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Abstract. Recent developments in the theory of choice under uncertainty and

risk yield a pessimistic decision theory that replaces the classical expected utility

criterion with a Choquet expectation that accentuates the likelihood of the least

favorable outcomes. A parallel theory has recently emerged in the literature on

risk assessment. It is shown that pessimistic portfolio optimization based on the

Choquet approach may be formulated as an exercise in quantile regression.

Algernon: I hope to-morrow will be a fine day, Lane.

Lane: It never is, sir.

Algernon: Lane, you’re a perfect pessimist.

Lane: I do my best to give satisfaction, sir.

Oscar Wilde, Importance of Being Earnest, Act I

1. Introduction

The cornerstone of the modern theory of decision making under risk is expected

utility maximization as elaborated by Bernoulli (1738), Ramsey (1931), de Finetti

(1937), von Neumann and Morgenstern (1944), Savage (1954), Fishburn (1982) and

many subsequent authors. And yet there have been persistent doubts expressed

about the adequacy of the expected utility framework to encompass the full range of

human preferences over risky alternatives. Many variations on the the expected utility

theme have been proposed, of these perhaps the most successful has been the family

of non-additive, or dual, or rank-dependent formulations of Schmeidler (1989), Yaari
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(1987), and Quiggin (1982). The familiar Lebesgue integral of the expected utility

computation is replaced by a Choquet integral, thereby permitting, for example, the

probability weights associated with the least favorable outcomes to be accentuated

and thereby yielding a pessimistic decision criterion.

Our aim in this paper is to provide an elementary exposition of one variant of the

Choquet expected utility theory as it applies to decisions under risk, to link this the-

ory with some recent developments in the literature on risk assessment, and finally to

describe its application to the problem of portfolio choice. The problem of portfolio

allocation is central to economic decision theory and thus constitutes an acid test

of any new criterion designed to evaluate risky alternatives. By offering a general

approach to portfolio allocation for pessimistic Choquet preferences we hope to en-

courage a critical reexamination of the role of attitudes toward risk in this important

setting. In contrast to conventional mean-variance portfolio analysis implemented by

solving least squares problems, pessimistic portfolios will be constructed by solving

quantile regression problems. Our results complement recent work in the financial

econometrics literature on estimation and inference in conditional quantile models, as

e.g. in Engle and Manganelli (2001), Bouyé and Salmon (2002), Christoffersen and

Diebold (2003), and Linton and Whang (2003).

2. Choquet Expected Utility

Consider the problem of choosing between two real-valued random variables, X

and Y , having distribution functions, F and G, respectively. Comparing expected

utilities, we prefer X to Y if

EF u(X) =

∫
∞

−∞

u(x)dF (x) >

∫
∞

−∞

u(x)dG(x) = EGu(Y )

In this framework, the utility function, u, bears the entire burden of representing the

decision makers’ attitudes toward risk. Changing variables, we have the equivalent

formulation that X is preferred to Y if

(2.1) EFu(X) =

∫ 1

0

u(F−1(t))dt >

∫ 1

0

u(G−1(t))dt = EGu(Y ),

in effect, we have transformed the original integrand into “equally likely” slices on the

interval [0, 1], now integrable with respect to Lebesgue measure. This formulation of

expected utility in terms of the quantile functions F−1(t) of X and G−1(t) of Y is

particularly revealing since it offers a sharp contrast to the Choquet theory.
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In its simplest form Choquet expected utility introduces the possibility that pref-

erences may require a distortion of the original probability assessments, rather than

integrating dt we are permitted to integrate, dν(t), with respect to some other prob-

ability measure defined on the interval [0, 1]. Preferences are thus represented by a

pair of functions (u, ν): u transforms (monetary) outcomes into utility terms, while

ν transforms probability assessments.1 Now X is preferred to Y if

(2.2) Eν,Fu(X) =

∫ 1

0

u(F−1(t))dν(t) >

∫ 1

0

u(G−1(t))dν(t) = Eν,Gu(Y ).

Since our change of variables has ordered the events, u(F−1(t)) and u(G−1(t)) are also

ordered according to increasing desirability. We assume throughout that u is mono-

tone increasing. The distortion function ν acts to inflate or deflate the probabilities

according to the rank ordering of the outcomes. The distortion may systematically

increase the implicit likelihood of the least favorable events, for example. But, unlike

the original form of the prospect theory of Kahneman and Tversky (1979), it cannot

systematically distort small probabilities per se. In contrast, cumulative prospect

theory, as developed by Tversky and Kahneman (1992) and Wakker and Tversky

(1993), is quite closely aligned with the Choquet approach.

