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Abstract

Although nonparametric regression has traditionally focused on the estimation of condi-
tional mean functions, nonparametric estimation of conditional quantile functions is often of
substantial practical interest. We explore a class of quantile smoothing splines, defined as solu-
tions to

g ∈ G
min Σρτ{yi − g(xi)} + λ(∫0

1 | g ′′(x) | pdx)1/p

with ρτ(u) = u{τ − I(u < 0)}, p≥1, and appropriately chosen G. For the particular choices p=1
and p=∞ we characterize solutions ĝ as splines, and discuss computation by standard l 1-type
linear programming techniques. At λ = 0, ĝ interpolates the τth quantiles at the distinct design
points, and for λ sufficiently large ĝ is the linear regression quantile fit (Koenker and Bassett,
1978) to the observations. Because the methods estimate conditional quantile functions they pos-
sess an inherent robustness to extreme observations in the yi’s. The entire path of solutions, in
the quantile parameter τ, or the penalty parameter λ, may be efficiently computed by parametric
linear programming methods. We note that the approach may be easily adapted to impose mono-
tonicity and/or convexity constraints on the fitted function. An example is provided to illustrate
the use of the proposed methods.

KEYWORDS: Nonparametric regression, quantile, spline, change-point, smoothing, bandwidth
selection.
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1. INTRODUCTION

Several authors have recently proposed methods for nonparametric estimation of condi-

tional quantile functions: Truong (1989) following the pioneering work of Stone (1977) on

nearest neighbor methods; Antoch and Janssen (1989), Samanta (1989), Bhattacharya and Gan-

gopadhyay (1990), and Chaudhuri (1991), using kernel methods; Cole and Green (1992) apply-

ing a penalized likelihood approach; and White (1991) employing neural networks. Hendricks

and Koenker (1992) discuss regression spline models and apply them to electricity demand data.

Cox and Jones in the discussion of Cole (1988), reviving a suggestion of Bloomfield and Steiger

(1983), have recently proposed estimating quantile smoothing splines which minimize

(1.1)
i =1
Σ
n
ρτ{yi −g(xi)} + λ∫{g ′′(x)}2dx

where ρτ(u) = u{τ − I(u < 0)} is the check function of Koenker and Bassett (1978). Here the

parameter τ ∈ [0, 1] controls the quantile of interest, while λ ∈ R+ controls the smoothness of

the resulting cubic spline, thus generalizing the extensive literature on classical least squares

smoothing splines pioneered by Wahba, see Wahba (1990). This is an intriguing idea, and has

also been mentioned, for example, in Cox (1983), Eubank (1988) and Utreras (1981) in the

median ρ1/2(u) = 1⁄2 | u | case. However, the resulting quadratic program poses some serious

computational obstacles. A recent paper by Bosch, Ye and Woodworth (1994) discusses an inte-

rior point algorithm for this problem. Obviously the computational virtues of the piecewise

linear form of the first term of the objective function are sacrificed by the quadratic form of the

smoothness penalty.
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One is thus led to consider replacing {g ′′(x)}2 in the penalty by | g ′′(x) | . The median spe-

cial case of this problem has been studied by Schuette (1978). We will show, expanding on

Schuette’s discrete version of the problem using finite differences, that minimizing (2.1) below

retains the linear programming form of the parametric version of the quantile regression problem

and yields solutions which are easy to compute. Solutions with this L 1 form of the roughness

penalty are linear splines and therefore provide a natural, automatic approach to estimating cer-

tain piece-wise linear change-point models. An application to the relationship between maximal

running speed and body mass of terrestrial mammals is provided in Section 3. It should be noted

that these quantile smoothing splines achieve the usual n −2/5 rate of convergence when the true

regression quantile function is twice continuously differentiable. A formal statement of this con-

vergence in the L 2 norm is given in recent work by Xiaotong Shen.

2. QUANTILE SMOOTHING SPLINES

2.1. The L1 Roughness Penalty

In prior work (Koenker, Ng, and Portnoy, 1992), we have considered the problem of

minimizing

(2.1)R τ,λ(g) =
i =1
Σ
n
ρτ{yi − g(xi)} + λ∫0

1 | g ′′(x) | dx

with 0=x 0<x 1< . . . <xn<xn +1=1, over the Sobolev space W1
2 of continuous functions on [0, 1]

with absolutely continuous first derivative and absolutely integrable second derivative. However,

the argument given there that the solution to (2.1) is a parabolic spline, i.e. piecewise quadratic,

is incorrect. Indeed the problem expressed in (2.1) is ill-posed since the infimum of R τ,λ is not

attained by an element of W1
2 . The situation can be rectified by reformulating the problem
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somewhat, adopting the approach of Fisher and Jerome (1975) and Pinkus (1988) who consider

closely related problems of optimal interpolation.

