictor variables (Koenker and Machado 1999).
Complicated changes in central tendency, variance, and
shape of distributions are common in statistical models
applied to observational data because of model misspecifi-
cation. This can occur because the appropriate functional
forms are not used (for example, using linear instead of non-
linear), and because all relevant variables are not included
in the model (Cade et al. 1999; Cade 2003). Failure to
include all relevant variables occurs because of insufficient
knowledge or ability to measure all relevant processes. This
should be considered the norm for observational studies in
ecology as it is in many other scientific disciplines.

An example of a response distribution pattern that may
involve changes in central tendency, variance, and shape
is shown in Figure 6. These data from Cook and Irwin
(1985) were collected to estimate how pronghorn
(Antilocapra americana) densities changed with features of
their habitat on winter ranges. Here, shrub canopy cover
was the habitat feature used as an indirect measure of the
amount of winter forage available. Rates of change in
pronghorn densities due to shrub canopy cover (b1) were
fairly constant for the lower 1/3 of the quantiles (0.25 per
1% change in cover), increased moderately for the central
1/3 of the quantiles (0.25–0.50), and doubled (0.50–1.0)
in the upper 1/3 of the quantiles (Figure 6, bottom right).
Changes in b1(�) do not appear to mirror those for b0(�),
indicating that there is more than just a change in central

Figure 4. (top) A sample (n = 90) from a homogenous error
(lognormal with median = 0 and � = 0.75) model, y = �0 +
�1X1 + �, �0 = 6.0 and �1 = 0.05 with 0.90, 0.75, 0.50,
0.25, and 0.10 regression quantile estimates (solid lines) and
least squares estimate of mean function (dashed line). Sample
estimates b0(�) (middle) and b1(�) (bottom), are shown as red
step functions. Dashed red lines connect endpoints of 90%
confidence intervals. Parameters �0(�) (middle) and �1(�)
(bottom), are blue lines.
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tendency and variance of pronghorn densities associated
with changes in shrub canopy cover. Clearly, too strong a
conclusion is not justified with the small sample (n = 28)
and large sampling variation for upper quantiles. But
either an ordinary least squares regression estimate (b1 =
0.483, 90% CI = 0.31–0.66) or more appropriate weighted
least squares regression estimate would fail to recognize
that pronghorn densities changed at both lower and
higher rates as a function of shrub canopy cover at lower
and upper quantiles of the density distribution, respec-
tively. Here, regression quantile estimates provide a more
complete characterization of an interval of changes in
pronghorn densities (0.2–1.0) that were associated with
changes in winter food availability as measured by shrub
canopy cover. These intervals are fairly large because
pronghorn densities on winter ranges are almost certainly
affected by more than just food availability.

� Estimates are for intervals of quantiles

Regression quantile estimates break the interval [0, 1]
into a finite number of smaller, unequal length intervals.
Thus, while we may refer to and graph the estimated
function for a selected regression quantile such as the
0.90, the estimated function actually applies to some
small interval of quantiles; for example, [0.894, 0.905] for
the 0.90 regression quantile in Figure 4. Unlike the
1-sample quantile estimates, the [0, 1] interval of regres-
sion quantile estimates may be broken into more than n
intervals that aren’t necessarily of equal length 1/n. The
number and length of these intervals are dependent on
the sample size, number or parameters, and distribution of
the response variable (Portnoy 1991). Estimates plotted
as step functions in Figure 4, middle and bottom, are for
101 intervals of quantiles on the interval [0, 1] for which
each has an estimate b0(�) and b1(�), corresponding to the
intercept and slope. Because the estimates actually apply
to a small interval of quantiles, it is appropriate to graph
the estimates as a step function.