Admittedly, there is something mildly schizophrenic about decision makers who

accept at face value probabilities represented by the distribution functions F and G,

and then intentionally distort these probabilities in the process of turning them into

actions. More general forms of Choquet expected utility, following Schmeidler (1989),

dispense entirely with initial probabilities. Monotone set functions, or Choquet ca-

pacities, are employed to assign nonadditive probabilities directly to events, enabling

the theory to address distinctions between risk, uncertainty and ambiguity that have

played a prominent role in the recent literature. By restricting attention to settings in

which the Choquet capacity is expressed as the composition of an increasing function

ν : [0, 1] → [0, 1] with ν(0) = 0 and ν(1) = 1, and a probability measure we sacri-

fice some of the power and elegance of the general theory, but in return we obtain

a very concise representation of preferences in terms of a pair of simple and easily

interpretable functions (u, ν). Following Yaari (1987), we will focus our attention on

the function ν, first interpreting it in terms of the possible optimism or pessimism

1Whether this latter transformation is a matter of “perception” or “attitude” or some other

category of psychological experience has been a matter of some debate. We prefer Yaari’s assertion

that the theory describes “how perceived risk is processed into choice.”
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of the decision maker, then briefly describing its axiomatic underpinnings.2 A brief

exposition of the interrelationship between various forms of the Choquet expectation

is provided in an Appendix.

2.1. Pessimism. Choquet expected utility leads naturally to an interpretation of

the distorting probability measure ν as a reflection of optimism or pessimism. If the

distortion function, ν, is concave, then the least favorable events receive increased

weight and the most favorable events are discounted reflecting pessimism. To see

this, it may be helpful to consider the case that ν is absolutely continuous as well

as concave and therefore has a decreasing density with respect to Lebesgue measure.

Thus, instead of the uniform weighting implicit in the expected utility criterion, the

Choquet criterion accentuates the weight of the least favorable events and reduces

the weight assigned to the most favorable events. When ν is convex the situation is

reversed, optimism prevails, and the Choquet integral exaggerates the likelihood of

the more favorable events and downplays the likelihood of the worst outcomes. As

noted already by Quiggin (1982) and Schmeidler (1989), distortion functions that are

initially concave and then convex offer an alternative to the classical Friedman and

Savage (1948) rationale for the widespread, but still puzzling, observation that many

people seem to be willing to buy insurance and gamble at (nearly) the same time.3

The simplest distortions are those given by the one parameter family, να(t) =

min{t/α, 1} for α ∈ [0, 1]. In this case, we have,

Eνα
u(X) = α−1

∫ α

0

u(F−1(t))dt,

and we see that – relative to the usual computation of expected utility – the prob-

abilities of the α least favorable outcomes are inflated and the 1 − α proportion of

most favorable outcomes are discounted entirely. This family will play an important

role as a building block for more general distortion functions in the sequel.

2Wakker (1990) has shown that Schmeidler’s general theory of Choquet preferences coincides with

the rank dependent, or anticipated utility, formulations of Quiggin and Yaari for decision making

under risk, that is when choices are over given probability distributions.
3Whether optimism and pessimism will eventually find a legitimate place in formal decision theory

is likely to remain somewhat controversial – it seems advisable to recall that Savage (1954, p. 68)

did not seem think that they could be acommodated into his view of subjective expected utility. But

given the long-standing dissatisfaction with expected utility theory it is surely worthwhile to continue

to explore the implications of alternative schemes particularly when they are sufficiently tractable

to yield concrete competing predictions about behavior for problems of real economic significance.
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2.2. Axiomatics. Recall that if A denotes a mixture space of “acts” consisting of

functions mapping states of nature, S to a set of probability distributions on outcomes,

then the von Neumann Morgenstern axioms impose the following condition on the

binary preference relation (�) over A:

(A) (Independence) For all f, g, h ∈ A and α ∈ (0, 1), then f � g implies αf +

(1 − α)h � αg + (1 − α)h,

Schmeidler’s seminal 1989 paper argues that the independence axiom “may be too

powerful to be acceptable”, and he proposes a weaker form of independence:

(A′) (Comonotonic Independence) For all pairwise comonotonic acts f, g, h ∈ A

and α ∈ (0, 1), then f � g implies αf + (1 − α)h � αg + (1 − α)h,

Comonotonicity, a concept introduced by Schmeidler, plays a pivotal role.

