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Abstract. Conditional quantile estimation is an essential ingredient in modern risk man-

agement. Although GARCH processes have proven highly successful in modeling finan-

cial data it is generally recognized that it would be useful to consider a broader class of

processes capable of representing more flexibly both asymmetry and tail behavior of con-

ditional returns distributions. In this paper, we study estimation of conditional quantiles

for GARCH models using quantile regression. Quantile regression estimation of GARCH

models is highly nonlinear; we propose a simple and effective two-step approach of quantile

regression estimation for linear GARCH time series. In the first step, we employ a quan-

tile autoregression sieve approximation for the GARCH model by combining information

over different quantiles; second stage estimation for the GARCH model is then carried out

based on the first stage minimum distance estimation of the scale process of the time series.

Asymptotic properties of the sieve approximation, the minimum distance estimators, and

the final quantile regression estimators employing generated regressors are studied. These

results are of independent interest and have applications in other quantile regression set-

tings. Monte Carlo and empirical application results indicate that the proposed estimation

methods outperform some existing conditional quantile estimation methods.

1. Introduction

Distributional information such as conditional quantiles and variances play an essential

role in risk assessment. Evaluation of Value-at-Risk, as mandated in many current reg-

ulatory contexts, is explicitly a conditional quantile estimation problem. Closely related

quantile-based concepts such as expected shortfall, conditional value at risk, and limited
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expected loss, are also intimately linked to quantile estimation, see, e.g., Artzner, Delbaen,

Eber, and Heath (1999), Wang (2000), Wu and Xiao (2002), and Bassett, Koenker, and

Kordas (2004).

The literature on estimating conditional quantiles is large. Many existing methods of

quantile estimation in economics and finance are based on the assumption that financial

returns have normal (or conditional normal) distributions. Under the assumption of a con-

ditionally normal returns distribution, the estimation of conditional quantiles is equivalent

to estimating conditional volatility of returns. The massive literature on volatility model-

ing offers a rich source of parametric methods of this type. However, there is accumulating

evidence that financial time series, and returns distributions are not well approximated by

Gaussian models. In particular, it is frequently found that market returns display negative

skewness and excess kurtosis. Extreme realizations of returns can adversely effect the per-

formance of estimation and inference designed for Gaussian conditions; this is particularly

true of ARCH and GARCH models whose estimation of variances are very sensitive to large

innovations. For this reason, research attention has recently shifted toward the development

of more robust estimators of conditional quantiles.

There is growing interest in non-parametric estimation of conditional quantiles; although

local, nearest neighbor and kernel methods are somewhat limited in their ability to cope

with more than one or two covariates. Other approaches to estimating VaR include the

hybrid method of Boudoukh, Richardson, and Whitelaw (1998) and methods based on

extreme value theory see, e.g. Boos (1984), McNeil (1998), and Neftci (2000)

Quantile regression as introduced by Koenker and Bassett (1978) is well suited to estimat-

ing conditional quantiles. Just as classical linear regression methods based on minimizing

sums of squared residuals enable one to estimate models for conditional mean, quantile

regression methods offer a mechanism for estimating models for the conditional quantiles.

These methods exhibit robustness to extreme shocks, and facilitate distribution-free infer-

ence.
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In recent years, quantile regression estimation for time-series models has gradually at-

tracted more attention. Koenker and Zhao (1996) extended quantile regression to linear

ARCH models where σt = γ0 + γ1 |ut−1| + · · · + γq |ut−q| , and estimate conditional quan-

tiles of ut by a linear quantile regression of ut on (1, |ut−1| , · · ·, |ut−q|). However, evidence

from financial applications indicates that, comparing to the GARCH models, ARCH type

of models can not parsimoniously capture the persistent influence of long past shocks.

Engle and Manganelli (2004) suggest a nonlinear dynamic quantile model where con-

ditional quantiles themselves follow an autoregression. In particular, they propose the

following Conditional Autoregressive Value at Risk (CAViaR) specification for the τ -th

conditional quantile of yt:

Qyt(τ |Ft−1) = β0 +
p∑
i=1

βiQyt−i(τ |Ft−i−1) +
q∑
j=1

αj`(xt−j)

where xt−j ∈ Ft−j , Ft−j is the information set at time t − j, and Qyt(τ |Ft−1) is the

conditional quantile of yt given information set Ft−1. The CAViaR model has attracted a

great deal of research attension in recent years. The focus of Engle and Manganelli (2004)

is on introduction of the CAViaR model instead of how to estimate such models. In the

CAViaR model, since the regressors Qyt−i(τ |Ft−i−1) are latent and are dependent on the

unknown parameters, estimation of the CAViaR model is complicated and conventional

nonlinear quantile regression techniques are not directly applicable. Engle and Manganelli

(2004) use grid search combined with recursive application of existing Matlab optimization

techniques to obtain a local optimizer of the objective function. Markov chain Monte-

Carlo methods may offer an alternative estimation strategy, but we have not pursued this,

relying instead on the Matlab code of Manganelli (2002). Rossi and Harvey (2009) recently

proposed an iterative Kalman filter method to calculate dynamic conditional quantiles that

can be applied to calculate the CAViaR model.

There are some recent studies on estimation and applications of estimating conditional

quantiles. In particular, based on a relation between expectile and quantile, Taylor (2008a)

and Kuan, Yeh, and Hsu (2009) estimate conditional quantiles using asymmetric least
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squares methods. Taylor (2008b) proposes the exponentially weighted quantile regression

for estimating time-varying quantiles. Gourieroux and Jasiak (2008) proposed the Dynamic

Additive Quantile (DAQ) model for calculating conditional quantiles. Giot and Laurent

(2003) model Value-at-Risk using parametric ARCH models based on skewed t-distributions.

Coroneo and Veredas (2008) analyze the density of high frequency financial returns using

quantile regression of ARCH models and conducted intradaily Value-at-Risk assessment.

In this paper, we study quantile regression estimation for a class of GARCH models.

GARCH models have proven to be highly successful in modelling financial data, and are

arguably the most widely used class of models in financial applications. However, quantile

regression GARCH models are highly nonlinear and thus complicated to estimate. As will

become apparent in our later discussion, the quantile estimation problem in GARCH models

corresponds to a restricted nonlinear quantile regression and conventional nonlinear quantile

regression techniques are not directly applicable, adding a new challenge to the already

complicated estimation problem. To circumvent these difficulties, we propose a robust

and easy-to-implement two-step approach for quantile regression on GARCH models. The

proposed estimation procedure consists of a global estimation in the first step to incorporate

the global restriction on the conditional scale parameter, and a second step local estimation

for the conditional quantiles. In particular, although different implementations are possible,

we suggest that in the first step, a sieve quantile regression approximation be estimated for

multiple quantiles, and combined via minimum distance methods to obtain preliminary

estimators for the parameters of the global GARCH model. In the terminology of Aitchison

and Brown (1957) employs the “method of quantiles.” The second step then focuses on the

local behavior at the specific quantile and estimates the conditional quantile based on the

first stage results.

As will be made explicit in Section 2, the linear GARCH process has a CAViaR(p, q)

representation. Instead of focusing on the model itself, we focus on estimation of this model.

In this sense, the estimation procedure that we propose provides an alternative method of

estimating a class of CAViaR models. Comparing to studies in the existing literature,
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instead of only looking at local properties at the specified quantile, the proposed procedure

takes into account both global model coherence and local approximation. Since the GARCH

model has been proved to be highly successful in financial applications, estimates that are

globally coherent with the GARCH feature seem appealing in financial applications. Finally,

the proposed estimation procedure also provides a robust estimator for conditional volatility.

Such an estimator is not dependent on distributional assumptions, and thus robust to skewed

and heavy-tailed innovations.

2. Quantile Regression for Linear GARCH Models

Since Bollerslev (1986), a variety of GARCH models have been proposed by various

researchers, including the EGARCH model of Nelson (1991) and the linear GARCH model

of Taylor (1986). In the original quadratic form of the GARCH model we say that : ut

follows a GARCH(p, q) process if

ut = σt · εt,

σ2
t = β0 + β1σ

2
t−1 + · · ·+ βpσ

2
t−p + γ1u

2
t−1 + · · ·+ γqu

2
t−q,

where εt is an iid sequence of mean zero Gaussian random variables. As noted by Pan and

Duffie (1997), maximum likelihood estimation of this form of the GARCH model has the

potential disadvantage that it is overly sensitivity to extreme returns. For example, if we

consider a market crash, extreme daily absolute returns may be 10 to 20 times normal daily

fluctuation, so the quadratic form of GARCH model yields a return effect which is 100 to

400 times the normal variance. This not only causes overshooting in volatility forecasting,

but also propagates this influence far into the future. As an alternative, Taylor (1986)

suggested a modified GARCH model: we will say that ut follows a linear GARCH(p, q)

process if

ut = σt · εt,(1)

σt = β0 + β1σt−1 + · · ·+ βpσt−p + γ1 |ut−1|+ · · ·+ γq |ut−q| .(2)
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The quadratic GARCH model seems computationally more convenient than the linear

GARCH model, but linear GARCH may be more appropriate in modelling financial re-

turns. The linear GARCH structure is less sensitive to extreme returns, but it is more

difficult to handle mathematically. However, the linear structure is well suited for quantile

estimation.

We will consider quantile regression estimation for the linear GARCH model (1) and (2),

where β0 > 0, (γ1, · · ·, γq)> ∈ <q+, and εt are independent and identically distributed with

mean zero and unknown distribution function Fε(·). We will admit a general class of dis-

tributions for εt, including the normal distribution and other commonly used distributions

for financial applications with asymmetry and heavier tails. Our primary purpose is to

estimate the τ -th conditional quantile of ut, but we also provide robust estimators for the

conditional volatility as well as the GARCH parameters.

2.1. Conditional Quantiles for the Linear GARCH Model. Let Ft−1 represents in-

formation up to time t− 1, the τ -th conditional quantile of ut is given by

Qut(τ |Ft−1) = θ(τ)>zt,

where

zt = (1, σt−1, · · ·, σt−p, |ut−1| , · · ·, |ut−q|)>,

θ(τ)> = (β0, β1, · · ·, βp, γ1, · · ·, γq)F−1(τ).