� Sampling variation differs across quantiles

It is not surprising that sampling variation differs among
quantiles �. Generally, sampling variation will increase as
the value of � approaches 0 or 1, but the specifics are
dependent on the data distribution, model, sample size n,
and number of parameters p. Estimates further from the

center of the distribution – the median or 50th percentile
given by Qy(0.50|X) – usually cannot be estimated as
precisely. To display the sampling variation with the esti-
mates (Figure 4, middle and bottom), a confidence band
across the quantiles � � [0, 1] was constructed by estimat-
ing the pointwise confidence interval for 19 selected
quantiles � � {0.05, 0.10, ..., 0.95}. These intervals were
based on inverting a quantile rankscore test (Koenker
1994; Cade et al. 1999; Koenker and Machado 1999;
Cade 2003). It is possible to compute confidence inter-
vals for all unique intervals of quantiles, but this compu-

Figure 5. (top) A sample (n = 90) from a heterogeneous error
(normal with � = 0 and � = 1.0 + 0.05X1) model, y = �0 +
�1X1 + �, �0 = 6.0 and �1 = 0.10 with 0.90, 0.75, 0.50,
0.25, and 0.10 regression quantile estimates (solid lines) and
least squares estimate of mean function (dashed line). Sample
estimates b0(�) (middle) and b1(�) (bottom) are shown as red
step function. Red dashed lines connect endpoints of 90%
confidence intervals. Parameters �0(�) (middle) and �1(�)
(bottom) are blue lines.
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tational effort is not usually required to obtain a useful
picture of the estimates and their sampling variation. The
endpoints of the confidence intervals were not connected
across quantiles as a step function because they were only
estimated for a subset of all possible quantiles.

Other procedures for constructing confidence intervals
than the rankscore test inversion exist, including the
direct order statistic approach (Zhou and Portnoy 1996,
1998), a drop in dispersion permutation test (Cade 2003),
and various asymptotic methods dependent on estimating
the variance/covariance matrix and the quantile density
function (Koenker and Machado 1999). An advantage of
the rankscore test inversion approach is that it turns the
quantile regression inference problem into one solved by
least squares regression, for which there already exists a
wealth of related theory and methods (Cade 2003).

In the example in Figure 4, the 90% confidence inter-
vals for both the intercept (�0) and slope (�1) are nar-
rower at lower quantiles, consistent with the fact that
the data were generated from a lognormal error distribu-
tion (median = 0, � = 0.75) which has higher probability
density, and thus less sampling variation at lower quan-
tiles. Also note that the endpoints of the confidence
intervals estimated by inverting the quantile rankscore
test are not always symmetric about the estimate
(Koenker 1994), which is consistent with the skewed
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sampling distribution of the estimates
for smaller n and more extreme quan-
tiles. Sampling variation for the quan-
tiles can change rapidly over a short
interval of quantiles, especially near
the extremes. For example, in Figure
6, bottom right, the 90% confidence
interval for the slope of the 0.90 quan-
tile, b1(0.90), is narrow enough to
exclude zero, whereas for the 0.95
quantile, b1(0.95), the confidence
interval is wide and includes zero. For
this reason it is always worthwhile to
estimate a range of quantiles rather
than basing an analysis on a single
selected quantile.

� Second order properties of the
estimates are useful

Rates of change across quantiles in
the slope parameter estimates (for
example in Figure 6, bottom right)
can be used to provide additional
information that can be incorporated
into the model to provide estimates
with less sampling variation. The
sampling variation of a selected �
regression quantile estimate is
affected by changes in the parame-
ters in some local interval surround-

ing the selected quantile, say � ± h, where h is some
bandwidth (Koenker and Machado 1999). Weighted
regression quantile estimates can be based on weights
that are inversely proportional to the differences in
estimates for some local interval of quantiles, for
example 0.90 ± 0.06 (Koenker and Machado 1999;
Cade 2003). A variety of methods have been proposed
for selecting appropriate bandwidths (Koenker and
Machado 1999). The difference between the local
interval approach to constructing weights and estimat-
ing the variance function to construct weights as for
weighted least squares regression (eg Neter et al. 1996)
is that the former approach allows the weights to vary
for different quantiles, whereas the latter approach
assumes common weights for all quantiles (Cade
2003). Differential weights by quantiles are appropri-
ate for patterns of response similar to those in Figure 6,
where a second order analysis suggested that rates of
change in the estimates were probably not just due to
changes in means and variances, because the changes
in b1(�) across quantiles did not mirror those of b0(�).
Common weights for all quantiles are appropriate for
patterns of responses similar to those in Figures 1 and
5, where only location and scale changes occurred as
indicated by changes in b1(�) across quantiles that mir-
rored those of b0(�).