Definition 1. Two acts f and g in A are are comonotonic if for no s and t in S,

f(s) � f(t) and g(t) � g(s).

By restricting the applicability of the independence axiom only to comonotonic

acts, the force of the axiom is considerably weakened. Schmeidler (1986, 1989)

shows that the effect of replacing (A) by (A′) is precisely to enlarge the scope of

preferences from those representable by a von Neumann-Morgenstern (Savage) utility

function, u, to those representable by a pair, (u, ν), consisting of a utility function

and a Choquet capacity.

To clarify the role of comonotonicity it is useful to consider the following reformu-

lation of the definition in terms of random variables.

Definition 2. Two random variables X, Y : Ω → R are comonotonic if there exists

a third random variable Z : Ω → R and increasing functions f and g such that

X = f(Z) and Y = g(Z).

In the language of classical rank correlation, comonotonic random variables are

perfectly concordant, i.e. have rank correlation 1. The classical Fréchet bounds for

the joint distribution function, H, of two random variables, X and Y , with univariate

marginals F and G is given by

max{0, F (x) + G(y) − 1} ≤ H(x, y) ≤ min{F (x), G(y)}

Comonotonic X and Y achieve the upper bound.

From our point of view a crucial property of comonotonic random variables is the

behavior of the quantile functions of their sums. For comonotonic random variables
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X, Y , we have

F−1
X+Y

(u) = F−1
X

(u) + F−1
Y

(u)

This is because, by comonotonicity we have a U ∼ U [0, 1] such that Z = g(U) =

F−1
X

(U)+F−1
Y

(U) where g is left continuous and increasing, so by monotone invariance

of the quantile function we have, F−1
g(U) = g ◦ F−1

U = F−1
X

+ F−1
Y

.

This property will play an essential role in our formulation of pessimistic portfolio

theory, a topic that we will introduce with a brief review of some closely related recent

work in the theory of risk assessment.

3. Measuring Risk

Motivated by regulatory concerns in the financial sector there has been considerable

recent interest in the question of how to measure portfolio risk. An influential paper

in this literature is Artzner, Delbaen, Eber, and Heath (1999), which provides an

axiomatic foundation for “coherent” risk measures.

Definition 3. (Artzner et al) For real valued random variables X ∈ X on (Ω,A) a

mapping % : X → R is called a coherent risk measure if it is:

(i) Monotone: X, Y ∈ X ,with X ≤ Y ⇒ %(X) ≥ %(Y ).

(ii) Subadditive: X, Y, X + Y ∈ X , ⇒ %(X + Y ) ≤ %(X) + %(Y ).

(iii) Linearly Homogeneous: For all λ ≥ 0 and X ∈ X , %(λX) = λ%(X).

(iv) Translation Invariant: For all λ ∈ R and X ∈ X , %(λ + X) = %(X) − λ.

These requirements rule out many of the conventional measures of risk traditionally

used in finance. In particular, measures based on second moments are ruled out by

the monotonicity requirement, and quantile based measures like the value-at-risk are

ruled out by subadditivity. A measure of risk that is coherent and that has gained

considerable recent prominence in the wake of these findings is,

%να
(X) = −

∫ 1

0

F−1(t)dν(t) = −α−1

∫ α

0

F−1(t)dt,

where ν(t) = min{t/α, 1} as in Section 2. Variants of %να
(X) have been suggested

under a variety of names, including expected shortfall (Acerbi and Tasche (2002)),

conditional value at risk (Rockafellar and Uryasev (2000)), tail conditional expecta-

tion (Artzner, Delbaen, Eber, and Heath (1999)). For the sake of brevity we will call

%να
(X) the α-risk of the random prospect X. Clearly, α-risk is simply the negative

Choquet να expected return.
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Having defined α-risk in this way, it is natural to consider the criteria: %να
(X) −

λµ(X), or µ(X)−λ%να
(X). Minimizing the former criterion may be viewed as minimiz-

ing risk subject to a constraint on mean return; maximizing the latter criterion may

be viewed as maximizing return subject to a constraint on α-risk. Several authors,

including Denneberg (1990), Rockafellar and Uryasev (2000), Jaschke and Küchler

(2001), and Ruszczyski and Vanderbei (2003), have suggested criteria of this form

as alternatives to the classical Markowitz criteria in which α-risk is replaced by the

standard deviation of the random variable X. Since µ(X) =
∫

F−1
X (t)dt = −%1(X)

these criteria are special cases of the following more general class.