We begin by briefly reviewing some results on optimal interpolation. For an integer k ≥ 2,

and p ∈ [1, ∞), let ||f ||p = (∫ | f(x) | p)1/p and let Wp
k denote the Sobolev space of real functions on

[0, 1] with k − 1 absolutely continuous derivatives and k th derivative existing almost every-

where as a function in Lp[0, 1]. We wish to find the smoothest interpolant of the points

{(xi , yi), i = 1, . . . , n} in the sense of solving

(2.2)inf{||g (k) ||p: g ∈Wp
k , g(xi) = yi , i=1, . . . , n}

The case p = 2 is best known, yielding splines of degree 2k− 1 with knots at the points

{xi , i = 1, . . . , n}. We are primarily interested in the case of p = 1 which has been treated by

Fisher and Jerome (1975) and Pinkus (1988).

For p = 1, apparently Fisher and Jerome (1975) were the first to observe that (2.2) has no

solution for g ∈ W1
k . They showed that if W1

k is expanded to include functions whose k th

derivatives are measures, the expanded problem does have a solution s, as a spline of degree

k − 1, that the total variation of its (k − 1)th derivative, V (s (k −1)), coincides with the extremal

value of (2.2), and that the measure s (k) is concentrated on n or fewer points. Pinkus (1988)

has refined this characterization somewhat and has provided considerable further generalization.

To bridge the gap between the smoothing problem posed in (2.1) and the optimal interpolation

problem (2.2), we observe that any solution, ĝ, must interpolate itself at the observed {xi} and

therefore must minimize the roughness penalty, subject to a given fidelity constraint. Thus to

determine the form of the solution to the smoothing problem it suffices to consider the interpola-

tion problem.
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It remains to consider the question of knot selection for the p = 1 case. Pinkus (1988),

under somewhat restrictive conditions on the yi’s, notes that for k = 2, the case of primary

interest here, the knots of the optimal spline coincide with the observed xi. That this is true for

any configuration of yi’s can be argued as follows. Let f be any interpolator of the points

{(xi , yi): i = 1, . . . , n} with an absolutely continuous first derivative. Recall, e.g. Natanson

(1974, p. 259), that the total variation of an absolutely continuous function is the integral of the

absolute value of its derivative. Thus, by the mean value theorem, it is possible to choose

ui ∈ (xi , xi +1) such that f ′(ui) = (yi +1 − yi)/(xi +1 − xi) for i = 1, . . . , n −1. Then,

V ( f ′) ≥
i =1
Σ

n −1
| ∫ui

ui+1
f ′′(x)dx | ≥

i =1
Σ

n −1
| f ′(ui + 1) − f ′(ui) | = V ( f̂ ′)

where f̂ is the piecewise linear interpolator with knots at the xi. Finally, note that for any con-

tinuous piecewise linear g there exists a sequence of functions {gn} with absolutely continuous

first derivative such that lim V(gn ′) = V(g ′), and thus by the foregoing argument f̂ minimizes

V (g) for all such g.

Thus, following Pinkus (1988) if we expand our original space slightly from the Sobolev

space W1
2 to

U 2 = {g: g (x) = a 0 + a 1x + ∫0
1
(x−y)+ dµ(y), V (µ) < ∞, ai ∈ R, i = 0,1}

and replace the L 1 penalty on g ′′ with a total variation penalty on g ′, we obtain the following.

Theorem 1. The function g ∈ U 2 minimizing Σρτ{yi − g (xi)} + λV(g ′) is a linear spline with

knots at the points xi , i = 1, . . . , n.
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Having established the form of the solution, it is straightforward to develop an algorithm to

compute ĝ. We write ĝ(x) = αi + βi(x − xi) for x ∈ [xi , xi +1) (i = 0, . . . , n). By the con-

tinuity of ĝ, βi = (αi +1 − αi)/hi , where hi = xi +1 − xi . The penalty may thus be expressed as

V (ĝ ′) =
i =1
Σ

n −1
| βi +1 − βi | =

i =1
Σ

n −1
| (αi +2−αi +1)/hi +1 − (αi +1 − αi)/hi |

Thus parameterizing ĝ by the n-vector α = (ĝ(xi)), we may write the original problem as a linear

program:

(2.3)
α ∈Rn
min

i =1
Σ
n
ρτ(yi − αi) + λ

j =1
Σ

n −1
| dj ′α |

where dj ′ = (0, . . . , 0, h j
−1, −(h j +1

−1 +h j
−1), h j +1

−1 , 0, . . . , 0), j = 1, , . . . , n −1. In the impor-

tant special median case, τ = 1/2, we can view this as simple data augmentation and therefore as

an ordinary least absolute deviation regression problem. For general τ, further modifications

are conceptually straightforward. Details of an implementation in "S" (Becker, Chambers and

Wilks, 1988)) are available from the authors on request. Since we have n free parameters α, and

2n − 1 pseudo-observations, solutions must have n zero pseudo-residuals by complementary

slackness. And in our case these zeros correspond to either (i) exact interpolation of observa-

tions, so α̂i = yi , or (ii) linearity of ĝ at an internal knot, i.e., βi +1 = βi for some index i. The

parameter λ controls the comparative "advantage" of these two alternative means of reducing the

objective function. When λ is sufficiently large, all the β̂i will be equal and the solution will be

the bivariate linear quantile regression fit as in Koenker and Bassett (1978). When λ is

sufficiently small, all n observations will be interpolated when the design points are unique, oth-

erwise the τth quantiles at each distinct design point are interpolated.
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2.2. Bandwidth Choice

As in any smoothing problem, choice of "bandwidth", here represented by the parameter λ,

is critical. For quantile smoothing splines, the problem of computing a family of solutions for

various λ is greatly eased by the fact that the problem is a parametric linear program in the

parameter λ. This is an immediate consequence of the fact that the objective function is linear in

λ. Geometrically, we may think of solving (2.3) as minimizing a linear function in the α’s, after

the introduction of "slack variables" to accommodate the piecewise linear form of the fidelity

and penalty terms, subject to a polyhedral constraint set. As λ changes, the orientation of the

linear function changes, and we move from one adjacent vertex of the constraint polytope to the

next. Solutions ĝ τ,λ(.) are thus piecewise constant in λ, i.e. there exists a mesh

0=λ0<λ1< . . . <λJ such that ĝ τ,λ j
solves (1.3) for all λ∈[λi −1,λi]. Based on our empirical

experience, and the results of Portnoy (1991) for the closely related problem of the number of

distinct solutions in τ to the linear quantile regression problem, the number of distinct solutions,

J, in λ, could be conjectured to be Op(nlogn). An important consequence of this is that we may

initially solve the much smaller linear quantile regression problem corresponding to λ = ∞ and

gradually relax the roughness penalty with a sequence of simplex pivots, thus avoiding a direct

solution of a potentially large problem.

Each transition to a new solution of the parametric linear program in λ involves a single

simplex pivot of an extremely sparse tableau, and hence solving for a broad range of λ is quite

efficient. The situation is analogous to the problem of solving for the entire family of quantile

regression solutions in the parameter τ, described originally in Bassett and Koenker (1982), and

in greater detail in Koenker and d’Orey (1987).



7

An interesting and important aspect of the way that solutions depend upon the penalty

parameter λ involves the number of interpolated points. In the classical L 2 smoothing spline

literature much has been made of the "effective dimensionality" or "degrees of freedom" of the

estimated curves corresponding to various λ. Such measures are usually based on the trace of

various quasi-projection matrices in the least squares theory; see, for example, Hastie and

Tibshirani (1990) for a cogent discussion. For the quantile smoothing spline the connection is

more direct in the sense that there is an explicit trade-off between the number of interpolated

points and the number of linear segments. If the design is in "general position" so that no two

observations share the same design point, the number p λ of interpolated yi’s must be at least 2

and at most n. In effect, p λ is the number of "active" knots. Clearly, p λ is a plausible measure

of the effective dimension of the fitted model with penalty parameter λ, and n − p λ + 1, which

corresponds to the number of linear segments in the fitted function, is a plausible measure of the

degrees of freedom of the fit. Such decompositions may be used in conjunction with the func-

tion R τ, λ(ĝ) itself to implement data-driven bandwidth choice. The criterion

(2.4)SIC (p λ) = log[n −1

i =1
Σ
n
ρτ{yi−ĝ(xi)} ] + 1⁄2n −1 p λ logn,

which may be interpreted as the Schwarz (1978) criterion for the quantile smoothing spline

problem, seems to perform well in some limited applications. Machado (1993) considers similar

criteria for parametric quantile regression and more general M-estimators of regression.

