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Abstract. We consider quantile autoregression (QAR) models in which the au-
toregressive coefficients can be expressed as monotone functions of a single, scalar
random variable. The models can capture systematic influences of conditioning
variables on the location, scale and shape of the conditional distribution of the
response, and therefore constitute a significant extension of classical constant co-
efficient linear time series models in which the effect of conditioning is confined to
a location shift. The models may be interpreted as a special case of the general
random coefficient autoregression model with strongly dependent coefficients. Sta-
tistical properties of the proposed model and associated estimators are studied. The
limiting distributions of the autoregression quantile process are derived. Quantile
autoregression inference methods are also investigated. Empirical applications of
the model to the U.S. unemployment rate and U.S. gasoline prices highlight the
potential of the model.

1. Introduction

Constant coefficient linear time series models have played an enormously successful
role in econometrics, and gradually various forms of random coefficient time series
models have also emerged as viable competitors in particular fields of application. One
variant of the latter class of models, although perhaps not immediately recognizable as
such, is the linear quantile autoregression model. This model has received considerable
attention in the theoretical literature, and can be easily estimated with the quantile
regression methods proposed in Koenker and Bassett (1978). Curiously, however,
all of the theoretical work dealing with this model (that we are aware of) focuses
exclusively on the iid innovation case that restricts the autoregressive coefficients
to be independent of the specified quantiles. In this paper we seek to relax this
restriction and consider linear quantile autoregression models whose autoregressive
(slope) parameters may vary with quantiles τ ∈ [0, 1]. We hope that these models
might expand the modeling options for economic time series that display asymmetric
dynamics or local persistency.
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In recent years, considerable research effort has been devoted to modifications of
traditional unit root models to incorporate the effect of various types of shocks. An
important motivation for such modifications is the introduction of asymmetries into
economic dynamics. It is widely acknowledged that many important economic vari-
ables may display asymmetric adjustment paths (e.g. Neftci (1984), Enders and
Granger (1998)). The observation that firms are more apt to increase than to reduc-
tion in prices is a key feature of many macroeconomic models. Beaudry and Koop
(1993) showed that positive shocks to U.S. GDP are more persistent than negative
shocks, indicating asymmetric business cycle dynamics over different quantiles of the
innovation process. In addition, while it is recognized that output fluctuations are
persistent, less persistent results are also found at longer horizons (Beaudry and Koop
(1993)), indicating the existence of “local persistency” or “temporal persistency” in
economic time series. See, inter alia, Delong and Summers (1986), Hamilton (1989),
Sichel (1989), Diebold and Rudebusch (1990), Evans and Wachtel (1993), Potter
(1995), Bradley and Jansen (1997), Hess and Iwata (1997), and Kuan and Huang
(2001)) among others on the study of asymmetric dynamics in economic time series.
A related development is the growing literature on threshold autoregression (TAR)
with unit roots (e.g. Balke and Fomby (1997); Tsay (1997); Gonzalez and Gonzalo
(1998); Hansen (1999); and Caner and Hansen (2001)). In particular, Tsay (1997)
proposed a unit root test when the innovations follow a threshold process; Gonzalez
and Gonzalo (1998) studied a TAR(1) model that allows for a unit root; Caner and
Hansen (2001) develops an asymptotic theory of inference for an unrestricted two
regime TAR model with a unit root.

We believe that quantile regression methods can provide an alternative way to
study asymmetric dynamics and persistency in economic time series. Linton and
Whang (2004) have recently proposed related “quantilogram” inference methods for
exploring linear dependence in time series at various quantiles. In this paper, we
propose a new quantile autoregression (QAR) model whose autoregressive coefficient
may take different values (possibly unity) over different quantiles of the innovation
process. We show that some forms of the model can exhibit unit-root like tendencies
or even temporarily explosive behavior, but with occasional episodes of mean reversion
sufficient to insure stationarity. The models lead to interesting new hypotheses and
inference apparatus for economic time series.

The paper is organized as follows: We introduce the model and study some basic
statistical properties of the QAR process in Section 2. Section 3 develops the limiting
distribution of the QAR estimator. Section 4 considers some restrictions imposed
on the model by the monotonicity requirement on the conditional quantile functions.
Statistical inference, including testing for asymmetric dynamics, is explored in Section
5. Section 6 reports a Monte Carlo experiment on the sampling performance of the
proposed inference procedure. Empirical applications to the U.S. unemployment rate
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and the U.S. price of gasoline are discussed in Section 7. Proofs are provided in the
Appendix.