Notice that σt−jF−1(τ) = Qut−j (τ |Ft−j−1), the conditional quantile Qut(τ |Ft−1) has the

following CAViaR(p, q) representation

(3) Qut(τ |Ft−1) = β∗0 +
p∑
i=1

β∗iQut−i(τ |Ft−i−1) +
q∑
j=1

γ∗j |ut−j |

where

β∗0 = β0(τ) = β0F
−1(τ), β∗i = βi, i = 1, · · ·, p and γ∗j = γj(τ) = γjF

−1(τ), j = 1, · · ·, q.
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Remark. More generally, we may consider a time series yt in a regression model, say,

(4) yt = µ>Xt + ut,

where the residuals ut follow a linear GARCH process as characterized by (1). Under weak

regularity conditions, the τ -th conditional quantile of yt in the model (4) is given by

Qyt(τ |Ft−1) = µ>Xt + θ(τ)>zt,

where Xt = (1, x2,t, ....., xk,t)>. In the above problem, the key component is the estimation

of conditional quantiles of the process ut: Qut(τ |Ft−1) = θ(τ)>zt. For this reason, we focus

our discussion on model (1) and (2).

2.2. Quantile Regression Estimation of GARCH Models. Quantile regression pro-

vides a convenient approach of estimating conditional quantiles. It has the important virtue

of robustness to distributional assumptions and makes no prior presumption about the sym-

metry of the innovation process. Such properties are especially attractive for financial ap-

plications since often financial data like portfolio returns or log returns are heavy-tailed and

asymmetrically distributed. We begin by considering estimating of the conditional quantiles

of ut given by (1) employing quantile regression.

Since zt contains σt−k (k = 1, · · ·, q) which in turn depend on unknown parameters

θ = (β0, β1, · · ·, βp, γ1, · · ·, γq), we will write zt as zt(θ) whenever it is necessary to emphasize

the nonlinearity and its dependence on θ. To estimate the conditional quantiles of the

process ut we consider the following nonlinear quantile regression estimator solving:

(5) min
θ

∑
t

ρτ (ut − θ>zt(θ)),

where ρτ (u) = u(τ − I(u < 0)). However, estimation of (5) for a fixed τ in isolation cannot

yield a consistent estimate of θ since it ignores the global dependence of the σt−k’s on the

entire function θ(·). If the dependence structure of ut is characterized by (1) and (2), we
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can consider the following restricted quantile regression instead of (5):

(
π̂, θ̂
)

=


arg minπ,θ

∑
i

∑
t ρτi(ut − π>i zt(θ))

s.t. πi = θ(τi) = θF−1(τi).

If we look at the CAViaR(p,q) representation of the GARCH model (2), the parameters

β∗i , (i = 1, · · ·, p) are global and are not dependent on the specific quantile; however,

parameters β∗0 and γ∗j , (j = 1, · · ·, q) are local in the sense that they vary over different τ . In

this sense, the linear GARCH model (1) has a CAViaR(p, q) representation: Qut(τk|Ft−1) =

β∗0k+
∑p

i=1 β
∗
iQut−i(τk|Ft−i−1)+

∑q
j=1 γ

∗
jk |ut−j |, which satisfies the global restriction: β∗0k =

β0F
−1(τk), γ∗jk = γjF

−1(τk), j = 1, · · ·, q, for k = 1, · · ·,K.

Estimation of this global restricted nonlinear quantile regression is complicated both

computationally and theoretically. In this paper, we propose a simpler two-stage estimator

that both incorporates the global restrictions and also focuses on the local approximation

around the specified quantile. The proposed procedure is easily implemented, and asymp-

totic theory as well as Monte Carlo evidence indicates that the proposed estimator has good

performance compared to conventionally used methods in estimating conditional quantiles

based on parametric GARCH models.

2.3. A Two-Step Estimator for Conditional Quantiles. In this section, we describe

our two-step estimator for conditional quantiles of the linear GARCH model. The proposed

estimation consists the following two steps: (i) We consider a global estimation in the first

step to incorporate the global dependence of the latent σt−k’s on θ. (ii) Then, using results

from the first step, we focus on the specified quantile to find the best local estimate for the

conditional quantile.

In general, different estimation methods may be used in the first step - see additional

discussions on related issues in Section 3.3. We focus our discussion on the following quan-

tile autoregression based approach primarily due to its simplicity and its effectiveness as a

preliminary estimator. We propose the following estimation procedure: In the first stage
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unrestricted estimates of several quantile autoregressions are combined via minimum dis-

tance methods to construct global estimates of the conditional scale parameters; in the

second stage local estimates of the conditional quantiles are computed based on the local

scale estimates.

Giving the GARCH model (1) and (2), let A(L) = 1−β1L−· · ·−βpLp, and B(L) = γ1 +

· · ·+ γqL
q−1, under regularity assumptions presented in Section 3 ensuring the invertibility

of A(L), we obtain an ARCH(∞) representation for σt :

(6) σt = a0 +
∞∑
j=1

aj |ut−j | ,

where the coefficients aj satisfy summability conditions implied by the regularity conditions.

For identification, we normalize a0 = 1. Substituting the above ARCH(∞) representation

into (1) and (2), we have

(7) ut =

a0 +
∞∑
j=1

aj |ut−j |

 εt,

and

Qut(τ |Ft−1) = α0(τ) +
∞∑
j=1

αj(τ) |ut−j | ,

where αj(τ) = ajQεt(τ), j = 0, 1, 2, · · ·.

Under our regularity conditions the coefficients aj decrease geometrically, so letting m =

m(n) denote a truncation parameter we may consider the following truncated quantile

autoregression:

Qut(τ |Ft−1) ≈ α0(τ) + α1(τ) |ut−1|+ · · ·+ αm(τ) |ut−m| .

See Koenker and Xiao (2006) for a discussion of this class of autoregressive models. By

choosing m suitably small relative to the sample size n, but large enough to avoid serious

bias, we obtain a sieve approximation for the GARCH model.
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One could estimate the conditional quantiles simply using a sieve approximation:

Q̌ut(τ |Ft−1) = α̂0(τ) + α̂1(τ) |ut−1|+ · · ·+ α̂m(τ) |ut−m| ,

where âj(τ) are the quantile autoregression estimates. Under the assumptions of Section 3,

we have

Q̌ut(τ |Ft−1) = Qut(τ |Ft−1) +Op(m/
√
n).

As shown in our Monte Carlo experiment, this simple sieve approximation provides a a

rather noisey estimator for the GARCH coefficients, but it serves as an adequate preliminary

estimator.

Since our first step estimation focuses on the global model, it is desirable to use informa-

tion over multiple quantiles in estimation. Combining information over multiple quantiles

also helps us to obtain globally coherent estimate of the scale parameters. In order to use

information over multiple quantiles, we estimate the unrestricted model at various quantiles

and assemble independent quantile estimates. (Alternatively, one could try to estimate the

first step model over several quantiles jointly). In this paper, we combine information at

different quantiles via minimum distance estimation.

Suppose that we estimate the m-th order quantile autoregression

(8) α̃(τ) = argminα
n∑

t=m+1

ρτ

ut − α0 −
m∑
j=1

αj |ut−j |


at quantiles (τ1, · · ·, τK), and obtain estimates

α̃(τk), k = 1, · · ·,K.

Let ã0 = 1 in accordance with the identification assumption. Denote

a = [a1, · · ·, am, q1, · · ·, qK ]> , π̃ =
[
α̃(τ1)>, · · ·, α̃(τK)>

]>
,

where qk = Qεt(τk), and φ(a) = g⊗α = [q1, a1q1, · · ·, amq1, · · ·, qK , a1qK , · · ·, amqK ]>, where

g = [q1, · · ·, qK ]> and α = [1, a1, a2, · · ·, am]>, we consider the following estimator for the
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vector a that combines information over the K quantile estimates based on the restrictions

αj(τ) = ajQεt(τ):

(9) ã = argmina (π̃ − φ(a))>An (π̃ − φ(a)) ,

where An is a (K(m+1))×(K(m+1)) positive definite matrix. To summarize: We propose

the following two-step estimator for the conditional quantiles of ut:

Step 1: Estimate the following m-th order quantile autoregression (8) at quantiles

(τ1, · · ·, τK), and obtain α̃(τk), k = 1, · · ·,K. By setting ã0 = 1 and solving the

minimum distance estimation problem (9), we obtain an estimator for (a0, · · ·, am),

denoting it as (ã0, · · ·, ãm). Thus σt can be estimated by

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | .

Step 2: Quantile regression of ut on z̃t = (1, σ̃t−1, · · ·, σ̃t−p, |ut−1| , · · ·, |ut−q|)> by

(10) min
θ

∑
t

ρτ (ut − θ>z̃t),

the two-step estimator of θ(τ)> = (β0(τ), β1(τ), · · ·, βp(τ), γ1(τ), · · ·, γq(τ)) is then

given by solution of (10), θ̂(τ), and the τ -th conditional quantile of ut can be esti-

mated by Q̂ut(τ |Ft−1) = θ̂(τ)>z̃t. Iteration can be applied to the above procedure

for further improvement

3. Asymptotic Properties of The Proposed Estimator

This section investigates the asymptotic behavior of the proposed estimators, including

the sieve quantile autoregression, the minimum distance estimation and the second stage

estimation with generated regressors.

3.1. A Quantile Autoregression Sieve Approximation. In this subsection, we study a

quantile autoregression approximation for our underlying linear GARCH model. The nature

of the sieve approximation used in the first stage of the procedure plays a crucial role in
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the proposed estimator. There is an extensive literature on the asymptotic behavior of

regression estimators with increasing parametric dimensions. Huber (1973) first considered

M-estimation of linear regression with continuously differentiable ρ (objective) function, and

showed that asymptotic normality can be preserved if m3/n → 0 as n → ∞. Subsequent

researchers successfully improved on Huber’s results, including Portnoy (1985), Mammen

(1989), Welsh (1989), and Bai and Wu (1994). Welsh (1989) and He and Shao (2000)

studied nonlinear M-estimation with increasing dimension and an objective function with

possible nondifferentiability at finitely many points.

The focus of most prior studies is to determine the best possible expansion rate for

the number of parameters m as a function of the sample size n, and generally assumed

independent observations. Our objectives are somewhat different. Rather than trying to

determine the best rate for the truncation parameter m, our focus will be estimation of

conditional quantiles in the second step and the sieve regression is only a preliminary step.

