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A Burning Question of Early 18th Century Science

Does the earth look more like a lemon or a grapefruit? Prolate or Oblate?

The French, based on extensive survey work by Cassini, maintained the
prolate view while the English, based on gravitational theory of Newton,
maintained the oblate view.
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The First Scatterplot?
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Grapefruit or Lemon? Boscovich (1755) considered the five measurements de-
picted above determined by arduous survey efforts. An upward slope in this figure
indicates that the earth is oblate (like a grapefruit) rather than prolate (like a lemon).
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The First Regression
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Boscovich (1755) computed all the pairwise slopes and initially reported a trimmed
mean of the pairwise slopes as a point estimate of the earth’s ellipticity.

Roger Koenker (UIUC) Quantile Regression NIU: 31.10.2014 5 / 31



Boscovich’s Second Approach

Ruder Josip Bošković (1711-1787)

Boscovich (1757) proposed estimating the ellipticity of the earth by solving:

min
n∑
i=1

|yi − α− x ′iβ| s. t.
n∑
i=1

(yi − α− x ′iβ) = 0,

The constraint allowed the problem to be reduced to the weighted median
problem:

min
n∑
i=1

|ỹi − x̃
′
iβ|

where ỹ and x̃ denote deviations from their respective means.
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Laplace’s Méthode de Situation

Pierre-Simon Laplace (1749-1827)

Laplace showed that Boscovich’s problem: could be solved by ordering the
candidate slopes {ỹi/x̃i} and finding the weighted median using weights
wi = |x̃i|, i.e. finding the smallest j such that,

j∑
i=1

w(i) >
1

2

n∑
i=1

w(i),

where w(i) denotes weights ordered according to the order of the slopes.
Laplace “does the asymptotics” based on the DeMoivre-Laplace CLT.
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Gauss Spoils the Party

Carl Friedrich Gauss (1777-1855)

Gauss’s discovery of least-squares replaced absolute error by squared error,

min
n∑
i=1

(yi − a− bxi)
2

To explain why errors were squared he invented the Gaussian Law of Errors:
Errors have density,

ϕ(u) =
1√
2πσ2

exp(u2/2σ2)

looking like Napolean’s hat.
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Napolean’s Hat

Is it possible that the modern fixation on the “normal” distribution isn’t a
leap of Gaussian faith, but instead an act of obeisance to Napolean I?
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The Father of the Average Man

Adolphe Quetelet (1796 - 1874)

Meanwhile, Quetelet’s (1835) Sur l’Homme (On Man) iconified the
“Average Man”.

Through systematic measurement and relentless averaging Quetelet
sought to extract man’s essential qualities: social, economic, aesthetic,
and moral.
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The Mother of the Average Man

Florence Nightingale (1820 - 1910)

Heroine of the Crimean War, Patron Saint of Nurses, admirer of Quetelet,
and champion of the scientific, i.e. statistical, study of society.

To Nightingale every piece of legislation was an experiment in the
laboratory of society deserving study and demanding evaluation.
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The [Re]Discoverer of the Average Man

Francis Galton (1822 - 1911)

Galton’s (1885) discovery of regression and correlation paved the way for
a more sophisticated (conditional) view of the Average Man as a social
scientific construct. But especially in his early work Galton extensively
employed median and interquantile range methods.
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Galton Had Doubts about the Average Man
Galton, in a famous passage defending the “charms of statistics” against
its many detractors, chided his statistical colleagues

[who] limited their inquiries to Averages, and do not seem to
revel in more comprehensive views. Their souls seem as dull to
the charm of variety as that of a native of one of our flat English
counties, whose retrospect of Switzerland was that, if the
mountains could be thrown into its lakes, two nuisances would
be got rid of at once. [ Natural Inheritance, p. 62]
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The Revenge of the Median Man

Francis Ysidro Edgeworth (1845 - 1926)

Edgeworth disdained the growing reliance on the gens d’armes hat (Gaussian
Law of Errors) and revived the median regression methods pioneered by
Boscovich and Laplace in the 18th century. But Edgeworth removed Boscovich’s
intercept constraint.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Points in sample space map to lines in parameter space.

(xi,yi) 7→ {(α,β) : α = yi − xiβ}
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Lines through pairs of points in sample space map to points in parameter
space.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

All pairs of observations produce
(
n
2

)
points in dual plot.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex
Follow path of steepest descent through points in the dual plot.
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But Not Everyone was Convinced

George Waddel Snedecor (1881 - 1974)

The first edition of Snedecor’s influential textbook contains:
The median-quartile description of a sample falls into the same
category as the range, furnishing a rough-and-ready means of
summarizing the data. It has never gained favor among
biologists both because it provides no accurate test of
significance, and because it leads into a blind alley so far as
more advanced statistical methods are concerned.
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Sample Quantiles via Optimization

The τth sample quantile can be defined as any solution to:

α̂(τ) = argmina

n∑
i=1

ρτ(yi − a)

where ρτ(u) = u(τ− I(u < 0)) as illustrated below.

ττ − 1

ρτ(u)

The τ-tilt biases the argmin toward making the lower cost error; e.g.
forecasting flood levels.
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Optimization for Sample Quantiles
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The quantile objective function is piecewise linear, nicely convex, so its
derivative is monotone and optimization is easy.
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The Least Squares Meta-Model
Once one realizes that quantiles may be defined via convex optimization
the rest of the quantile regression story is almost trivial.
The unconditional mean solves

µ = argminmE(Y −m)2

The conditional mean µ(x) = E(Y|X = x) solves

µ(x) = argminmEY|X=x(Y −m(x))2.

Similarly, the unconditional τth quantile, ατ, solves

ατ = argminaEρτ(Y − a)

and the conditional τth quantile, ατ(x), solves

ατ(x) = argminqEY|X=xρτ(Y − q(x))
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Earth’s Ellipticity: A Quantile Regression View
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t=( 0 , 0.21 ) 

t=( 0.21 , 0.48 ) 

t=( 0.48 , 0.73 ) 

t=( 0.73 , 1 ) 

The quantile regression analysis of the Boscovich data identifies four distinct pairs
of points that solve the weighted `1 problem for various intervals of the parameter
τ.
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Why Conditional Quantiles?

The initial response to the “Regression Quantiles” paper with Gib Bassett
was not terribly auspicious:

I regret that I cannot see any point in this paper, and therefore
cannot recommend its publication. It may be of interest to
compute regression analyses to minimize the sum of absolute
deviations between the observed and fitted responses, and there
is a fair amount of literature on this topic. But why should one
consider τ 6= 1/2?

Annals of Statistics Referee Report, November, 1975.

Fortunately, others were kinder and more understanding: Notably Steve
Portnoy, Joe Gastwirth, Jana Jurečkova, Ed Leamer.
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A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)
Covariates:

I Mother’s Education
I Mother’s Prenatal Care
I Mother’s Smoking
I Mother’s Age
I Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II
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Developments in the Twilight Zone

In my 2005 monograph I relegated several topics to a penultimate chapter
called “The Twilight Zone of Quantile Regression” including:

Survival Analysis

Discrete Response

Quantile Autoregression

Multivariate Quantiles

Longitudinal Data Analysis

Causal Models and Endogenous Treatment

Choquet Risk and Portfolio Allocation
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Beyond the Twilight Zone

There are many new directions that deserve further exploration:

High dimension model selection and inference

Heterogeneous treatment effects and mixture models

Frequency domain time series

Functional data analysis

Measurement error and selection models

Gradient descent computational methods

Survival models for recurrent events and competing risks

. . .
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Statistics in the 20th Century
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Statistics in the 21st Century
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