2. The Model

There is a substantial theoretical literature, including Weiss (1987), Knight (1989),
Koul and Saleh(1995), Koul and Mukherjee(1994), Hercé (1996), Hasan and Koenker
(1997), Jurečková and Hallin (1999) dealing with the linear quantile autoregression
model. In this model the τ -th conditional quantile function of the response yt is
expressed as a linear function of lagged values of the response. But a striking feature
of this literature is that it has focused exclusively on the case of iid innovations in
which the conditioning variables play their classical role of shifting the location of
the conditional density of yt, but they have no effect on conditional scale or shape.
In this paper we wish to study estimation and inference in a more general class of
quantile autoregressive (QAR) models in which all of the autoregressive coefficients
are allowed to be τ -dependent, and therefore are capable of altering the location,
scale and shape of the conditional densities.

2.1. The Model. Let {Ut} be a sequence of iid standard uniform random variables,
and consider the pth order autoregressive process,

(1) yt = θ0(Ut) + θ1(Ut)yt−1 + · · · + θp(Ut)yt−p,

where the θj’s are unknown functions [0, 1] → R that we will want to estimate.
Provided that the right hand side of (1) is monotone increasing in Ut, it follows that
the τth conditional quantile function of yt can be written as,

(2) Qyt(τ |yt−1, ..., yt−p) = θ0(τ) + θ1(τ)yt−1 + ...+ θp(τ)yt−p.

or somewhat more compactly as,

(3) Qyt(τ |Ft−1) = x>t θ(τ).

where xt = (1, yt−1, ..., yt−p)
>, and Ft is the σ-field generated by {ys, s ≤ t}. The tran-

sition from (1) to (2) is an immediate consequence of the fact that for any monotone
increasing function g and standard uniform random variable, U , we have

Qg(U)(τ) = g(QU(τ)) = g(τ),

where QU(τ) = τ is the quantile function of U . In the above model, the autore-
gressive coefficients may be τ -dependent and thus can vary over the quantiles. The
conditioning variables not only shift the location of the distribution of yt, but also
may alter the scale and shape of the conditional distribution. We will refer to this
model as the QAR(p) model.

We will argue that QAR models can play a useful role in expanding the modeling
territory between classical stationary linear time series models and their unit root
alternatives. To illustrate this in the QAR(1) case, consider the model

(4) Qyt(τ |Ft−1) = θ0(τ) + θ1(τ)yt−1,
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with θ0(τ) = σΦ−1(τ), and θ1(τ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1) and γ1 > 0. In
this model if Ut > (1 − γ0)/γ1 the model generates the yt according to the standard
Gaussian unit root model, but for smaller realizations of ut we have a mean reversion
tendency. Thus, the model exhibits a form of asymmetric persistence in the sense that
sequences of strongly positive innovations tend to reinforce its unit root like behavior,
while occasional negative realizations induce mean reversion and thus undermine the
persistence of the process. The classical Gaussian AR(1) model is obtained by setting
θ1(τ) to a constant.

The formulation in (4) reveals that the model may be interpreted as rather unusual
form of random coefficient autoregressive (RCAR) model. Such models arise naturally
in many time series applications. Discussions of the role of RCAR models can be
found in, inter alia, Nicholls and Quinn (1982), Tjøstheim(1986), Pourahmadi (1986),
Brandt (1986), Karlsen(1990), and Tong (1990). In contrast to most of the literature
on RCAR models, in which the coefficients are typically assumed to be stochastically
independent of one another, the QAR model has coefficients that are functionally
dependent.

Monotonicity of the conditional quantile functions imposes some discipline on the
forms taken by the θ functions. This discipline essentially requires that the function
Qyt(τ |yt−1, ..., yt−p) is monotone in τ in some relevant region Υ of (yt−1, ..., yt−p)-space.
The correspondance between the random coefficient formulation of the QAR model (1)
and the conditional quantile function formulation (2) presupposes the monotonicity
of the latter in τ . In the region Υ where this monotonicity holds (1) can be regarded
as a valid mechanism for simulating from the QAR model (2). Of course, model (1)
can, even in the absence of this monotonicity, be taken as a valid data generating
mechanism, however the link to the strictly linear conditional quantile model is no
longer valid. At points where the monotonicity is violated the conditional quantile
functions corresponding to the model described by (1) have linear “kinks”. Attempt-
ing to fit such piecewise linear models with linear specifications can be hazardous.
We will return to this issue in the discussion of Section 4. In the next section we
briefly describe some essential features of the QAR model.