In fact, as will become clear later in our analysis, under Assumption S1, the error coming

from an m-th order truncation is of order Op(bm) ( b < 1) and the approximation error of

σ̃t is of order Op(
√
m/n), so it would suffice to consider a truncation m as a sufficiently

large constant multiple of log(n). In addition, we consider time dependent data, and treat

truncation as an approximation, assuming that the true quantile function is an infinite

summation. In prior literature there is typically a sequence of true models with increasing

parametric dimension.

For convenience of the asymptotic analysis, we make the following assumptions. We

again stress that we are not seeking to achieve the weakest possible regularity conditions

for the asymptotic analysis, but instead we wish to focus on the design of a robust, flexible

and easy-to-implement procedure for estimation of the GARCH model.

Assumption S1. The polynomials A(L) and B(L) have no common factors, A(z) 6= 0,

for |z| ≤ 1 ; and B(z) 6= 0, for|z| ≤ 1.

Assumption S2. {εt}are iid random variables with mean 0 and variance σ2 < ∞.The

distribution function of εt, Fε, has a continuous density fεwith 0 < fε
(
F−1
ε (τ)

)
<∞ .
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Assumption S3. Denote the conditional distribution function Pr[ut < ·|xt] as Fu|x(·)

and its derivative as fu|x(·) is continuously differentiable and 0 < fu|x(·) <∞ on its support.

Assumption S4: Let xt = (1, |ut−1| , · · ·, |ut−m|)>, and

Dn = −E

(
1
n

n∑
t=m+1

xtx
>
t

σt

)
,

and denote the maximum and minimum eigenvalues of Dnas λmax (Dn) and λmin (Dn)then

lim inf
n→∞

λmin (Dn) > 0, lim sup
n→∞

λmax (Dn) <∞.

Assumption S5: There exist (small) positive constants δ1 > 0 and δ2 > 0 such that

Pr
(

max
1≤t≤n

u2
t > nδ1

)
≤ exp(−nδ2).

Assumption S6: The truncation parameter m satisfies m(n) = c log n for some c > 0.

Assumptions S1 and S2 are standard in the GARCH literature. Assumption S1 is an

invertibility condition on the ARCH operator and ensures that ut is stationary with weak

dependence and that appropriate limiting theory can be applied. This condition is useful

in our technical development and, no doubt could be weakened, but we do not attempt

to do so, or to find minimal conditions under which our results hold. The variance of

εt is usually standardized to be 1, but we assume that εt has variance σ2 in Assumption

S2 because we prefer the slightly different standardization that the first coefficient in the

ARCH(∞) representation (7) is 1 (a0 = 1). Assumptions S3 and S4 are similar to those in

the previous literature on sieve estimation. Assumption S5 requires that the maximum of

u2
t has a generalized extreme value distribution. This is is a higher level assumption and

generally holds under weak dependence assumptions. The expansion rate of the truncation

parameter given in Assumption S6 is also chosen for convenience and similar results can be

expected to hold for a much wider range of m.

Under Assumption S1, A(L) is invertible and we have an ARCH(∞) representation (7)

for σt, where the coefficients aj decrease at a geometric rate, i.e. there exists positive
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constants b < 1 and c such that |aj | ≤ cbj . Consequently,

σt = a0 + a1 |ut−1|+ · · ·+ am |ut−m|+Op(bm).

Denoting α(τ) = (α0(τ), α1(τ), · · ·, αm(τ))> ∈ Rm+1, and xt = (1, |ut−1| , · · ·, |ut−m|)>, the

sieve quantile regression can be written as

(11) α̃(τ) = arg min
α

n∑
t=m+1

ρτ (ut − α>xt).

The following result establishes consistency and asymptotic normality for the sieve estima-

tor.

Theorem 1. Let α̃(τ) be the solution of (11), then under Assumptions S1 - S6, we have

(12) ‖α̃(τ)− α(τ)‖2 = Op(m/n).

and

(13)
√
n (α̃(τ)− α(τ)) = − 1

fε
(
F−1
ε (τ)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτ (utτ )

)
+ op(1)

where ψτ (u) = τ − I(u < 0), and Dn = n−1
∑n

t=m+1 xtx
>
t /σt.For any λ ∈ Rm+1,

√
nλ> (α̃(τ)− α(τ))

σλ
⇒ N(0, 1),

where σ2
λ = f−2

ε

(
F−1
ε (τ)

)
λ>D−1

n Σn(τ)D−1
n λ, and Σn(τ) = 1

n

∑n
t=m+1 xtx

>
t ψ

2
τ (utτ ).

3.2. Minimum Distance Estimation of Conditional Scale. Having estimated the

truncated quantile autoregressions on a grid of τ ’s, we would now like to combine these

estimates to obtain estimates of the conditional scale parameters, σt. This is accomplished

most easily using the minimum distance methods proposed in Section 2.3. The asymptotic

properties of this estimator are summarized in the following Theorem.
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Theorem 2. Under assumptions S1 - S6, the minimum distance estimator ã solving (9)

has the following asymptotic representation:

√
n(â− a0) = −

[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1)

where

G =
[
g0 ⊗ Jm

...IK ⊗ α0

]
,ΥKt =


ψτ1 (utτ1 )

fε(F−1
ε (τ1))

· · ·
ψτm (utτK )

fε(F−1
ε (τK))

 , g0 =


Qεt(τ1)

· · ·

Qεt(τK)

 ,
where g0 and α0 are the true values of g = [q1, · · ·, qK ]> and α = [1, a1, · · ·, am]>, and

Jm = [0
...Im]>.

When An is an identity matrix,

G>AnG = G>G =

 [g>0 g0 ⊗ J>mJm] [
g>0 IK ⊗ J>mα0

]
[
I>Kg0 ⊗ α>0 Jm

] [
I>KIK ⊗ α>0 α0

]
 .

Alternatively, setting D = IK ⊗Dn, Vxt = xtx
>
t , Vψt = ΥKtΥ>Kt, and

ΨK =
1
n

n∑
t=m+1

Vψt ⊗ Vxt,Λ = D−1ΨKD−1,

the optimal choice ofA is given byA = Λ−1 = DΨ−1
K D. In this case, G>AnG = G>DΨ−1

K DG,

and DG =
[
(IKg0 ⊗DnJm)

... (IK2 ⊗Dnα0)
]
.

The first stage estimation immediately delivers an estimator for the conditional scale:

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | .

For convenience of later analysis, we partition the (K(m+1))×(K(m+1)) weighting matrix

An as [An1, · · ·, AnK ], where Ank (k = 1, · · ·,K) are (K(m + 1)) × (m + 1) sub-matricies.

Let x>t = (|ut−1| , · · ·, |ut−m|),

Lm/K = [Im, 0m×K ], Hj = Lm/K

[
G>AnG

]−1
G>

[
An1D−1

n xj , · · ·, AnKD−1
n xj

]
,
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and denote H = n−1
∑

j Hj∆Hj , where ∆ is a K by K matrix with typical element

τi ∧ τj − τiτj/fε(F−1
ε (τi))fε(F−1

ε (τj)). The asymptotic behavior of this preliminary esti-

mator for the scale parameter is given below.

Corollary 1. Under S1-S6, let ω2
t = x>t Hxt,

√
n (σ̃t − σt) /ωt ⇒ N (0, 1), as n→∞.

In contrast to most existing estimators of conditional volatility based on Gaussian distri-

butional assumptions, our volatility estimator has the nice property that is relatively robust

to assumptions on the error distribution.

3.3. Asymptotic Distribution of the Second Stage Estimator. Using the results

from the first stage estimation, the second step local estimator θ(τ) can be obtained by

quantile regression of ut on z̃t = (1, σ̃t−1, · · ·, σ̃t−p, |ut−1| , · · ·, |ut−q|)>, and the τ -th condi-

tional quantile of ut can be estimated by

Q̂ut(τ |Ft−1) = θ̂(τ)>z̃t.

The limiting behavior of the second-stage estimator minimizing (10) is described in the

following result.

Theorem 3. Under assumptions S1-S6, the two-step estimator θ̂(τ) based on (10) has the

asymptotic representation:

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}
+ Ω−1Γ

√
n (ã− a) + op(1)

where a = [a1, a2, · · ·, am]>, Ω = E
[
ztzt

>/σt
]
, and

Γ =
p∑

k=1

θkCk, Ck = E
[
(|ut−k−1| , · · ·, |ut−k−m|)

zt
σt

]
.
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In particular, since the first stage estimation is based on (9) the above asymptotic represen-

tation can be rewritten, denoting Lm/K =
[
Im

...0m×K

]
, as,

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}

−Ω−1ΓLm/K
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+op(1).

The asymptotic distribution of the two-step estimator θ̂(τ) can be immediately obtained

from the above Theorem. Let

Ψt =
[

ψτ (utτ )

fε(F−1
ε (τ)) ,

ψτ1 (utτ1 )

fε(F−1
ε (τ1)) , · · ·,

ψτK (utτK )

fε(F−1
ε (τK))

]>
,

Mt =
[
zt, ΓLm/K

[
G>AnG

]−1
G>An1D−1

n xt, · · ·, ΓLm/K
[
G>AnG

]−1
G>AnKD−1

n xt

]
,

and define

M = plimn

[
1
n

∑
t

MtΞM>t

]
,

where

Ξ =



τ(1−τ)
fε(F−1

ε (τ))2
τ∧τ1−ττ1

fε(F−1
ε (τ))fε(F−1

ε (τ1)) · · · τ∧τK−ττK
fε(F−1

ε (τ))fε(F−1
ε (τK))

τ∧τ1−ττ1
fε(F−1

ε (τ))fε(F−1
ε (τ1))

τ1(1−τ1)

fε(F−1
ε (τ1))2 · · · τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · · · · . . . · · ·
τ∧τK−ττK

fε(F−1
ε (τ))fε(F−1

ε (τK))
τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · τK(1−τK)

fε(F−1
ε (τK))2


.

The limiting distribution of the two stage estimator is summarized in the following corollary.