Definition 4. A risk measure % is pessimistic if, for some probability measure ϕ on

[0, 1],

%(X) =

∫ 1

0

%να
(X)dϕ(α).

To see why such risk measures should be viewed as pessimistic, note that by the

Fubini Theorem we can write,

%(X) = −

∫ 1

0

α−1

∫ α

0

F−1(t)dtdϕ(α) = −

∫ 1

0

F−1(t)

∫ 1

t

α−1dϕ(α)dt.

In the simplest case, we can take ϕ as a finite sum of (Dirac) point masses, say

dϕ =
∑m

i=0 ϕiδτi
with ϕi ≥ 0,

∑
ϕi = 1, and 0 = τ0 < τ1 < ... < τm ≤ 1. Noting that

∫ 1

t

α−1δτ (α)dα = τ−1I(t < τ),

we can write

(3.1) %(X) =

∫ 1

0

%να
(X)dϕ(α) = −ϕ0F

−1(0) −

∫ 1

0

F−1(t)γ(t)dt

where γ(t) =
∑m

i=1 ϕiτ
−1
i I(t < τi). Positivity of the point masses, ϕi, assures that the

resulting density weights are decreasing, so the resulting distortion in probabilities

acts to accentuate the implicit likelihood of the least favorable outcomes, and depress

the likelihood of the most favorable ones. Such preferences are clearly “pessimistic”.

We may interpret the α-risks, %α(·) as the extreme points of the convex set of

coherent risk measures, and this leads to a nice characterization result. Following

Kusuoka (2001) we will impose some additional regularity conditions on %:

Definition 5. Let L∞ denote the space of all bounded real-valued random variables

on (Ω,F , P) with P non-atomic. A map % : L∞ → R is a regular risk measure if:
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(i.) % is law invariant, i.e. %(X) = %(Y ) if X, Y ∈ L∞ have the same probability

law.

(ii.) % is comonotonically additive, i.e. X, Y ∈ L∞ comonotone implies that %(X+

Y ) = %(X) + %(Y ).

The first condition requires only that % depend upon observable properties of its

argument. Random variables with the same distribution functions should have the

same risk. The second condition refines slightly the subadditivity property: subad-

ditivity becomes additivity when X and Y are comonotone. We can now succinctly

reformulate the characterization result of Kusuoka (2001) and Tasche (2002).

Theorem 1. A regular risk measure is coherent if and only if it is pessimistic.

This result justifies our earlier comment that the elementary α-risks are funda-

mental building blocks: any concave distortion function, ν, can be approximated by

a piecewise linear concave function. These linear approximants are nothing but the

weighted sums of Dirac’s introduced above. They correspond to risk functions of the

form (3.1) with γ(t) =
∑m

i=1 ϕiτ
−1
i I(t < τi) piecewise constant and decreasing. Note

that as a special case such ν’s are entitled to place positive weight ϕ0 on the least

favorable outcome, so they include the extreme case of maximin preferences.

4. Pessimistic Portfolio Allocation

We have seen that decision making based on minimizing a “coherent” measure of

risk as defined by Artzner, Delbaen, Eber, and Heath (1999) is equivalent to Choquet

expected utility maximization using a linear form of the utility function. But the

question remains: Does the Choquet approach to decision making under risk lead to

tractable methods for analyzing complex decision problems of practical importance?

An affirmative answer to this question is provided in this section.

4.1. On α-risk as Quantile Regression. Empirical strategies for minimizing α-risk

lead immediately to the methods of quantile regression. Let

ρα(u) = u(α − I(u < 0))

denote the piecewise linear (quantile) loss function and consider the problem,

min
ξ∈R

Eρα(X − ξ).

It is well known, e.g. Ferguson (1967), that any ξ solving this problem is an αth

quantile of the random variable X. Evaluating at a minimizer, ξα we find that
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minimizing the usual α-quantile objective function is equivalent to evaluating the

sum of expected return and the α-risk of X, and then multiplying by α.

Theorem 2. Let X be a real-valued random variable with EX = µ < ∞, then

min
ξ∈R

Eρα(X − ξ) = α(µ + %να
(X)).