2.2. Properties of the QAR Process. The QAR(p) model (1) can be reformulated
in more conventional random coefficient notation as,

(5) yt = µ0 + α1,tyt−1 + · · · + αp,tyt−p + ut

where µ = Eθ0(Ut), ut = θ0(Ut) − µ, and αj,t = θj(Ut), for j = 1, ..., p. Thus, {ut} is
an iid sequence of random variables with distribution function F (·) = θ−1

0 (·+µ), and
the αj,t coefficients are functions of this ut innovation random variable. The QAR(p)
process (5) can be expressed as an p-dimensional vector autoregression process of
order 1:

Yt = Γ + AtYt−1 + Vt
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with

Γ =

[
µ0

0p−1

]
, At =

[
Ap−1,t αp,t
Ip−1 0p−1

]
, Vt =

[
ut

0p−1

]
,

where Ap−1,t = [ α1,t, . . . , αp−1,t ], Yt = [yt, · · ··, yt−p+1]
>, and 0p−1 is the (p − 1)-

dimensional vector of zeros. In the Appendix, we show that under regularity condi-
tions given in the following Theorem, an Ft-measurable solution for (5) can be found.

To formalize the foregoing discussion and facilitate later asymptotic analysis, we
introduce the following conditions.

A.1: {ut} are iid random variables with mean 0 and variance σ2 < ∞. The
distribution function of ut, F , has a continuous density f with f(u) > 0 on
U = {u : 0 < F (u) < 1}.

A.2: Let E(At ⊗ At) = ΩA, the eigenvalues of ΩA have moduli less than unity.
A.3: Denote the conditional distribution function Pr[yt < ·|Ft−1] as Ft−1(·) and

its derivative as ft−1(·), ft−1 is uniformly integrable on U .

Theorem 2.1. Under assumptions A.1 and A.2, the time series yt given by (5) is
covariance stationary and satisfies a central limit theorem

1√
n

n∑

t=1

yt ⇒ N
(
µy, ω

2
y

)
,

where

µy =
µ0

1 −∑p
j=1 µp

; ω2
y = lim

1

n
E[

n∑

t=1

(yt − µy)]
2, and µj = E(αj,t), j = 1, ..., p.

To illustrate some important features of the QAR process, we consider the simplest
case of QAR(1) process,

(6) yt = αtyt−1 + ut,

where αt = θ1(Ut) and ut = θ0(Ut) corresponding to (4), whose properties are sum-
marized in the following corollary.

Corollary 2.1. If yt is determined by (6), and ω2
α = E(αt)

2 < 1, under assumption
A.1, yt is covariance stationary and satisfies a central limit theorem

1√
n

n∑

t=1

yt ⇒ N
(
0, ω2

y

)
,

where

ω2
y =

1 + µα
(1 − µα)(1 − ω2

α)
σ2,

with µα = E(αt) < 1.
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In the example given in Section 2.1, αt = θ1(Ut) = min{γ0 + γ1Ut, 1} ≤ 1, and
Pr (|αt| < 1) > 0, the condition of Corollary 2 holds and the process yt is globally
stationary but can still display local (and asymmetric) persistency in the presence of
certain type of shocks (positive shocks in the example). Corollary 2 also indicates
that even with αt > 1 over some range of quantiles, as long as ω2

α = E(αt)
2 < 1,

yt can still be covariance stationary in the long run. Thus, a quantile autoregressive
process may allow for some (transient) forms of explosive behavior while maintaining
stationarity in the long run.

Under the assumptions in Corollary 2, by recursively substituting in (6), we can
see that

(7) yt =

∞∑

j=0

βt,jut−j, where βt,0 = 1, and βt,j =

j−1∏

i=0

αt−i, for j ≥ 1.

is a stationary Ft-measurable solution to (6). In addition, if
∑∞

j=0 βt,jvt−j converges

in Lp, then yt has a finite p-th order moment. The Ft-measurable solution of (6) gives
a doubly stochastic MA(∞) representation of yt. In particular, the impulse response
of yt to a shock ut−j is stochastic and is given by βt,j. On the other hand, although the
impulse response of the quantile autoregressive process is stochastic, it does converge
(to zero) in mean square (and thus in probability) as j → ∞, corroborating the
stationarity of yt. If we denote the autocovariance function of yt by γy(h), it is easy
to verify that

γy(h) = µ|h|
α σ

2
y, where σ2

y =
σ2

1 − ω2
α

.