Corollary 2. Under assumptions S1-S6, the two-step estimator θ̂(τ) has the following

limiting distribution:

√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,Ω−1MΩ−1

)
, as n→∞.
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In the simple case that we estimate the first stage model at a single quantile τ , let

α̃(τ) = (α̃0(τ), · · ·, α̃m(τ))>, by setting ã0 = 1 and solving the equations α̃j(τ) = ãjQ̃εt(τ),

we obtain the following estimator for (a0, · · ·, am):

ã0 = 1, ã1 =
α̃1(τ)
α̃0(τ)

, · · ·, ãm =
α̃m(τ)
α̃0(τ)

,

In this case, the estimator

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | ,

in Step 1 has the following representation:

σ̃t = σt +
1

α0(τ)
[α̃(τ)− α(τ)]> x̆t +Op

(
m2

n

)
= σt +Op

(√
m

n

)
+Op

(
m2

n

)
,

where

x̆t =

(
−
∑m

j=1 αj(τ)
α0(τ)

, |ut−1| , · · ·, |ut−m|

)
,

and the two-stage estimator has the following simplified asymptotic representation.

Corollary 3. Under our assumptions S1 - S6, if we estimate the first stage model at same

single quantile τ , the second stage quantile regression estimator θ̂(τ) based on (10) has the

following Bahadur representation:

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

[
zt +R>D−1

n xt

]
ψτ (utτ )

}
+ op(1)

where R> = 1
α0(τ)

(
−
∑m

j=1
αj(τ)
α0(τ)rj , r1, · · ·, rm

)
, and rj =

∑p
k=1 θkE

[
|ut−k−j | ztσt

]
. So,

√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,

τ(1− τ)

fε
(
F−1
ε (τ)

)2 Ω−1MΩ−1

)
,

where M = M1+M2+M3, with M1 = E
[
ztz
>
t

]
, M2 = lim 1

n

∑
t

[
R>D−1

n xtz
>
t + ztx

>
t D−1

n R
]
,

and M3 = lim 1
n

∑
tR
>D−1

n xtx
>
t D−1

n R.

Remark. We may compare the quantile regression estimator θ̂(τ) based on generated

regressors z̃t with the infeasible quantile regression estimator θ̃(τ) based on unobserved
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regressors zt. Note that the infeasible estimator θ̃(τ) has the following Bahadur represen-

tation:
√
n
(
θ̃(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}
+ op(1),

and
√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,

τ(1− τ)

fε
(
F−1
ε (τ)

)2 Ω−1M1Ω−1

)
.

Comparing it with the Bahadur representation of θ̂(τ) given in Corollary 1, we see that the

Bahadur representation (and thus the variance) of θ̂(τ) contains an additional term that

arises from the preliminary estimation.

The proposed estimation procedure in this paper can be extended in several different

directions. First, like many other nonlinear estimation procedures, the proposed estimation

procedure may be iterated to achive further improvement. From the two step estimation, we

obtain estimates of θ(τ) and Qut(τ |It−1) at different quantiles. Consequently, estimates of θ

and F−1(τ) can be derived immediately, and updated estimates of σt can also be obtained.

The updated estimator of σt can then be used to re-estimate θ(τ) and Qut(τ |It−1). The

above procedure can be iterated to obtain estimators for both the conditional quantiles

and the conditional volatility σt. Second, different estimation methods may be used in the

first step global estimation. The current paper considers QAR estimation in the first stage

due to its convenience in implementation and effectiveness for a wide range of time series.

We conjecture that when the process are nearly integrated, a different first step estimation

methods may be preferred since the autoregression representation is obtained for invertible

ARMA models. Third, the basic idea of the two-step method can be applied to other types

of GARCH processes.

4. Monte Carlo Results

In this section, we report on a Monte Carlo experiment designed to examine the sam-

pling performance of the proposed estimation procedures and compare them with existing

methods. We focus our attension on estimation of the conditional quantiles, but also re-

port results on volatility estimation since the proposed estimation procedure also provide
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an alternative way of volatility estimation. In the first part of our Monte Carlo study,

we compare the proposed quantile regression GARCH estimation procedures with the sim-

ple quantile autoregression approximation; the RiskMetrics method that is widely used in

industry; Gaussian GARCH model, student-t GARCH model, and the CAViaR model pro-

posed by Engle and Manganelli (2004). The CAViaR model is estimated using the Matlab

code of Manganelli (2002).

As measures of performance we report bias and mean square error (MSE) of the various

estimators of the 0.05 conditional quantile of the response as averaged over the sample. For

comparison purpose, we consider the following nine estimation procedures:

(1) RiskM: The conventional RiskMetrics method RiskMetrics Group (1996), based

on Gaussian GARCH(1,1) with fixed parameters, that is widely used in financial

applications for estimation of Value-at-Risk;

(2) GGARCH: The Gaussian GARCH(1,1) with estimated parameters.

(3) TGARCH: The student-t GARCH(1,1) with 4 degrees of freedom.

(4) ARCH: Sieve ARCH quantile regression approximation with m = 3n1/4.

(5) QGARCH1: The proposed two-step estimation method using information at the

specified quantile in the first step estimation.

(6) QGARCH2: The proposed two-step estimation method using information over mul-

tiple quantiles in the first step estimation. In particular, we estimate the sieve

ARCH quantile regression at each percentile (τk = 5k%, k = 1, · · ·, 19.), and es-

timate the GARCH parameters using the Minimum distance estimation (An = I)

coupled with trimming to avoid the random denominator going to zero.

(7) QGARCH3: The proposed estimation method using information at the specified

quantile in the first step estimation and iterate for potential improvements. Thus,

following Step 1 in our procedure, we estimate a sieve quantile autoregression and

obtain estimates of σt, then we run quantile regression of ut based on the estimated

regressors and obtain the two-step estimator of θ(τ)> = (β0(τ), β1(τ), γ1(τ)). Esti-

mates of parameters of the GARCH model can then be derived from the quantile
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regression estimates by solving

β1(τ)
β0(τ)

=
β1

β0
,
γ1(τ)
β0(τ)

=
γ1

β0
,

β0

1− β1
= 1.

Finally, we recompute the estimates of σt and iterate the process to convergence.

(8) CAViaR1: CAViaR estimator using the Matlab code of Manganelli (2002), the

number of grid points is chosen to be n (=sample size).

(9) CAViaR2: CAViaR estimator using the Matlab code of Manganelli (2002), the

number of grid points is chosen to be 10000.

The data were generated from a linear GARCH(1,1) process with several choices of

parameter values and error distributions. Two different choices for the distribution of εt

are considered: (i) i.i.d Normal; (ii) i.i.d. t(4) - Student-t distribution with 4 degrees of

freedom; The first design of εt actually has normal distribution and we expect the traditional

methods based on normal assumption should be reasonable. The second design of εt has

a heavier tail. Two sample sizes n = 100, n = 500, are examined in the simulation, and

number of repetitions is 50. In each instance we estimate the 0.05 quantile. We consider

the following three sets of parameter values:

P1. β0 = 0.1, β1 = 0.5, γ1 = 0.3.

P2. β0 = 0.1, β1 = 0.8, γ1 = 0.1

P3. β0 = 0.1, β1 = 0.9, γ1 = 0.05.

The first set of parameter values (P1) satisfies the regularity conditions and the generates

a stationary linear GARCH process. Table 1 reports result of bias and mean squared

error of different estimation procedures for this case. The Monte Carlo results in Table

1 provide some baseline evidence in evaluating the sampling performance of the proposed

method when the regularity conditions are satisfied. In addition to (P1), we also consider

parameter values that are close to nonstationary GARCH, and examine the performance of

the estimation procedures in this situation. In the second and third sets (P2 and especially

P3) of parameter values, β1 are large and β1 + γ1 are close to 1. When β1 + γ1 = 1, the

process becomes nonstationary and the regularity assumption S1 no longer holds. When
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Normal Student with 4 df.
n=100 n=500 n=100 n=500

Bias MSE Bias MSE Bias MSE Bias MSE
RiskM 0.1522 0.0382 0.1362 0.0305 0.6479 0.6884 0.8299 1.1840
GGARCH 0.2653 0.1433 0.1315 0.0301 0.7961 0.9813 0.5092 0.3968
TGARCH 0.1926 0.0438 0.1816 0.0371 0.3087 0.3751 0.1106 0.0425
ARCH 0.2545 0.1119 0.1348 0.0308 0.5140 0.5834 0.2985 0.2418
CAViaR1 0.1693 0.0549 0.1310 0.0282 0.3582 0.2883 0.2208 0.1390
CAViaR2 0.1647 0.0518 0.1306 0.0283 0.3311 0.2576 0.2208 0.1390
QGARCH1 0.1278 0.0286 0.0685 0.0083 0.3038 0.1917 0.1687 0.0757
QGARCH2 0.1257 0.0267 0.0715 0.0087 0.3116 0.2096 0.1643 0.0865
QGARCH3 0.1003 0.0185 0.0576 0.0064 0.2954 0.2041 0.1248 0.0477

Table 1. Bias and MSE for Estimates at τ = 0.05, β0 = 0.1, β1 = 0.5, γ1 = 0.3.

β1 + γ1 is close to 1, the process becomes nearly integrated and the ARCH approximation

used in the first step becomes poor. Monte Carlo results confirm this. In particular,

Table 2 gives results corresponding to β1 = 0.8, γ1 = 0.1. Table 3 corresponds to the case

β1 = 0.9, γ1 = 0.05.

The Monte Carlo results indicate that in general, the proposed GARCH quantile estima-

tor has reasonably good performance for a wide range of time series. They generally have

better performance over other estimation procedures in the stationary case. As the data

approaches nonstationary, the performance of all the estimation procedures deteriorates. In

Table 2, the proposed quantile regression GARCH estimation procedures still have quite

good performance in general, but the difference between CAViaR and GARCH estimation

becomes smaller. In Table 3, when the data are generated from a nearly integrated GARCH

process with β1 = 0.9, γ1 = 0.05, the CAViaR model has relatively better performance than

the two-step estimators.



CONDITIONAL QUANTILE ESTIMATION FOR GARCH MODELS 23

Normal Student with 4 df.
n=100 n=500 n=100 n=500

Bias MSE Bias MSE Bias MSE Bias MSE
RiskM 0.2653 0.1433 0.1315 0.0301 0.7961 0.9813 0.5092 0.3968
GGARCH 0.3557 0.2957 0.2323 0.0959 1.6455 3.5759 1.8645 4.1445
TGARCH 0.4150 0.1890 0.3981 0.1669 0.5776 0.8465 0.2283 0.1118
ARCH 0.5395 0.4834 0.3014 0.1497 1.1976 4.2614 0.5966 0.6739
CAViaR1 0.2643 0.1239 0.1262 0.0275 0.6441 0.8417 0.2417 0.1078
CAViaR2 0.2290 0.0883 0.1213 0.0256 0.6260 0.7680 0.2388 0.1045
QGARCH1 0.2570 0.1143 0.1405 0.0318 0.6233 0.7460 0.3101 0.2002
QGARCH2 0.2528 0.1091 0.1546 0.0400 0.6197 0.7283 0.3427 0.2093
QGARCH3 0.2266 0.0844 0.1236 0.0265 0.5235 0.5404 0.2749 0.1352

Table 2. Bias and MSE for Estimates at τ = 0.05, β0 = 0.1, β1 = 0.8, γ1 = 0.1.