Proof: Noting that,

Eρα(X − ξ) = α(µ − ξ) −

∫ ξ

−∞

(x − ξ)dFX(x),

is minimized when ξα = F−1
X (α), we have,

Eρα(X − ξα) = αµ −

∫ α

0

F−1(t)dt = αµ + α%να
(X).

This result provides a critical link to the algorithmic formulation developed in the

next subsection.

4.2. How to be Pessimistic. Given a random sample {xi : i = 1, ..., n} on X, an

empirical analogue of α-risk can thus be formulated as

(4.1) %̂να
(x) = (nα)−1 min

ξ∈R

n∑
i=1

ρα(xi − ξ) − µ̂n

where µ̂n denotes an estimator of EX = µ, presumably, x̄n. The advantage of the

optimization formulation becomes apparent as soon as we begin to consider portfolios.

Let Y = X>π denote a portfolio of assets comprised of X = (X1, ..., Xp)
> with port-

folio weights π. Suppose now that we observe a random sample {xi = (xi1, ..., xip) :

i = 1, ..., n} from the joint distribution of asset returns, and we wish to consider

portfolios minimizing

(4.2) min
π

%να
(Y ) − λµ(Y ).

This is evidently equivalent to simply minimizing %να
(Y ) subject to a constraint on

mean return. Alternatively, we could consider maximizing mean return subject to a

constraint on α-risk; this equivalent formulation might be interpreted as imposing a

regulatory constraint on a risk neutral agent. Since µ(Y ) = −%ν1
(Y ), the mean is also

just another α-risk, so the problem (4.2) may be viewed as a special discrete example

of the pessimistic risk measures of Definition 4. More general forms are introduced

in Section 4.4.
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We will impose the additional constraint that the portfolio weights π sum to one,

and reformulate the problem as,

min
π

%να
(X>π) s.t. µ(X>π) = µ0, 1>π = 1.

Taking the first asset as numeraire we can write the sample analogue of this problem

as

(4.3) min
(β,ξ)∈Rp

n∑
i=1

ρα(xi1 −

p∑
j=2

(xi1 − xij)βj − ξ) s.t. x̄>π(β) = µ0,

where π(β) = (1 −
∑p

j=2 βj, β
>)>. Note that the term µ̂n in (4.1) can be neglected

since the mean is constrained to take the value µ0, and the factor (nα)−1 can be

absorbed into the Lagrange multiplier of the mean return constraint. This is a linear

programming problem of the type consider by Koenker and Bassett (1978), and can

be solved very efficiently even when n and p are large by interior point methods. It

is easy to verify that the solution is invariant to the choice of the numeraire asset.

At the solution, ξ̂ is an αth sample quantile of the chosen portfolio’s (in-sample)

returns distribution. The required mean return constraint implicitly corresponds to

a particular choice of λ in the original specification (4.2). Note that we have not

(yet) imposed any further constraints on the portfolio weights β, but given the linear

programming form of the problem (4.3) it is straightforward to do so. Software to

compute solutions to the problems (5.2-4) subject to arbitrary linear inequality con-

straints, and written for the public domain dialect, R, of the S language of Chambers

(1998), is available from the authors on request. The algorithms used are based on

the interior point, log-barrier methods described in Portnoy and Koenker (1997).

The problem posed in (4.3) is (almost) a conventional quantile regression problem.

The only minor idiosyncrasy is the mean return constraint, but it is easy to impose

this constraint by simply adding a single pseudo observation to the sample consisting

of response κ(x̄1 − µ0) and design row κ(0, x̄1 − x̄2, ..., x̄1 − x̄p)
>. (The zero element

corresponds to the intercept column of the design matrix.) For sufficiently large κ we

are assured that the constraint will be satisfied. Varying µ0 we obtain an empirical

α-risk frontier analogous to the Markowitz mean-variance frontier.

4.3. An Example. Consider forming portfolios from four independently distributed

assets with marginal returns densities illustrated in Figure 1. Asset 1 is normally

distributed with mean 0.05 and standard deviation 0.02. Asset 2 has a reversed χ2
3

density with location and scale chosen so that its mean and variance are identical to
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Figure 1. Four Asset Densities

those of asset 1. Similarly, assets 3 and 4 are constructed to have identical means

(0.09) and standard deviations (0.07). But for the second pair of densities the χ2
3 asset

is skewed to the right, as usual, not to the left. The example is obviously chosen with

malice aforethought. Asset 2 is unattractive relative to its twin, asset 1, having worse

performance in both tails. And asset 3 is unattractive relative to asset 4 in both tails.