Remark 2.1. Comparing to the QAR(1) process yt, if we consider a conventional
AR(1) process with autoregressive coefficient µα and denote the corresponding process
by y

t
, the long-run variance of yt (given by ω2

y) is (as expected) larger than that of
y
t
. The additional variance the QAR process yt comes from the variation of αt. In

fact, ω2
y can be decomposed into the summation of the long-run variance of y

t
and an

additional term that is determined by the variance of αt:

ω2
y = ω2

y +
σ2

(1 − µα)2(1 − ω2
α)

Var(αt),

where ω2
y = σ2/(1 − µα)

2 is the long-run variance of y
t
.

We consider estimation and related inference on the QAR model in the next two
sections.

3. Estimation

Estimation of the quantile autoregressive model (3) involves solving the problem

(8) min
θ∈Rp+1

n∑

t=1

ρτ (yt − x>t θ),
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where ρτ (u) = u(τ − I(u < 0)) as in Koenker and Bassett (1978). Solutions, θ̂(τ), are

called autoregression quantiles. Given θ̂(τ), the τ -th conditional quantile function of
yt, conditional on xt, could be estimated by,

Q̂yt(τ |xt) = x>t θ̂(τ),

and the conditional density of yt can be estimated by the difference quotients,

f̂yt(τ |xt−1) = (τi − τi−1)/(Q̂yt(τi|xt−1) − Q̂yt(τi−1|xt−1)),

for some appropriately chosen sequence of τ ’s.
If we denote E(yt) as µy, E(ytyt−j) as γj, and let Ω0 = E(xtx

>
t ) = limn−1

∑n
t=1 xtx

>
t ,

then

Ω0 =

[
1 µy
µy Ωy

]

where

Ωy =




γ0 · · · γp−1
...

. . .
...

γp−1 · · · γ0


 .

In the special case of QAR(1) model (6), Ω0 = E(xtx
>
t ) = diag[1, γ0], γ0 = E[y2

t ].
Let Ω1 = limn−1

∑n
t=1 ft−1[F

−1
t−1(τ)]xtx

>
t , and define Σ = Ω−1

1 Ω0Ω
−1
1 . The asymptotic

distribution of θ̂(τ) is summarized in the following Theorem.

Theorem 3.1. Under assumptions A.1 - A.3,

Σ−1/2
√
n(θ̂(τ) − θ(τ)) ⇒ Bk(τ),

where Bk(τ) represents a k-dimensional standard Brownian Bridge, k = p+ 1.

By definition, for any fixed τ , Bk(τ) is N (0, τ(1 − τ)Ik). In the important special
case with constant coefficients, Ω1 = f [F−1(τ)]Ω0, where f(·) and F (·) are the density
and distribution functions of ut, respectively. We state this result in the following
corollary.

Corollary 3.1. Under assumptions A.1 - A.3, if the coefficients αjt are constants,
then [

f [F−1(τ)]−1Ω0

]1/2 √
n(θ̂(τ) − θ(τ)) ⇒ Bk(τ).

An alternative form of the model that is widely used in economic applications is

(9) yt = µ0 + δ0,tyt−1 +

p−1∑

j=1

δj,t∆yt−j + ut,

where, corresponding to (5),

δ0,t =

p∑

s=1

αs,t, δj,t = −
p∑

s=j+1

αs,t, j = 1, · · ·, p− 1.
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In the above transformed model, δ0,t is the critical parameter corresponding the largest
autoregressive root. Let zt = (1, yt−1,∆yt−1, ...,∆yt−p+1)

>, we may write the quantile
regression counterpart of (9) as

(10) Qyt(τ |Ft−1) = z>t δ(τ).

where

δ(τ) = (α0(τ), δ0(τ), δ1(τ), · · ·, δp−1(τ))
>.

The limiting distributions of the quantile regression estimators δ̂(τ) can be obtained
from our previous analysis. If we define

J =




1 0 0 · · · 0
0 1 1 · · · 1
0 0 −1 −1

. . .
0 0 0 · · · −1




, and ∆ = JΣJ

then we have, under assumptions A.1 - A.3,

∆−1/2
√
n(δ̂(τ) − δ(τ)) ⇒ Bk(τ).

If we focus our attention on the largest autoregressive root δ0,t in the ADF type
regression (9) and consider the special case that δj,t = constant for j = 1, ..., p − 1,
then, a result similar to Corollary 2 can be obtained.

Corollary 3.2. Under assumptions A.1-A.3, if δj,t = constant for j = 1, ..., p − 1,
and δ0,t ≤ 1 and |δ0,t| < 1 with positive probability, then the time series yt given by
(9) is covariance stationary and satisfies a central limit theorem.