Normal Student with 4 df.
n=100 n=500 n=100 n=500

Bias MSE Bias MSE Bias MSE Bias MSE
RiskM 0.3557 0.2957 0.2323 0.0959 1.6455 3.5759 1.8645 4.1445
GGARCH 0.3557 0.2957 0.2323 0.0959 1.6455 3.5759 1.8645 4.1445
TGARCH 0.8049 0.7032 0.7889 0.6443 1.1779 3.7665 0.6542 1.1784
ARCH 1.0650 1.8698 0.5960 0.5856 2.1401 9.4193 1.2103 2.7186
CAViaR1 0.5181 0.4475 0.2464 0.1037 1.1364 2.3682 0.4788 0.4044
CAViaR2 0.4995 0.4222 0.2149 0.0785 1.1704 2.5111 0.4858 0.4193
QGARCH1 0.4387 0.3233 0.2608 0.1084 1.0568 2.0841 0.6293 0.6849
QGARCH2 0.4482 0.3462 0.2651 0.1154 1.0035 1.8752 0.5924 0.6046
QGARCH3 0.4623 0.3657 0.2466 0.1087 0.9436 1.7429 0.5506 0.5300

Table 3. Bias and MSE for Estimates at τ = 0.05, β0 = 0.1, β1 = 0.9, γ1 = 0.05.

Although the focus of this paper is on quantile estimation, as we mentioned in the previous

sections, the proposed method also provide a robust approach to estimating volatility. We

next report a limited Monte Carlo experiment that compares the quantile regression based

volatility estimator with the other volatility estimators that are widely used in finance

applications. The quantile regression based volatility estimator described in Section 3.2 is

constructed using the sieve ARCH quantile regression estimators. We should emphasize

that there is no doubt that alternative volatility estimators using the GARCH structure

based on our quantile regression procedure can be constructed; volatility estimation is not

the focus of the current paper, although we hope to explore this issue in future research.
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We consider the following three volatility estimators

(i). GGARCH: The Gaussian GARCH(1,1) estimator.

(ii). TGARCH: The student-t GARCH(1,1) with 4 degrees of freedom.

(iii). QARCH: The quantile regression based volatility estimator described in Section 3.2,

with the choice An = Λ̂−1, and m = 1.5n1/4.

For data generation we still consider data generated from a linear GARCH(1,1) process,

and consider two choices for the distribution of εt: (1) i.i.d. t(4) - Student-t distribution

with 4 degrees of freedom; and (2) re-centered Chi-square distribution with 3 degrees of

freedom. The first design of εt with i.i.d. t(4) has a heavy tail but is symmetric, and

we expect that the TGARCH estimator with 4 degrees of freedom will perform well. The

choices of sample sizes and the number of repetitions are the same as the first experiment.

We consider five sets of parameter values: C1. β0 = 0.1, β1 = 0, γ1 = 0.8. C2. β0 =

0.1, β1 = 0.1, γ1 = 0.5. C3. β0 = 0.1, β1 = 0.5, γ1 = 0.3. C4. β0 = 0.1, β1 = 0.8, γ1 = 0.1 C5.

β0 = 0.1, β1 = 0.9, γ1 = 0.05.

The first three sets of parameter values (C1 - C3) satisfies the regularity conditions and

therefore generate stationary linear GARCH processes, so we expect that the sieve ARCH

can provide a reasonable approximation. We also expect that the ARCH model will provide

poor approximation for the last case (C5) because this process is nearly integrated and the

ARCH approximation will be poor.

The Monte Carlo results are reported in Table 4. The quantile regression based estimator

displays relatively better performance for the case with asymmetric innovation distributions.

It also provides reasonably good results for the cases with the symmetric distribution,

except for the case nearly integrated GARCH process, β1 = 0.9, γ1 = 0.05, when the ARCH

approximation becomes poor. As expected, when εt are i.i.d. t(4), the TGARCH estimator

provides the best sampling properties among these three.
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Student with 4 df. Recentered χ2

n = 100 n = 500 n = 100 n = 500
Bias MSE Bias MSE Bias MSE Bias MSE

I: β0 = 0.1, β1 = 0, γ1 = 0.8.
GGARCH 0.0901 0.0178 0.1260 0.390 0.1352 0.0447 0.1519 0.0775
TGARCH 0.0568 0.0072 0.0225 0.0023 0.0445 0.0076 0.0295 0.0048
QGARCH 0.0606 0.0183 0.0255 0.0328 0.0238 0.0023 0.0143 0.0027

II: β0 = 0.1, β1 = 0.1, γ1 = 0.5.
GGARCH 0.0567 0.0075 0.0528 0.0059 0.0544 0.0058 0.0561 0.0074
TGARCH 0.0318 0.0028 0.0187 0.0011 0.0922 0.0748 0.1061 0.2935
QGARCH 0.0565 0.0074 0.0454 0.0048 0.0334 0.0023 0.0244 0.0024

III: β0 = 0.1, β1 = 0.5, γ1 = 0.3
GGARCH 0.0825 0.0123 0.0811 0.0133 0.1076 0.0247 0.0834 0.0134
TGARCH 0.0583 0.0073 0.0347 0.0033 0.0803 0.0185 0.0470 0.0057
QGARCH 0.0802 0.0102 0.0705 0.0082 0.0566 0.0089 0.0297 0.0016

IV: β0 = 0.1, β1 = 0.8, γ1 = 0.1
GGARCH 0.1389 0.0420 0.0957 0.0158 0.1433 0.0323 0.1060 0.0160
TGARCH 0.1253 0.0392 0.0733 0.0125 0.4183 1.0317 0.0877 0.0144
QARCH 0.1376 0.0432 0.0837 0.0138 0.1040 0.0162 0.0629 0.0069

V: β0 = 0.1, β1 = 0.9, γ1 = 0.05.
GGARCH 0.2351 0.1507 0.1494 0.0373 0.3017 0.1688 0.1692 0.1443
TGARCH 0.5434 1.1107 0.1515 0.0603 1.2296 6.1837 0.2835 0.2765
QARCH 1.0742 1.2552 0.1864 0.1092 0.7026 0.6758 0.1352 0.0308

Table 4. Bias and MSE for Volatility Estimates

5. An Empirical Application To International Equity Markets

We employ the proposed estimation procedure to study returns in international equity

markets. The data that we use are the weekly return series, from July 1981 to March

2008, for four major world equity market indexes: the U.S. S&P 500 Composite Index,

the Japanese Nikkei 225 Index, the U.K. FTSE 100 Index, and the Hong Kong Hang Seng

Index.

While the U.S. and U.K. equity markets are mature and appreciated significantly over the

sample period, the emerging market in Hong Kong experienced much higher volatility and

more dramatic jumps in prices. The Japanese market, though mature, generated somewhat

lower returns over the sample period, although it went through a bubbly period in the late
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S&P 500 Nikkei 225 FTSE 100 Hang Seng
Mean 0.0016 0.0010 0.0017 0.0023
Std. Dev. 0.0201 0.0240 0.0240 0.0369
Max 0.1002 0.1213 0.1389 0.1547
Min -0.1566 -0.1322 -0.2486 -0.4061
Skewness -0.4676 -0.3125 -1.8523 -1.7155
Kurtosis 3.3561 3.2958 16.198 11.376
AC(1) -0.0709 -0.0211 -0.0219 0.0899
AC(2) 0.0501 0.0527 0.0928 0.0776
AC(3) -0.0211 0.0333 -0.0511 -0.0241
AC(4) -0.0031 -0.0088 -0.0118 -0.0110
AC(5) -0.0199 0.0143 -0.0596 -0.0396
AC(10) -0.0535 -0.0716 -0.0165 -0.0285

Table 5. Summary Statistics: Weekly returns (in decimal) of four major
equity indexes. AC(k) denotes autocorrelation of order k. The sample period
is from July 1981 to March 2008. The source of the data is the online data
service Datastream.

1980’s and then a bursting of the bubble in the 1990’s. The rather different risk dynamics

of these markets provide a rich ground for analyzing the risk management performance of

various estimators of Value at Risk.

Table 5 reports some summary statistics of the data. The mean weekly returns of the

four indexes ranges from 0.10% to 0.23% per week, or about 5.2% to 11.96% annually.

The Hong Kong Hang Seng Index returned an average 0.23%, a 10-fold increase in the

index level over the 20-year sample period. In comparison, the Nikkei 225 index only

increased by 6-fold. The U.S. S&P 500 Index and the FTSE 100 Index on average return

about 0.17% per week, slightly below that of the Hong Kong Hang Seng Index. However,

the Hang Seng’s phenomenal rise come with much higher risk than the S&P 500 or the

FTSE 100. The weekly sample standard deviation of the index is 3.69%, the highest of the

four indexes, as compared to 2.01% for the S&P 500 and 2.40% for the FTSE 100. The

Nikkei 225 Index exhibited a weekly standard deviation of 2.40%. As has been documented

extensively in the literature, all four indexes display negative skewness and excess kurtosis.

The autocorrelation coefficients for all four indexes are quite small. Prior to estimation of the

GARCH model, we demean each of the return series using a parsimonious autoregression.
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Since mean returns at this frequency are small and autocorrelation coefficients are also very

modest this step has little impact on the results.

We estimate the Value at Risk for several distinct quantiles, {.01, .03, .05, .10, .15} for

each of the indices, employing the proposed quantile regression estimation procedure based

on the GARCH(1,1) model. We compare the results estimated by the proposed method

with results estimated by the CAViaR model and the ARCH models as described in the

previous section.

To compare the relative performance, we compute the coverage ratios, that is, the per-

centage of realized returns that fall below the estimated quantiles. These results are reported

in Tables 6-10. Since VaR is an out of sample concept, we consider prediction of VaR for

the last 500 periods. Thus, at each time point t (in the last 500 periods), we estimate the

model based on data up to time t, and predict the next period (t+ 1) conditional quantiles

(using estimates based on this period information). We compute the coverage ratios based

on the percentage of next period realized returns that are below the predicted quantiles .