But from a mean-variance viewpoint the two pairs of assets are indistinguishable.

To compare portfolio choices we generate a sample of n = 1000 observations from

the returns distribution of the four assets. We then estimate optimal mean variance

portfolio weights by solving

(4.4) min
(β,ξ)∈Rp

n∑
i=1

(xi1 −

p∑
j=2

(xi1 − xij)βj − ξ)2 s.t. x̄>π(β) = µ0,

where π(β) = (1 −
∑p

j=2 βj, β
>)>. We choose µ0 = 0.07, and obtain π(β̂) =

(0.271, 0.229, 0.252, 0.248). We then estimate optimal α-risk portfolio weights for

α = .1 by solving (4.3) again with required mean return of µ0 = 0.07, obtaining

π(β̂) = (0.303, 0.197, 0.123, 0.377). As expected, we allocate larger proportions to our
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Figure 2. Markowitz (σ-risk) vs. Choquet (α-risk) portfolio returns

densities: Portfolios are constrained to achieve the same in-sample

mean return; note that the Choquet portfolio has better performance

than the Markowitz portfolio in both the lower and upper tails.

“attractive” assets 1 and 4, and less to assets 2 and 3, compared to the mean variance

portfolio.

To evaluate our two portfolio allocations we generate a new sample of n = 100, 000

observations for the four assets, and we plot estimated densities of the two portfolios

returns in the left panel of Figure 2. It is apparent that the α-risk portfolio has better

performance than the mean-variance (σ-risk) portfolio in both tails. It is safer in the

lower tail, and also more successful in the upper tail. Improved performance in the

lower tail should be expected from the Choquet portfolio since it is explicitly designed

to maximize the expected return from the α least favorable outcomes. Improved

performance in the upper tail may be attributed to the inability of the variance to

distinguish upside from downside risk, and thus its desire to avoid both. The Choquet

portfolio exhibits no such tendency. Risk is entirely associated with the behavior in
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Figure 3. Markowitz (σ-risk) vs. Choquet (α-risk) portfolio returns

densities: Portfolios are constrained to achieve the same in-sample α-

risk; so performance in the lower tail is virtually identical, but the Cho-

quet portfolio now has much better performance than the Markowitz

portfolio in the upper tail.

the lower tail, and the expected return component of the objective function is able

to exploit whatever opportunities exist in the upper tail.

The foregoing comparison is strongly conditioned by the requirement that the

means of the two portfolios are identical. Our second comparison keeps the same

σ-risk portfolio, but chooses the α-risk portfolio to maximize expected return subject

to achieving the same α-risk as that achieved by the σ-risk portfolio. This yields a

new α-risk portfolio with weights π(β̂) = (0.211, 0.119, 0.144, 0.526) that places even

more weight on asset 4 and thereby achieves a mean return (in the initial sample)

of 0.768. We plot the estimated returns densities of the two portfolios based on the

n = 100, 000 sample in the right panel of Figure 2. Matching the α-risk in the lower
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tail (with α = 0.1) we are able to achieve considerably better (68 basis points!) per-

formance. Of course the variance and standard deviation of the new α-risk portfolio

is larger than for its σ-risk counterpart, but this is attributable to its better perfor-

mance in the upper tail, a result that underscores the highly unsatisfactory nature of

second moment information as a measure of risk in asymmetric settings.

4.4. Portfolio Allocation for General Pessimistic Preferences. Although the

α-risks provide a convenient one-parameter family of coherent risk measures, they are

obviously rather simplistic. As we have already suggested, it is natural to consider

weighted averages of α-risks:

%ν(X) =

m∑
k=1

νk%ναk
(X).

Where the weights, νk : k = 1, ..., m, are positive and sum to one. These general risk

criteria can also be easily implemented empirically extending the formulation in (4.3)

(4.5) min
(β,ξ)∈Rp+m

m∑
k=1

n∑
i=1

νkρα(xi1 −

p∑
j=2

(xi1 − xij)βj − ξk) s.t. x̄>π(β) = µ0.

The only new wrinkle is the appearance of m distinct intercept parameters repre-

senting the m estimated quantiles of the returns distribution of the chosen portfolio.