Figure 6. (top left) Pronghorn densities (y) by shrub canopy cover (X) on n = 28
winter ranges (data from Cook and Irwin 1985) and 0.90, 0.75, 0.50, 0.25, and
0.10 regression quantile estimates (solid lines) and least squares regression estimate
(dashed line) for the model y = �0 + �1X + �. Sample estimates b0(�) (bottom left)
and b1(�) (bottom right) are shown as a red step function. Red dashed lines connect
endpoints of 90% confidence intervals. Missing interval endpoints at bottom left were
not estimable.
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� Discussion

Estimating quantiles of the response distribution in
regression models is not new. This has always been
required for constructing prediction and tolerance inter-
vals for future observations, but has usually been done
only in a fully parametric model where the error distribu-
tion takes some specified form. In the full parametric
model, the various quantiles of the response distribution
are estimated by a specified multiple of the estimated
standard deviation of the parametric error distribution,
which is then added to the estimated mean function.
Vardeman (1992) stressed the importance of prediction
(for some specified number of future observations y) and
tolerance intervals (for a proportion of the population
and thus any number of future observations y) in statisti-
cal applications. The difference between prediction/toler-
ance intervals and confidence intervals is that the former
deal with the sampling variation of individual observa-
tions y and the latter with the sampling variation of para-
meter estimates (which are a function of the n observa-
tions). Prediction and tolerance intervals for y are far
more sensitive to deviations from an assumed parametric
error distribution than are confidence intervals for para-
meters. Regression quantile estimates can be used to con-
struct prediction and tolerance intervals without assum-
ing any parametric error distribution and without
specifying how variance heterogeneity is linked to
changes in means.

The additional advantage provided by regression quan-
tiles is that one can directly estimate rate parameters for
changes in the quantiles of the distribution of responses
conditional on the p predictor variables; ie �1(�), �2(�), ...,
�p(�). These cannot be equal for all quantiles � in models
with heterogeneous error distributions. Differences in
rates of change at different parts of the distribution are
informative in a variety of ecological applications. The
concept of limiting factors in ecology often focuses atten-
tion on the rates of change near the upper boundary of
responses. Complicated forms of heterogeneous response
distributions should be expected in observational studies
where many important processes may not have been
included in the candidate models. From a purely statistical
standpoint, rates of change of greater magnitude for more
extreme quantiles (eg � > 0.90 or � < 0.10) of the distribu-
tion may be detected as different from zero in sample esti-
mates more often (ie greater power) than some central
estimates such as the mean or median (� = 0.50). This can
occur because greater differences between the parameter
estimate and zero (no effect) can offset the greater sam-
pling variation often associated with more extreme quan-
tiles.

Use of regression quantile estimates in linear models
with unequal variances will allow us to detect the effects
associated with variables that might have been dismissed
as statistically indistinguishable from zero based on esti-
mates of means (Terrell et al. 1996). The motivation is to
address the large variation often found in relationships
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between ecological variables and the presumed causal fac-
tors that is not attributed to random sampling variation.
These models are useful when the response variable is
affected by more than one factor, when factors vary in
their effect on the response, when not all factors are mea-
sured, and when the multiple limiting factors interact.
However, quantile regression is not a panacea for investi-
gating relationships between variables. It is even more
important for the investigator to clearly articulate what is
important to the process being studied and why. A search
through all possible quantiles on a large number of models
with many combinations of variables for those with strong
nonzero effects is no more likely to produce useful scien-
tific generalizations than similar unfocused modeling
efforts using conventional linear model procedures.

Software is currently available to provide a variety of
quantile regression analyses. Scripts and Fortran programs
to work with S-Plus are available from the web sites of
Roger Koenker (www.econ.uiuc.edu~roger/research/home
.html) and the Ecological Archives E080-001 (www.esa-
pubs.org/archive/ecol/E080/001/default.htm). Add-on
packages for R are available from the Comprehensive R
Archive Network (http://lib.stat.cmu.edu/R/CRAN/).
Quantile regression estimates for linear models, quantile
rankscore tests, and permutation testing variants are avail-
able in the Blossom statistical package available from the
US Geological Survey (www.fort.usgs.gov/products/soft-
ware/blossom.asp). Stata and Shazam are two commercial
econometrics programs that provide quantile regression. 
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