Formal tests for the out of sample evaluation have been studied in the literature (see e.g.

Berkowitz, Christoffersen, and Pelletier (2009) for related literature). A widely used test is

the Kupiec (1995) proportion of failure test. The Kupiec test is a likelihood ratio test and

has asymptotic χ2 distribution with one degree of freedom.

Other tests have also been proposed in the literature. For example, if we consider the

indicator function: It+1(τ) = 1(ut ≤ Qut(τ |Ft−1)), then It+1(τ)− τ has mean zero and is a

martingale difference sequence, thus

Zn =
1√

nτ(1− τ)

∑
(It+1(τ)− τ)⇒ N(0, 1), as n→∞.

(see, e.g., Campbell (2005)). A two-sided test can be constructed based on the above

asymptotic normal staistic.

We conduct both the Kupiec test and the Zn test in our applications. The calculated

test statistics are also reported in Tables 6-10. The 5% level critical values for the Kupiec

test and the Zn test are 3.841 and 1.96 respectively. The testing results indicate that both
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% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0320 0.0500 0.0660 0.1160 0.1880
Kupiec Test 15.4671 5.7489 2.4592 1.3598 5.3140
Zn Test 4.9441 2.6216 1.6416 1.1926 2.3797

Nikkei225
Coverage Rate 0.0380 0.0680 0.0920 0.148 0.2280
Kupiec Test 23.1298 18.3993 15.0408 11.3256 21.1596
Zn Test 6.2925 4.9811 4.3091 3.5777 4.8845

FTSE100
Coverage Rate 0.0280 0.0560 0.0860 0.1320 0.1840
Kupiec Test 10.9940 22.3282 11.3308 5.2231 4.2805
Zn Test 4.0452 5.7499 3.6935 2.3851 2.1292

Hang Seng
Coverage Rate 0.018 0.020 0.038 0.1120 0.174
Kupiec Test 2.6126 1.9421 1.6469 0.7732 2.1671
Zn Test 1.7979 -1.3108 -1.2312 0.8944 1.5029

Table 6. Coverage Rates and Testing Results for QAR Model

% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0140 0.0380 0.0600 0.1200 0.1780
Kupiec Test 0.7187 1.0159 0.9921 2.1025 2.9307
Zn Test 0.8989 1.0486 1.0260 1.4907 1.7534

Nikkei225
Coverage Rate 0.0180 0.0480 0.086 0.1580 0.2380
Kupiec Test 2.6126 4.7282 11.3308 16.1835 26.5904
Zn Test 1.7979 2.3595 3.6935 4.3231 5.5108

FTSE100
Coverage Rate 0.0180 0.0420 0.0840 0.1240 0.1680
Kupiec Test 2.6126 2.2064 10.1945 2.9967 1.2312
Zn Test 1.7979 1.5730 3.4883 1.7889 1.1272

Hang Seng
Coverage Rate 0.0040 0.0120 0.034 0.0940 0.1620
Kupiec Test 2.3530 7.1705 3.0215 0.2037 0.5528
Zn Test -1.3484 -2.3595 -1.6416 -0.4472 0.7515

Table 7. Coverage Rates and Testing Results for QGARCH1 Model

the CAViaR method and the quantile GARCH method provide reasonable coverage rates,

and are substantially better than ARCH based estimation.
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% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0160 0.0340 0.0640 0.1240 0.1660
Kupiec Test 1.5383 0.2638 1.9027 2.9967 0.9761
Zn Test 1.3484 0.5243 1.4364 1.7889 1.0020

Nikkei225
Coverage Rate 0.0120 0.052 0.060 0.1160 0.2360
Kupiec Test 0.1899 6.8538 0.9921 1.3598 25.4596
Zn Test 0.4495 2.8838 1.0260 1.1926 5.3855

FTSE100
Coverage Rate 0.020 0.032 0.0700 0.0840 0.1580
Kupiec Test 3.9136 0.0673 3.7651 1.4957 0.2474
Zn Test 2.2473 0.2622 2.0520 -1.1926 0.5010

Hang Seng
Coverage Rate 0.004 0.018 0.0360 0.096 0.1720
Kupiec Test 2.3530 2.8791 2.2765 0.0900 1.8270
Zn Test -1.3484 -1.5730 -1.4364 -0.2981 1.3777

Table 8. Coverage Rates and Testing Results for QGARCH2 Model

% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0140 0.0260 0.0620 0.1200 0.1940
Kupiec Test 0.7187 0.2876 1.4130 2.1025 7.0602
Zn Test 0.8989 -0.5243 1.2312 1.4907 2.7554

Nikkei225
Coverage Rate 0.0200 0.034 0.0627 0.118 0.1700
Kupiec Test 3.1309 0.2638 1.4215 1.7119 1.5491
Zn Test 2.0101 0.5243 1.2425 1.3416 1.2542

FTSE100
Coverage Rate 0.0180 0.0520 0.0700 0.1060 0.1775
Kupiec Test 2.6126 6.8538 3.8651 0.1965 2.2634
Zn Test 1.7979 2.8838 2.0520 0.4472 1.5403

Hang Seng
Coverage Rate 0.0020 0.0250 0.0425 0.0667 0.1160
Kupiec Test 4.8134 0.3639 0.4980 3.0736 4.8539
Zn Test -1.7979 -0.5862 -0.6882 -2.3608 -2.1292

Table 9. Coverage Rates and Testing Results for CAViaR1 Model

Appendix A. Proofs

A.1. Proof of Theorem 1. Our proofs rely heavily on the theory of empirical processes as

in Welsh (1989) and employ exponential inequalities for weakly dependent and martingale

difference sequences. We use the notation Et to signify the conditional expectation E(·|xt).
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% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0140 0.0260 0.0600 0.1240 0.1940
Kupiec Test 0.7187 0.2876 0.9921 2.9967 7.0602
Zn Test 0.8989 -0.5243 1.0260 1.7889 2.7554

Nikkei225
Coverage Rate 0.0175 0.0575 0.0620 0.120 0.186
Kupiec Test 1.8574 8.2419 1.4130 2.1025 7.1598
Zn Test 1.5076 3.2242 1.2312 1.4907 2.8333

FTSE100
Coverage Rate 0.0200 0.0520 0.0680 0.1140 0.1825
Kupiec Test 3.9136 6.8538 3.0806 2.0879 3.1363
Zn Test 2.2473 2.8838 1.8468 1.2981 1.8204

Hang Seng
Coverage Rate 0.0020 0.029 0.0425 0.0658 0.1160
Kupiec Test 4.8134 0.3277 0.4980 4.749 4.8539
Zn Test -1.7979 -0.4389 -0.6882 -2.667 -2.1292

Table 10. Coverage Rates and Testing Results for CAViaR2 Model

Notice that ψτ (u) is the right-hand derivative of ρτ (u), the derivative of ρτ (ut − α>xt)

w.r.t. α (except at point ut = α>xt) is given by

ϕtτ (α) = ψτ (ut − α>xt)xt =
[
τ − I(ut < α>xt)

]
xt.

Notice that Qut(τ |Ft−1) = α(τ)>xt + Rm(τ), where Rm(τ) =
(∑∞

j=m+1 aj |ut−j |
)
Qε(τ) =

Op(bm) under Assumption S1. Let u∗tτ = ut−α(τ)>xt, and utτ = ut−Qut(τ |Ft−1) = σtεtτ ,

then u∗tτ = utτ +Rm(τ), and Et [ψτ (utτ )] = 0. Under Assumption S3,

Et (ϕtτ (α(τ))) =
[
τ − Fu|x(Qut(τ |xt) +Rm(τ))

]
xt = Op (bm · ‖xt‖) ,

where we define ‖α‖ to be the L2 norm of α.

We first show that ‖α̂(τ) − α(τ)‖2 = Op(m/n). Let λ ∈ S = {λ ∈ Rm+1 : ‖λ‖ = 1},

by convexity of the objective function, it suffices to show that for any ε > 0, there exists

B <∞ such that, for sufficiently large n,

Pr

{
inf
λ∈S

∑
t

λ>ϕtτ (α(τ) +B(mn)1/2λ) > 0

}
> 1− ε.
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For notational convenience, we next define ηt(v) = ϕtτ (α(τ) + v)− ϕtτ (α(τ)), then

∑
t

λ>ϕtτ (α(τ) +B(mn)1/2λ) =
∑
t

λ>ϕtτ (α(τ))(14)

+
∑
t

λ>Et
{
ηt(B(mn)1/2λ)

}
(15)

+
∑
t

λ>
[
ηt(B(mn)1/2λ)− Et

{
ηt(B(mn)1/2λ)

}]
(16)

we analyze each of the right-hand-side terms (14), (15) and (16), and show that

∑
t

λ>ϕtτ (α(τ) +B(m/n)1/2λ) ≈
∑
t

λ>ϕtτ (α(τ)) +B(mn)1/2fε
(
F−1
ε (τ)

)
λ>Dnλ

For (15), notice that if ‖α− α(τ)‖ ≤ B(m/n)1/2,

(17) Et
[
I(ut < α(τ)>xt)− I(ut < α>xt)

]
= −fu|x(Qut(τ |xt))x>t [α− α(τ)] +Op(m2/n).

Thus, given the GARCH structure (1) and (2),

Qut(τ |xt) = σtF
−1
ε (τ), fu|x(Qut(τ |xt)) = fε(Qut(τ |xt)/σt)/σt =

1
σt
fε
(
F−1
ε (τ)

)
,

and

1
n

n∑
t=m+1

fu|x(Qut(τ |xt))xtx>t = fε
(
F−1
ε (τ)

) [ 1
n

n∑
t=m+1

xtx
>
t

σt

]
= fε

(
F−1
ε (τ)

)
Dn,

so by (17) we have

∑
t

λ>Et
{
ηt(B(mn)1/2λ)

}
≈ B(mn)1/2fε

(
F−1
ε (τ)

)
λ>Dnλ.

To show that the third term (16) is of smaller order of magnitude and can be dropped,

we need stochastic equicontinuity corresponding to ηt(v)−Et {ηt(v)} using weak dependence

property of u and the martingale difference sequence property of the term, as well as the
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moment condition on x. In particular, we want to show that,

sup
‖v‖≤B(m/n)1/2

∣∣∣∣∣∑
t

λ> [ηt(v)− Et {ηt(v)}]

∣∣∣∣∣ = op

(
1√
nm

)
.