In effect we have simply stacked m distinct quantile regression problems on top of

one another and introduced a distinct intercept parameter for each of them, while

constraining the portfolio weights to be the same for each quantile. Since the νk are

all positive, they may be passed inside the ρα function to rescale the argument. The

asymptotic behavior of such constrained quantile regression estimators is discussed

in Koenker (1984). Since any pessimistic distortion function can be represented by

a piecewise linear concave function generated as a weighted average of α-risks this

approach offers a general solution to the problem of estimating pessimistic portfolio

weights.

5. Conclusion

Expected utility theory and mean-variance portfolio allocation are firmly embedded

in the foundations of modern decision theory and have withstood more than a half

century of criticism. Whether a generally accepted alternative theory can be built on

the foundations of Choquet expectated utility remains an open question. But it is a

question that we believe deserves further investigation.
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We have shown that a general form of pessimistic Choquet preferences under risk

with linear utility leads to optimal portfolio allocation problems that can be solved

by quantile regression methods. These portfolios may also be interpreted as maximiz-

ing expected return subject to a “coherent” measure of risk in the sense of Artzner,

Delbaen, Eber, and Heath (1999). By providing a general method for computing

pessimistic portfolios based on Choquet expected returns we hope to counter the

impression occassionally seen in the literature that alternatives to the dominant ex-

pected utility view are either too vague or too esoteric to be applicable in problems

of practical significance. There is a growing body of scholarship suggesting that pes-

simistic attitudes toward risk offer a valuable complement to conventional views of

risk aversion based on expected utility maximization; portfolio allocation would seem

to provide a valuable testing ground for further evaluation of these issues.

Appendix A. Choquet Capacities and the Choquet Integral

Since our formulation of Choquet expected utility in terms of quantile functions is somewhat less

conventional than equivalent expressions formulated in terms of distribution functions, it is perhaps

worthwhile to briefly describe the connection between the two formulations.

Let X be a real-valued random variable on Ω with an associated system of of sets, or “events”,

A. A Choquet capacity, or non-additive measure, µ on A, is a monotone set function (for A, B ∈ A,

A ⊆ B implies that µ(A) ≤ µ(B)), normalized so that µ(∅) = 0 and µ(Ω) = 1. The Choquet

expectation of X , with respect to a capacity µ, is given by,

EµX =

∫
Xdµ =

∫
0

−∞

(µ({X > x}) − 1)dx +

∫
∞

0

µ({X > x})dx

In this form, with µ defined directly on events, there is no necessity for any intermediate evaluation

of probabilities. The Choquet expectation can accommodate various notions of ambiguity, or uncer-

tainty, arising, for example, in the well-known examples of Ellsberg (1961). If, on the other hand, X

is assumed to possess a distribution function F , and therefore a survival function, F̄ (x) = 1− F (x)

we may write, µ({X > x}) = Γ(F̄ (x)), for some monotone function Γ such that Γ(0) = 0 and

Γ(1) = 1. The Choquet expectation becomes,

EµX =

∫
0

−∞

(Γ(F̄ (x)) − 1)dx +

∫
∞

0

Γ(F̄ (x))dx.

In the special case that µ is Lebesgue measure, Γ is the identity and we have the well-known

expression,

EX = −

∫
0

−∞

F (x)dx +

∫
∞

0

(1 − F (x))dx.

If Γ is absolutely continuous with density γ, we can integrate by parts to obtain,

EµX =

∫
∞

−∞

xdΓ(F̄ (x)) = −

∫
∞

−∞

xγ(F̄ (x))dF (x),
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Finally, changing variables, x → F−1(t), we have

EµX = −

∫
1

0

F−1(t)γ(1 − t)dt

=

∫
1

0

F−1(1 − s)γ(s)ds

=

∫
1

0

F−1(1 − s)dΓ(s).

The last expression reveals another slightly mysterious aspect of the conventions used in defining

the Choquet capacity. The distortion Γ as defined above integrates the quantile function backwards.

Thus following the conventions of Section 2, if we would like to define a distortion ν such that
∫

1

0

F−1(s)dν(s) =

∫
1

0

F−1(1 − s)dΓ(s).

then clearly we must have ν(s) = −Γ(1 − s). Consequently, if Γ is convex, then ν will be concave,

and vice versa. It is for this reason that pessimism, and uncertainty aversion, are often identified

with convex capacities, as for example in Schmeidler (1989).
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