4. Quantile Monotonicity

As in other linear quantile regression applications, linear QAR models should
be cautiously interpreted as useful local approximations to more complex nonlin-
ear global models. If we take the linear form of the model too literally then obviously
at some point, or points, there will be “crossings” of the conditional quantile func-
tions – unless these functions are precisely parallel in which case we are back to the
pure location shift form of the model. This crossing problem appears more acute in
the autoregressive case than in ordinary regression applications since the support of
the design space, i.e. the set of xt that occur with positive probability, is determined
within the model. Nevertheless, we may still regard the linear models specified above
as valid local approximations over a region of interest.

It should be stressed that the estimated conditional quantile functions,

Q̂y(τ |x) = x>θ̂(τ),
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Figure 1. QAR and Unit Root Time-Series: The figure contrasts two
time series generated by the same sequence of innovations. The grey
sample path is a random walk with standard Gaussian innovations; the
black sample path illustrates a QAR series generated by the same inno-
vations with random AR(1) coefficient .85+ .25Φ(ut). The latter series
although exhibiting explosive behavior in the upper tail is stationary
as described in the text.

are guaranteed to be monotone at the mean design point, x = x̄, as shown in Bassett
and Koenker (1982), for linear quantile regression models. Crossing, when it occurs,
is generally confined to outlying regions of the design space. In our random coefficient
view of the QAR model,

yt = x>t θ(Ut)

we express the observable random variable yt as a linear function conditioning covari-
ates. But rather than assuming that the coordinates of the vector θ are independent
random variables we adopt a diametrically opposite viewpoint – that they are per-
fectly functionally dependent, all driven by a single random uniform variable. If the
functions (θ0, ..., θp) are all monotonically increasing then the coordinates of the ran-
dom vector αt are said to be comonotonic in the sense of Schmeidler (1986).1 This is
often the case, but there are important cases for which this monotonicity fails. What
then?

What really matters is that we can find a linear reparameterization of the model
that does exhibit comonotonicity over some relevant region of covariate space. Since

1Random variables X and Y on a probability space (Ω,A, P ) are said to be comonotonic if there
are monotone functions, g and h and a random variable Z on (Ω,A, P ) such that X = g(Z) and
Y = h(Z).
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Figure 2. Estimating the QAR model: The figure illustrates estimates
of the QAR(1) model based on the black time series of the previous
figure. The left panel represents the intercept estimate at 19 equally
spaced quantiles, the right panel represents the AR(1) slope estimate at
the same quantiles. The shaded region is a .90 confidence band. Note
that the slope estimate quite accurate reproduces the linear form of the
QAR(1) coefficient used to generate the data.

for any nonsingular matrix A we can write,

Qy(τ |x) = x>A−1Aθ(τ),

we can choose p + 1 linearly independent design points {xs : s = 1, ..., p + 1} where
Qy(τ |xs) is monotone in τ , then choosing the matrix A so that Axs is the sth unit
basis vector for R

p+1 we have

Qy(τ |xs) = γs(τ),

where γ = Aθ. And now inside the convex hull of of our selected points we have
a comonotonic random coefficient representation of the model. In effect, we have
simply reparameterized the design so that the p + 1 coefficients are the conditional
quantile functions of yt at the selected points. The fact that quantile functions of sums
of nonnegative comonotonic random variables are sums of their marginal quantile
functions, see e.g. Denneberg(1994), allows us to interpolate inside the convex hull.
Of course, linear extrapolation is also possible but we must be cautious about possible
violations of the monotonicity requirement in this region.

The interpretation of linear conditional quantile functions as approximations to the
local behavior in central range of the covariate space should always be regarded as
provisional; richer data sources can be expected to yield more elaborate nonlinear
specifications that would have validity over larger regions. Figure 1 illustrates a
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Figure 3. QAR(1) Model of U.S. Short Term Interest Rate: The
AR(1) scatterplot of the U.S. three month rate is superimposed in
the left panel with 49 equally spaced estimates of linear conditional
quantile functions. In the right panel the model is augmented with a
nonlinear (quadratic) component. The introduction of the quadratic
component alleviates some nonmonotonicity in the estimated quantiles
at low interest rates.

realization of the simple QAR(1) model described in Section 2. The black sample
path shows 1000 observations generated from the model (4) with AR(1) coefficient
θ1(u) = .85 + .25u and θ0(u) = Φ−1(u). The grey sample path depicts the a random
walk generated from the same innovation sequence, i.e. the same θ0(Ut)’s but with
constant θ1 equal to one. It is easy to verify that the QAR(1) form of the model
satisfies the stationarity conditions of Section 2.2, and despite the explosive character
of its upper tail behavior we observe that the series appears quite stationary, at least
by comparison to the random walk series. Estimating the QAR(1) model at 19 equally
spaced quantiles yields the intercept and slope estimates depicted in Figure 2.