Covering the ball
{
‖v‖ ≤ B(m/n)1/2

}
with cubes C = {Ck} where Ck is a cube with

center vk, side length (m/n5)1/2B, so card(C) = (2n2)m = N(n), and for v ∈ Ck, |v − vk| ≤

(m/n5/2)B. Thus, since I(ut < z) is nondecreasing in z,

sup
‖v‖≤B(m/n)1/2

∣∣∣∣∣∑
t

λ> [ηt(v)− Et {ηt(v)}]

∣∣∣∣∣
≤ max

1≤k≤N(n)

∣∣∣∣∣∑
t

λ> [ηt(vk)− Et {ηt(vk)}]

∣∣∣∣∣(18)

+ max
1≤k≤N(n)

∣∣∣∣∣∑
t

∣∣∣λ>xt∣∣∣ {btτ (vk)− Et [btτ (vk)]}

∣∣∣∣∣(19)

+ max
1≤k≤N(n)

∑
t

∣∣∣λ>xt∣∣∣Et [dtτ (vk)](20)

where

btτ (vk) = I(ut < (α(τ) + vk)
> xt)− I(ut < (α(τ) + vk)

> xt + (m/n5/2)B‖xt‖),

dtτ (vk) = I(ut < (α(τ) + vk)
> xt + (m/n5/2)B‖xt‖)

−I(ut < (α(τ) + vk)
> xt − (m/n5/2)B‖xt‖).

The analysis of terms (19) and (20) are similar to Welsh (1989). We focus on the first term

(18). Notice that card(C) = (2n2)m, an exponential inequality is needed to control the rate.

Since ‖vk‖ ≤ B(m/n)1/2, by calculation of moments, we have

ω2
n =

∑
t

Et
[
λ> [ηt(vk)− Et {ηt(vk)}]

]2
= Op((mn)1/2m3/2,

and

S2
n =

∑
t

[
λ> [ηt(vk)− Et {ηt(vk)}]

]2
= Op((mn)1/2m3/2.
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Let M = (mn)1/2, noting that ξt = [ηt(vk)− Et {ηt(vk)}] is a martingale difference sequence

we have

Pr

[
max

1≤k≤N(n)

∣∣∣∣∣ 1√
n

∑
t

λ> [ηt(vk)− Et {ηt(vk)}]

∣∣∣∣∣ > ε

]

≤ N(n) max
k

Pr

(∣∣∣∣∣ 1√
n

∑
t

λ> [ηt(vk)− Et {ηt(vk)}]

∣∣∣∣∣ > ε

)

≤ N(n) max
k

Pr

(∣∣∣∣∣∑
t

λ>ξt

∣∣∣∣∣ > √nε; S2
n + ω2

n ≤M

)

+N(n) max
k

Pr

(∣∣∣∣∣∑
t

λ>ξt

∣∣∣∣∣ > √nε; S2
n + ω2

n > M

)

For the first term, by exponential inequality for martingale difference sequences (see, e.g.,

Bercu and Touati (2008)), we have

N(n) max
k

Pr

(∣∣∣∣∣∑
t

λ>ξt

∣∣∣∣∣ > √nε; S2
n + ω2

n ≤M

)
≤ 2N(n) exp

(
−nε

2

2M

)
.

For the second term,

Pr
(
S2
n + ω2

n > M
)
≤ Pr

(
S2
n > M/2

)
+ Pr

(
ω2
n > M/2

)
,

and each term can be bounded exponentially under assumptions S1 and S5. Thus,

∑
t

λ>ϕtτ (α(τ) +B(m/n)1/2λ) =
∑
t

λ>ϕtτ (α(τ)) + B(mn)1/2fε
(
F−1
ε (τ)

)
λ>Dnλ

+ op

(
(nm)1/2

)
.

By Assumption S4, the minimum eigenvalue of Dn is bounded from below, and

∑
t

ϕtτ (α(τ)) = Op(
√
nm)
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so for large n,{
inf
λ∈S

∑
t

λ>ϕtτ (α(τ) +B(mn)1/2λ) > 0

}

⊇

{
1√
nm

inf
λ∈S

∑
t

λ>ϕtτ (α(τ)) > −B
2
λmin

[
fε
(
F−1
ε (τ)

)
Dn

]}

whose probability goes to 1 as B and n→∞. Thus we have proved (12).

If α̃(τ) is the solution of (11), let v̂ =
√
n(α̃(τ)− α(τ)), we have,

√
n (α̂(τ)− α(τ)) = − 1

fε
(
F−1
ε (τ)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτ (utτ )

)
+ op(1),

thus for any λ ∈ Rm+1, √
nλ> (α̂(τ)− α(τ))

σλ
⇒ N(0, 1),

where σ2
λ = λ>D−1

n ΣnD−1
n λ, Σn = n−1

∑n
t=m+1 xtx

>
t ψ

2
τ (utτ ).

A.2. Proof of Theorem 2. To analyze the asymptotic behavior of our estimators, we

need to first derive the asymptotic representation for π̃. Notice that

√
n (α̃(τk)− α(τk)) = − 1

fε
(
F−1
ε (τk)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτk(utτk)

)
+ op(1),

thus,
√
n(π̃ − π) = − 1√

n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]
+ op(1)

Let D = IK ⊗ Dn, Vxt = xtx
>
t , Vψt = ΥKtΥ>Kt, and set ΨK = n−1

∑n
t=m+1 Vψt ⊗ Vxt.

Define Λ = D−1ΨKD−1, and denote

G =
∂φ(a)
∂a>

∣∣∣∣
a=a0

= φ̇(a0) =
[
g ⊗ Jm

...IK ⊗ α
]
.

The objective function may be written as

Qn(a) = ([π̃ − π]− [φ(a)− φ(a0)])>An ([π̃ − π]− [φ(a)− φ(a0)])
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and the first order condition is given by:

1
2
∂Qn(â)
∂a

= − (π̃ − π)>Anφ̇(â) + φ̇(â)>An (φ(â)− φ(a0)) = 0

Thus,

√
n(â− a0) =

[
φ̇(a0)>Anφ̇(a0)

]−1
φ̇(â)An

√
n (π̃ − π) + op(1)

= −
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1).

A.3. Proof of Corollary 1. Notice that ΨK ∼ ∆ ⊗
[

1
n

∑
xtx
>
t

]
, and by definition, σ̃t =

ã0 +
∑m

j=1 ãj |ut−j |, we have

√
n (σ̃t − σt) = (|ut−1| , · · ·, |ut−m|)


√
n (ã1 − a1)

· · ·
√
n (ãm − am)

+ op (1)

Notice that 
√
n (ã1 − a1)

· · ·
√
n (ãm − am)

 =
1√
n

∑
j

HjΥKj ,

let H = 1
n

∑
j Hj (E [ΥKjΥKj ])Hj = 1

n

∑
j Hj∆Hj , xt = (|ut−1| , · · ·, |ut−m|)>, and ω2

t =

x>t Hxt, we have, conditional on information prior to t,

√
n (σ̃t − σt) = (|ut−1| , · · ·, |ut−m|)

1√
n

∑
j

HjΥKj + op(1)⇒ N
(

0, x>t Hxt
)
,

thus the result can be obtained.

A.4. Proof of Theorem 3. For convenience of analysis, we may rewrite z̃t = zt(ã) since it

contains σ̃t−k = a0 +
∑m

j=1 ãj |ut−k−j |. The second stage estimation can then be rewritten

as minθ
∑

t ρτ (ut − θ>zt(ã)). Denote

Gn(θ, a) =
1
n

∑
t

ψτ (ut − θ>zt (a))zt (a)
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and G(θ, a) =E
[
ψτ (ut − θ>zt (a))zt (a)

]
. By iterated expectations

G(θ, a) = E
[{
τ − Fu|x(θ>zt (a))

}
zt (a)

]
.

Under our conditions, the asymptotic behavior of the second stage estimator θ̂ (τ) is the

same as that of arg minθ ‖Gn(θ, ã)‖, and θ(τ) solves minθ ‖G(θ, a0)‖.

We first establish
√
n-consistency of θ̂ (τ) to θ (τ). Let

Γ1(θ, a) =
∂G(θ, a)
∂θ

= −Efu|x(θ>zt (a))zt (a) zt (a)> ,

and notice that, denoting the vector of true values of a as a∗,

Γ10 = Γ1(θ, a)|θ=θ(τ),a=a∗ ≈ −Efu|x(Qut(τ |xt))ztzt> = −fε
(
F−1
ε (τ)

)
Ω,

under Assumption S3, Γ1(θ, α) is continuous at θ = θ (τ) and Γ10 is nonsingular, thus

there exists a constant C > 0 such that C‖θ̂ (τ)− θ (τ) ‖ is bounded by ‖G(θ̂ (τ) , a0)‖ with

probability going to 1. Define the (p+ q + 1)×m matrix,

Γ2(θ, a) =
∂G(θ, a)
∂a>

= E
[{
τ − Fu|x(θ>zt (a))

} ∂zt (a)
∂a>

]
− E

fu|x(θ>zt (a))zt (a)
p∑
j=1

θj
∂σt−j(a)
∂a>


Notice that ‖G(θ (τ) , α∗)‖ = Op(bm) and ‖Gn(θ (τ) , a∗)‖ = Op(n−1/2), so by the triangle

inequality we have

‖G(θ̂ (τ) , a∗)‖ ≤ ‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖(21)

+‖G(θ̂ (τ) , ã)−G(θ (τ) , a∗)−Gn(θ̂ (τ) , ã) +Gn(θ (τ) , a∗)‖(22)

+‖Gn(θ̂ (τ) , ã)‖(23)

+Op(n−1/2).
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We now analyze the terms (21), (22) and (23). First, for (21), again, by triangle inequality

‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖ ≤ ‖G(θ̂ (τ) , ã)−G(θ̂ (τ) , a∗)− Γ2(θ̂ (τ) , a∗)(α̃− a∗)‖

+‖Γ2(θ̂ (τ) , a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖

+‖Γ2(θ (τ) , a∗)(ã− a∗)‖.

Under Assumption S1, S2 and S3, we have

‖G(θ̂ (τ) , ã)−G(θ̂ (τ) , a∗)− Γ2(θ̂ (τ) , a∗)(ã− a∗)‖ = Op
(
‖ã− a∗‖2

)
and

‖Γ2(θ̂ (τ) , a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖ = Op

(
‖θ̂ (τ)− θ (τ) ‖

)
op(1).