2.3. Extensions

There is considerable scope for other forms of the roughness penalty. We have focused on

the L 1 penalty on g ′′, but other Lp norms are possible as are other differential operators. From a

computational point of view the L∞ roughness penalty is also an attractive choice since it too
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yields a linear programming formulation. However, unlike the L 1 penalty, the L∞ penalty pro-

duces a quadratic rather than a linear spline. The L∞ penalty may be viewed as a uniform prior

on g ′′, with each λ implying a corresponding upper bound on sup | g ′′(x) | .

To extend these methods to multivariate settings the additive spline models of Hastie and

Tibshirani (1990) and others suggest themselves. Some preliminary plots for bivariate x look

quite promising. The nonlinear character of the present smoothers vitiate the attractive iterative

"backfitting" algorithms available in the L 2-case, but feasible estimators may still be possible

using a limited number of simplex pivots from an initial linear-in-covariates quantile function

estimate.

There are several intriguing extensions incorporating further constraints. Monotonicity and

convexity of the fitted function ĝ may be imposed via further linear inequality constraints on the

parameters. While adding such inequality constraints to the corresponding L 2 problem results in

a significant increase in complexity, adding linear inequality constraints to the quantile smooth-

ing spline problems does not alter the fundamental nature of the optimization problem to be

solved.

3. AN EXAMPLE

Our example, based on Chappell (1989), explores the relationship between maximal run-

ning speed and body mass of terrestrial mammals. The data, collected and described in detail by

Garland (1983), are plotted in Figure 3.1; 107 species are represented. Two groups are identified

for special treatment by Chappell: "hoppers" which, like the kangaroo, ambulate by hopping and

are labelled by the plotting character h in the figure, and "specialized", labelled s, which like

the hippopotamus, the porcupine, and man "were judged unsuitable for the inclusion in analyses
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on account of lifestyles in which speed does not figure as an important factor." For reference

we have included Chappell’s single change-point log-linear model, estimated by least squares. It

omits the s observations and fits an additive shift effect for the "hoppers". Superimposed in Fig-

ure 3.1 we illustrate two cubic smoothing splines estimated by minimizing the usual penalized

least squares criterion. The dashed curve is the fit when the entire sample is included; the dotted

curve excludes the special animals labelled s. In both cases λ is chosen by generalized cross-

validation as described, for example, in Craven and Wahba (1979). One can immediately see

the lack of robustness of the least squares splines to the slower special animals.

Next we fit the entire family of median smoothing splines using the L 1 penalty. There are

182 distinct curves corresponding to λ’s ranging from 0 to ∞. In Figure 3.2 we plot 3 of these

curves for λ = {1.01, 12.23, 41.16}. The dimension of the fitted functions represented by the

number of interpolated points {10,3,2} respectively are given in the legend. Like the least

squares spline in the previous figure, these estimates are based on all the observations. However,

unlike the least squares splines which estimate the conditional mean function, these median

splines have an inherent robustness to outliers in the vertical direction. As in parametric quantile

regression, points may be moved up or down in the plot without affecting the fitted function so

long as they do not cross it. This follows immediately from the fact that the subgradient of the

objective function depends upon the yi only through the signs of the residuals, not their magni-

tude. See Koenker and Bassett (1978, Theorem 3.5).

Minimizing SIC(p λ) (2.4) over λ selects the solid line with a single break. This fit is

remarkably similar to Chappell’s preferred single change-point model, especially considering

that we have done none of the preliminary data editing which seems essential to the success of



10

the least squares based methods. The simple piecewise linear form of the L 1 splines make them

a natural technique for estimating linear change-point models. Friedman and Silverman (1989)

present an alternative approach to fitting a piecewise linear regression spline using least squares

methods.

In Figure 3.3 we illustrate several distinct quantile smoothing splines for the same data.

Here the upper quantiles are of particular interest since they represent the envelope of biological

feasibility. In this figure we have again chosen λ for the median and 90th percentile by the

Schwarz criterion; however, this produces a rather rough fit with p λ̂ = 8 for the 25th percentile

and p λ̂ = 7 for the 75th. So we have selected somewhat larger λ’s for these curves to achieve a

more consistent degree of smoothness. Even so, the 75th and 90th percentile curves cross in Fig-

ure 3.3 indicating, perhaps, that the 75th may still be somewhat oversmoothed, or simply that

there are not enough data to distinguish these two quantiles for the larger animals.
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Fig 3.1: Body Mass vs. Maximal Recorded Running Speed of 107 Terrestrial Mammals with

estimated piecewise linear change-point model from Chappell (1989) and two least-squares

smoothing splines
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Fig 3.2: Mammal Data and three Median L 1 Smoothing Splines: Effective dimension of the

spline is p (λ) indicated in the legend
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Fig 3.3: Mammal Data and four Quantile L 1 Smoothing Splines