Figure 3 depicts estimated linear conditional quantile functions for short term
(three month) US interest rates using the QAR(1) model superimposed on the AR(1)
scatter plot. In this example the scatterplot shows clearly that there is more dis-
persion at higher interest rates, with nearly degenerate behavior at very low rates.
The fitted linear quantile regression lines in the left panel show little evidence of
crossing, but at rates below .04 there are some violations of the monotonicity re-
quirement in the fitted quantile functions. Fitting the data using a somewhat more
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Figure 4. QAR(1) Model of U.S. Short Term Interest Rate: The
QAR(1) estimates of the intercept and slope parameters for 19 equally
spaced quantile functions are illustrated in the two plots. Note that
the slope parameter is, like the prior simulated example, explosive in
the upper tail but mean reverting in the lower tail.

complex nonlinear (in variables) model by introducing a another additive component
θ2(τ)(yt−1 − δ)2I(yt−1 < δ) with δ = 8 in our example we can eliminate the prob-
lem of the crossing of the fitted quantile functions. In Figure 4 depicting the fitted
coefficients of the QAR(1) model and their confidence region, we see that the esti-
mated slope coefficient of the QAR(1) model has somewhat similar appearance to the
simulated example. Even more flexible models may be needed in other settings. A
B-spline expansion QAR(1) model for Melbourne daily temperature is described in
Koenker(2000) illustrating this approach.

The statistical properties of nonlinear QAR models and associated estimators are
much more complicated than the linear QAR model that we study in the present
paper. Despite the possible crossing of quantile curves, we believe that the linear QAR
model provides a convenient and useful local approximation to nonlinear QAR models.
Such simplied QAR models can still deliver important insight about dynamics, e.g.
adjustment asymmetries, in economic time series and thus provides a useful tool in
empirical diagnostic time series analysis.
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5. Inference On The QAR Process

In this section, we turn our attention to inference in QAR models. Although
other inference problems can be analyzed, we consider here the following inference
problems that are of paramount interest in many applications. The first hypothesis is
the quantile regression analog of the classical representation of linear restrictions on
θ: (1) H01 : Rθ(τ) = r, with known R and r, where R denotes an q × p-dimensional
matrix and r is an q-dimensional vector. In addition to the classical inference problem,
we are also interested in testing for asymmetric dynamics under the QAR framework.
Thus we consider the hypothesis of parameter constancy, which can be formulated in
the form of: (2) H02 : Rθ(τ) = r, with unknown but estimable r. We consider both
the cases at specific quantiles τ (say, median, lower quartile, upper quartile) and the
case over a range of quantiles τ ∈ T .

5.1. The Regression Wald Process and Related Tests. Under the linear hy-
pothesis H01 : Rθ(τ) = r and the assumptions of Theorem 3, we have

(11) Vn(τ) =
√
n
[
RΩ−1

1 Ω0Ω
−1
1 R>

]−1/2
(Rθ̂(τ) − r) ⇒ Bq(τ),

where Bq(τ) represents a q-dimensional standard Brownian Bridge. For any fixed τ ,
Bq(τ) is N (0, τ(1− τ)Iq). Therefore, the regression Wald process can be constructed
as

Wn(τ) = n(Rθ̂(τ) − r)>[τ(1 − τ)RΩ̂−1
1 Ω̂0Ω̂

−1
1 R>]−1(Rθ̂(τ) − r),

where Ω̂1 and Ω̂0 are consistent estimators of Ω1 and Ω0. If we are interested in testing
Rθ(τ) = r over τ ∈ T , we may consider, say, the following Kolmogorov-Smirnov (KS)
type sup-Wald test:

KSWn = sup
τ∈T

Wn(τ),

If we are interested in testing Rθ(τ) = r at a particular quantile τ = τ0, a Chi-square
test can be conducted based on the statistic Wn(τ0). The limiting distributions are
summarized in the following Theorem.