Thus,

‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖ ≤ Op
(
‖ã− a∗‖2

)
+Op

(
‖θ̂ (τ)− θ (τ) ‖‖ã− a∗‖

)
+‖Γ2(θ (τ) , a∗)(ã− a∗)‖.(24)

In addition,

Γ2(θ (τ) , a∗) ≈ −fε
(
F−1
ε (τ)

)
E

 p∑
j=1

θj
zt
σt

∂σt−j(a)
∂a>


since

Et

[{
τ − Fu|x(θ (τ)> zt (a∗))

} ∂zt (a∗)
∂a

]
≈ Et

[{
τ − Fu|x(Qut(τ |Ft−1))

} ∂zt (a∗)
∂a

]
= 0.

Thus,

‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖ ≤ ‖Γ2(θ (τ) , a∗)(ã− a∗)‖(1 + op(1)),

and ‖G(θ̂ (τ) , ã)‖ ≤ ‖G(θ̂ (τ) , a∗)‖(1 + op(1)).

For (22), we need to verify stochastic equicontinuity. If we denote

mτ (Zt, θ, a) = ψτ (ut − θ>zt (a))zt (a) ,
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for each element mjτ (Zt, θ, a) = ψτ (ut − θ>zt (a))zjt (a) of mτ (Zt, θ, a),

∣∣mjτ (Zt, θ, a)−mjτ (Zt, θ, a)
∣∣ ≤ τ |zjt (a)− zjt (a)|

+
∣∣∣I (ut < θ

>
zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣ .
For τ |zjt (a)− zjt (a)|, if ‖a − a‖ ≤ δ, τ rE|zjt (a)− zjt (a)|r ≤ Cj1(δ/m)r . For the second

term, ∣∣∣I (ut < θ
>
zt (a)

)
zt (a)− I

(
ut < θ>zt (a)

)
zt (a)

∣∣∣ ≤∣∣∣I (ut < θ
>
zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣
+
∣∣∣I (ut < θ>zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣
Since I (ut < ·) is a monotonic function,

E
∣∣∣I (ut < θ

>
zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣
≤ sup

‖a−a‖≤δ,‖θ−θ‖≤δ
E
[
Fu|x

(
θ
>
zt (a)

)
− Fu|x

(
θ>zt (a)

)]
E |zjt (a)| ≤ Cj2(δ/m),

under our smoothness assumption on Fu|x (·) and the moment condition on u. Thus, by

Lemma 4.2 of Chen (2008), we have,

sup
‖a−a∗‖≤δ,‖θ−θ(τ)‖≤δ

√
n‖Gn(θ, a)−G(θ, a)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)‖

1 +
√
n {‖Gn(θ, a)‖+ ‖G(θ, a)‖}

= op(1),

consequently,

‖G(θ̂ (τ) , ã)−G(θ (τ) , a∗)−Gn(θ̂ (τ) , ã) +Gn(θ (τ) , a∗)‖

≤ op(1)×
{
‖Gn(θ̂ (τ) , ã)‖+ ‖G(θ̂ (τ) , ã)‖

}
≤ op(1)×

{
‖Gn(θ̂ (τ) , ã)‖+ ‖G(θ̂ (τ) , a∗)‖(1 + op(1)

}
,
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where the last inequality comes from (24). Thus,

‖G(θ̂ (τ) , a∗)‖ ≤ ‖Γ2(θ (τ) , a∗)(ã− a∗)‖+Op
(
‖ã− a∗‖2

)
+Op

(
‖θ̂ (τ)− θ (τ) ‖‖ã− a∗‖

)
+op(1)×

{
‖Gn(θ̂ (τ) , ã)‖+ ‖G(θ̂ (τ) , a∗)‖(1 + op(1)

}
+‖Gn(θ̂ (τ) , ã)‖,

and

‖G(θ̂ (τ) , a∗)‖(1− op(1)) ≤ ‖Gn(θ̂ (τ) , ã)‖(1 + op(1)) +Op(n−1/2)

= inf
θ
‖Gn(θ, ã)‖+Op(n−1/2).

We only need to show that infθ ‖Gn(θ, ã)‖ = Op(n−1/2), which is true since

‖Gn(θ, ã)‖ ≤ ‖Gn(θ, ã)−G(θ, ã)−Gn(θ (τ) , a∗)‖

+‖G(θ, ã)−G(θ, a∗)‖+ ‖G(θ, a∗)‖+ ‖Gn(θ (τ) , a∗)‖

≤ op(1)× {‖Gn(θ, ã)‖+ ‖G(θ, ã)‖}+ ‖G(θ, a∗)‖+Op(n−1/2).

Thus,

‖Gn(θ, ã)‖(1− op(1)) ≤ op(1)× {‖G(θ, ã)‖}+ ‖G(θ, a∗)‖+Op(n−1/2),

and infθ ‖Gn(θ, ã)‖ = Op(n−1/2), since ‖G(θ (τ) , a∗)‖ = 0 and

‖G(θ, ã)‖ ≤ ‖G(θ, a∗)‖+ ‖Γ2(θ (τ) , a∗)(ã− a∗)‖(1 + op(1)).

And consequently, C‖θ̂ (τ)− θ (τ) ‖ ≤ ‖G(θ̂ (τ) , a∗)‖ = Op(n−1/2).

Now define the linearization

Ln(θ, ã) = Gn(θ (τ) , a∗) +G(θ, a∗) + Γ2(θ (τ) , a∗)(ã− a∗),
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and note that

Gn(θ, ã) = Gn(θ (τ) , a∗) + Γ1(θ − θ (τ)) + Γ2(θ (τ) , a∗)(ã− a∗)

+G(θ, a∗)−G(θ (τ) , a∗)− Γ1(θ − θ (τ))

+Γ2(θ, a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)

+G(θ, ã)−G(θ, a∗)− Γ2(θ, a∗)(ã− a∗)

+Gn(θ, ã)−G(θ, ã)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)

−G(θ (τ) , a∗).

Under Assumptions S1 - S6,

‖Gn(θ̂, ã)− Ln(θ̂, ã)‖ ≤ ‖G(θ̂, a∗)−G(θ (τ) , a∗)− Γ1(θ̂ − θ (τ))‖

+‖Γ2(θ, a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖

+‖G(θ̂, ã)−G(θ̂, a∗)− Γ2(θ̂, a∗)(ã− a∗)‖

+‖Gn(θ̂, ã)−G(θ̂, ã)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)‖

+‖G(θ (τ) , a∗)‖

= op(n−1/2),

because

‖G(θ̂, a∗)−G(θ (τ) , a∗)− Γ1(θ̂ − θ (τ))‖ = Op(‖θ̂ − θ (τ) ‖2) = op(n−1/2),

‖Γ2(θ, a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖ = op(1)‖θ̂ − θ (τ) ‖ = op(n−1/2),

by root-n consistency;

‖G(θ̂, ã)−G(θ̂, a∗)− Γ2(θ̂, a∗)(ã− a∗)‖ ≤ C
(
‖ã− a∗‖2

)
= op(n−1/2),

‖Gn(θ̂, ã)−G(θ̂, ã)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)‖ = op(n−1/2),
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by stochastic equicontinuity, and

‖G(θ (τ) , a∗)‖ = op(n−1/2),

by definition. Thus

(25) min
θ
‖Gn(θ, ã)‖ = min

θ
‖Ln(θ, ã)‖+ op(n−1/2),

and

√
n
(
θ̂(τ)− θ(τ)

)
= −

(
Γ>1 Γ1

)−1
Γ>1
√
n [Gn(θ (τ) , a∗) + Γ2(θ (τ) , a∗)(ã− a∗)]

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ ) + Γ2(θ (τ) , a∗)
√
n(ã− a∗)

}
.

In addition,

Γ2(θ (τ) , a∗) ≈ −E

fu|x(Qut(τ |xt))zt
p∑
j=1

θj
∂σt−j(a)
∂a>

 = −fε
(
F−1
ε (τ)

)
E

 p∑
j=1

θj
zt
σt

∂σt−j(a)
∂a>


we have Γ2(θ (τ) , a∗) ≈ fε

(
F−1
ε (τ)

)
Γ = Γ20. Then the minimum distance estimator of

[a1, a2, · · ·, am] has asymptotic representation:

−Lm/K
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1)

Thus, the two-step estimator of θ(τ) has the following Bahadur representation:

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}

− 1
fε
(
F−1
ε (τ)

)Ω−1Γ20Lm/K

[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1).



42 ZHIJIE XIAO AND ROGER KOENKER

A.5. Proof of Corollary 2. By results of Theorem 3

√
n(θ̂(τ)− θ(τ)) = −Ω−1 1√

n

∑
t

MtΨt + op(1),

thus
√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,Ω−1MΩ−1

)
, where

M = lim
n

[
1
n

n∑
t=m+1

Mt

(
EΨtΨ>t

)
M>t

]
= E

[
MtΞM>t

]
, and Ξ = EΨtΨ>t .

A.6. Proof of Corollary 3. By Theorem 3,

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ ) + Γ2(θ, a∗)
√
n(ã− a∗)

}
.

Noting that ã0 = 1, and for j = 1,· · ·,m,

ãj =
α̃j(τ)
α̃0(τ)

= aj +
[α̃j(τ)− αj(τ)]

α0(τ)
− αj(τ) [α̃0(τ)− α0(τ)]

α0(τ)2
+Op

(m
n

)
we have

Γ2(θ (τ) , a∗)(ã− a∗) = −fε
(
F−1
ε (τ)

) m∑
j=1

E

[
1
σt

p∑
k=1

θkzt
∂σt−k(a)
∂aj

]
(ãj − aj)

= R>D−1
n

(
1
n

∑
t

xtψτ (utτ )

)
+ op(1).

Consequently, the two-step estimator of θ(τ)> = (β0(τ), β1(τ), · · ·, βp(τ), γ1(τ), · · ·, γq(τ))

has the Bahadur representation:

√
n(θ̂(τ)− θ(τ)) =

1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

[
zt +R>D−1

n xt

]
ψτ (utτ )

}
+ op(1)

⇒ N

(
0,

τ(1− τ)

fε
(
F−1
ε (τ)

)2 Ω−1MΩ−1

)
.
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