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ON COMONOTONICITY

ROGER KOENKER

1. Introduction

Dependence among random variables is a nasty business and we usually ignore the
nastiness (at our peril) by employing measures of linear association like the Pearson
correlation coeÆcient. A more attractive category of dependence concepts are those
based on the copula function.

De�nition 1. A copula is a multivariate distribution function whose univariate mar-
ginal distributions are all U [0; 1], i.e., uniformly distributed on [0; 1].

For continuous� m-variate distributions we may associate a copula C(�) with a
distribution function F (�):

F (x) = C(F1(x1); : : : ; Fm(xm))

where Fi(�) denotes the ith marginal distribution of F . And consequently, we have

C(u) = F (F�1
1 (u1); : : : ; F

�1
m (um))

The copula represents the dependence among the components of the random vec-
tor X = (X1; : : : ; Xm)

0 while abstracting from its idiosyncratic marginal behavior.
Consequently, it is well suited to the task of constructing measures of dependence.
The classical measures of this type are Spearman (1904) and Kendall (1938) rank
correlations. Dependence measures based on the copula function are invariant under
strictly increasing transformations of the coordinates and are consequently sometimes
called \measures of concordance."
Our main interest is to explore the extreme case of perfectly concordant random

variables. The following classical result provides bounds on the distribution function
in terms of its marginals.

Theorem 1. (Fr�echet) Let F (x) be an m-variate distribution function with univariate
marginals F1; : : : ; Fm: Then for all x 2 <m,

maxf0; F1(x1)+: : :+Fm(xm)�(m�1)g � F (x1; : : : ; xm) � minfF1(x1); : : : ; Fm(xm)g
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�For discrete m-variate distributions we encounter problems of nonuniqueness in the representa-

tions given above. It may be useful to consider continuous approximations to such discrete cases,
say by convolution with a smooth density with scale tending to zero.
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Reformulating this result in terms of the copula function for bivariate cases we have

maxf0; u1 + u2 � 1g � C(u1; u2) � minfu1; u2g

In the bivariate case both bounds are valid copulas and correspond to bivariate
df's for the random vectors (U; U) and (U; 1 � U), with U � U [0; 1]: The upper
bound characterizes the situation in which a pair of random variables has a maximal
degree of monotone dependence. Following Schmeidler (1986) and an extensive recent
literature in �nance we say they are comonotonic.
Denneberg (1994) provides several equivalent de�nitions of comonotonicity, one of

which can be easily interpreted for random variables.

De�nition 2. The two functions X; Y : 
 ! < are comonotonic if there exists a
third function Z : 
 ! < and increasing functions f and g such that X = f(Z) and
Y = g(Z).

From our point of view the crucial property of comonotonic random variables is
the behavior of quantile functions of their sums. For comonotonic random variables
X;Y, we have

F�1
X+Y

(u) = F�1
X

(u) + F�1
Y

(u)

By comonotonicity we have a U � U [0; 1] such that Z = g(U) = F�1
X

(U) + F�1
Y

(U)
where g is left continuous and increasing, so by monotone invariance, F�1

g(U) = gÆF�1
U .

Thus, in a rather strange way, comonotonicity plays the same role for quantile
functions that independence does for variances. For comonotonic random variables
quantile functions of sums are sums of quantile functions, just as variances of sums
are sums of variances for independent random variables. And yet, comonotonicity
and independence are diametrically opposite notions, the former describing a state
of maximal dependence. The extremal nature of comonotone random variables is
clari�ed somewhat by following result.

Theorem 2. (Major (1978)) Let X; Y be random variables with marginal distri-
bution functions F and G, respectively, and �nite �rst absolute moments. Let �(x)
be a convex function on the real line, then

inf E�(X � Y ) =

Z 1

0

�(F�1(t)�G�1(t))dt:

where the inf is over all joint distributions, H, for (X; Y ) having marginals F and G.

Mallows (1972) formulates this result for �(u) = u2, and notes that it implies among
other things that the maximal Pearson correlation of X and Y occurs at the Fr�echet
bound H(x; y) = minfF (x); G(y)g;

max

Z
xydF (x; y) =

Z 1

0

F�1(t)G�1(t)dt:

Bickel and Freedman (1981) elaborate on the case �(x) = x2 in considerable further
detail.
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We need not restrict attention to di�erences in random variables. In the recent
actuarial literature there has been considerable attention devoted to role of comono-
tonicity. Suppose, that we have the sum Z = X1+X2+ : : :+Xn where the Xi denote
possibly dependent random variables representing losses from various insured risks.
And suppose we know the marginal distributions of the Xi, but not their joint distri-
bution. Is there a way to bound the behavior of Z using the comonotonic version of
their joint distribution? The following theorem of Kaas, Dhaene, Vyncke, Goovaerts,
and Denuit (2001), shows that the comonotone version of the joint distribution pro-
vides a worst case scenario for any convex loss function.

Theorem 3. Given Z = X1 +X2 + : : :+Xn with Xi � Fi, for i = 1; : : : ; n, and any
convex function �,

E�(Z) � E�( ~Z) =

Z 1

0

�(
X

F�1
i (t))dt

where ~Z =
P ~Xi =

P
F�1
i (U) and U � U [0; 1]:

The foregoing results raise some intriguing questions about the intrepretation of
quantile regression models that we address in the next section.

2. Random Coefficients, Comonotonicity, and Quantile Regression

The quantile regression model

(2.1) F�1
Y jX(� jx) = x0�(�)

may be interpreted as a random coeÆcient model in which for any given design vector,
x, we have conditional on X = x,

(2.2) Y = x0�(U)

with U is a scalar uniform U [0; 1] random variable. This interpretation follows im-
mediately from the fact that Y = F�1

Y (U) has the distribution, FY . The random
coeÆcient interpretation of (2.1) is quite distinct from classical random coeÆcient
speci�cations. Rather than assuming that the coordinates of � are independent
random variables, we adopt the opposite viewpoint, that the coordinates of � are
functionally perfectly dependent.
It is dangerous to jump immediately to the conclusion that the random vector

�(U) is comonotonic. In fact, in most parameterizations there is no reason to believe
that the functions �i(�) are will be monotone. Nevertheless, what is crucial is that
there exists a reparameterization that does exhibit comonotonicity. Recall that we
can always reparameterize (2.1) as

(2.3) F�1
Y jX(� jx) = x0A�1A�(�) = z0
(�)

Suppose that we choose p = dim(�) design points fxk : k = 1; :::; pg where the
model (2.1) holds. Now choose the matrix A so that Axk = ek, the kth unit basis
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vector. Then for any xk we have that conditional on X = xk,

(2.4) Y = (ek)0
(U) = 
k(U):

And inside the convex hull of the xk points, i.e. conditioning on on a point x =P
wkx

k for 0 � wk � 1 with
P

wk = 1, we have

(2.5) Y =
X

wk
k(U)

and we have a comonotonic random coeÆcient representation of the model. In e�ect,
we have done nothing more than reparameterized the model so that the coordinates,


k = F�1
Y jX(� jx

k) k = 1; :::; p;

are the conditional quantile functions of Y at the points xk. The fact that quan-
tile functions of sums of nonnegative comonotonic random variables are sums of the
marginal quantile functions allows us to interpolate linearly between the chosen xk.
Of course, linear extrapolation is also possible, but we need to be cautious in this
case about possible violations of the monotonicity requirement on sums of quantile
functions.
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