Theorem 5.1. Under the assumptions of Theorem 3 and the linear restriction H01,

Wn(τ0) ⇒ χ2
q, and KSWn = sup

τ∈T
Wn(τ) ⇒ sup

τ∈T
Q2
q(τ),

where Qq(τ) = ‖Bq(τ)‖ /
√
τ(1 − τ) is a Bessel process of order q, where ‖·‖ represents

the Euclidean norm. For any fixed τ, Q2
q(τ) ∼ χ2

q is a centered Chi-square random
variable with q-degrees of freedom.
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5.2. Testing For Asymmetric Dynamics. The hypothesis that θj(τ), j = 1, · ·
·, p, are constants over τ (i.e. θj(τ) = µj) can be represented in the form of H02 :

Rθ(τ) = r by taking R = [0p×1
...Ip] and r = [µ1, · · ·, µp]′, with unknown parameters

µ1, · · ·, µp. The Wald process and associated limiting theory provide a natural test
for the hypothesis Rθ(τ) = r when r is known. To test the hypothesis with unknown
r, appropriate estimator of r is needed. In many econometrics applications, a

√
n-

consistent estimator of r is available. If we look at the process

V̂n(τ) =
√
n
[
RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>

]−1/2

(Rθ̂(τ) − r̂),

then under H02,

V̂n(τ) =
√
n
[
RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>

]−1/2

(Rθ̂(τ) − r) −√
n
[
RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>

]−1/2

(r̂ − r)

⇒ Bq(τ) − f(F−1(τ))
[
RΩ−1

0 R>
]−1/2

Z(12)

where Z = lim
√
n(r̂−r). The necessity of estimating r introduces a drift component

(f(F−1(τ))
[
RΩ−1

0 R>
]−1/2

Z) in addition to the simple Brownian bridge process, in-
validating the distribution-free character of the original Kolmogorov-Smirnov (KS)
test.

To restore the asymptotically distribution free nature of inference, we employ a
martingale transformation proposed by Khmaladze (1981) over the process V̂n(τ).

Denote df(x)/dx as ḟ , and define

ġ(r) = (1, (ḟ/f)(F−1(r)))>, and C(s) =

∫ 1

s

ġ(r)ġ(r)>dr,

we construct a martingale transformation K on V̂n(τ) defined as:

Ṽn(τ) = KV̂n(τ) = V̂n(τ) −
∫ τ

0

[
ġn(s)

>C−1
n (s)

∫ 1

s

ġn(r)dV̂n(r)

]
ds,

where ġn(s) and Cn(s) are uniformly consistent estimators of ġ(r) and C(s) over
τ ∈ T , and propose the following Kolmogorov-Smirnov2 type test based on the trans-
formed process:

(13) KHn = sup
τ∈T

∥∥∥Ṽn(τ)
∥∥∥ .

Under the null hypothesis, the transformed process Ṽn(τ) converges to a standard
Brownian motion. For more discussions of quantile regression inference based on the
martingale transformation approach, see, Koenker and Xiao (2002) and references
therein.

2A Cramer-von-Mises type test based on the transformed process can also be constructed and
analysed in a similar way.



Roger Koenker and Zhijie Xiao 15

We assume the following assumptions on the estimators.

A.4: There exist estimators ġn(τ), Ω̂0 and Ω̂1 satisfying:
i.: supτ∈ |ġn(τ) − ġ(τ)| = op(1),

ii.: ||Ω̂0 − Ω0|| = op(1), ||Ω̂1 − Ω1|| = op(1),
√
n(r̂ − r) = Op(1).

Theorem 5.2. Under the assumptions A.1 - A.4 and the hypothesis H02,

Ṽn(τ) ⇒Wq(τ), KHn = sup
τ∈T

∥∥∥Ṽn(τ)
∥∥∥⇒ sup

τ∈T
‖Wq(τ)‖ ,

where Wq(r) is a q-dimensional standard Brownian motion.

The martingale transformation is based on function ġ(s) which needs to be esti-
mated. There have been quite a few approaches in estimating the score:

f ′

f
(F−1(s)).

Portnoy and Koenker (1989) studied adaptive estimation and employed kernel-smoothing
method in estimating the density and score functions, uniform consistency of the esti-
mators is also discussed. Cox (1985) proposed an elegant smoothing spline approach
to the estimation of f ′/f and Ng (1995) provided an efficient algorithm for computing

this score estimator. Estimation of Ω0 is straightforward: Ω̂0 = n−1
∑

t xtx
>
t . For the

estimation of Ω̂1, see, inter alia, Koenker and Bassett(1982), Koenker (1994), Powell
(1987), and Koenker and Machado (1999) for related discussions.

6. Monte Carlo

We conducted a Monte Carlo experiment to examine the effectiveness of inference
procedures based on the QAR method. To investigate the finite sample performance
of QAR based inference procedures, we examine the empirical size and power of the
proposed tests and report the representative results in Tables 1-3. The data in our
experiments were generated from model (6), where ut are i.i.d. random variables. We
are particularly interested in whether or not the time series yt display asymmetric
dynamics. Thus, we consider quantile autoregression (2) with p = 1 and test the
hypothesis that α1(τ) = constant over τ .

For the tests, we consider the Kolmogorov-Smirnov type test KHn given by (13) for
different sample sizes and different innovation distributions. We choose T = [0.1, 0.9].
Both the case where ut are standard normal variates and the case that ut are student-
t distributed variables with 3 degrees of freedom are considered. The number of
repetitions is 1000, and two sample sizes are examined: n = 100, and n = 300.

When αt = constant, the empirical rejection rates gives the size of test. we report
the sizees of this test for three choices of αt : (1) αt = 0.95; (2) αt = 0.9; (3)
αt = 0.6. The first two choices of αt (0.95 and 0.9) are large and close to unity so
that the corresponding time series display cartain degree of (symmetric) persistence.
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Under the alternatives, the processes display asymmetric dynamics. For the choice
of alternatives, we considered the following four choices of αt,

αt = ϕ1(ut) =

{
1, ut ≥ 0,
0.8, ut < 0.

αt = ϕ2(ut) =

{
0.95, ut ≥ 0,
0.8, ut < 0.

αt = ϕ3(ut) = min{0.5 + Fu(ut), 1}
αt = ϕ4(ut) = min{0.75 + Fu(ut), 1}

These alternatives deliver processes with different types of asymmetric (or local)
persistency. In particular, when αt = ϕ1(ut), ϕ3(ut), ϕ4(ut), yt display unit root
behavior in the presence of positive or large values of innovations, but have a mean
reversion tendency with negative shocks. The alternative αt = ϕ2(ut) has local to (or
weak) unit root behavior in the presence of positive of innovations, and behave more
stationarily when there are negative shocks.

The construction of tests uses estimators of the density and score. We estimate the
density (or sparsity function) using the approach described in the text. For the score
function ġ, we employ the adaptive kernel estimator of Portnoy and Koenker (1989).

The density estimation exerts important influence on the finite sample performance
of our test. Unsuitable bandwidth selection can produce poor estimates. For this
reason, we pay particular attention to the bandwidth choice in density estimation. In
the experiments, we consider the bandwidth choices suggested by Hall and Sheather
(1988) and Bofinger (1975) and rescaled versions of them. A bandwidth rule that
Hall and Sheather (1988) suggested based on Edgeworth expansion for studentized
quantiles is

hHS = n−1/3z2/3
α [1.5s(t)/s′′(t)]1/3,

where zα satisfies Φ(zα) = 1− α/2 for the construction of 1 − α confidence intervals,
and s(t) = ϕ0(t)

−1. In the absence of other information about the form of s(·), we
plug-in the Gaussian model to select bandwidth and obtain

hHS = n−1/3z2/3
α [1.5φ2(Φ−1(t))/(2(Φ−1(t))2 + 1)]1/3.

Another bandwidth selection has been proposed by Bofinger (1975). The Bofinger
bandwidth hB was derived based on minimizing the mean squared error of the density
estimator and is of order n−1/5:

hB = n−1/5[4.5s2(t)/(s′′(t))2]1/5.

Again, we plug-in the Gaussian density and obtain the following bandwidth that has
been widely used in practice

hB = n−1/5[4.5φ4(Φ−1(t))/(2(Φ−1(t))2 + 1)2]1/5.

The Monte Carlo results indicate that the Hall-Sheather bandwidth provides a
good lower bound and the Bofinger bandwidth provides a reasonable upper bound
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for bandwidth selection in testing parameter constancy. For this reason, we consider
bandwidth values between hHS and hB. In particular, we consider rescaled versions
of hB and hHS (θhB and δhHS where 0 < θ < 1 and δ > 1 are scalars) in our Monte
Carlo and representative results are reported. Bandwidth values that are constant
over the whole range of quantiles are not recommended. The sampling performance
of tests using a constant bandwidth turned out to be poor, and are inferior than
bandwidth choices such as the Hall/Sheather or Bofinger bandwidth that varies over
the quantiles. For these reason, we focus on bandwidth hB, hHS, θhB, and δhHS.

The score function was estimated by the method of Portnoy and Koenker (1989)
and we choose the Silverman (1986) bandwidth in our Monte Carlo. Our simulation
results show that the test is more affected by the estimation of the density than that
of the score. Intuitively, the estimator of the density plays the role of a scalar and thus
has the largest influence. The Monte Carlo results also indicates that the method of
Portnoy and Koenker (1989) coupled with the Silverman bandwidth has reasonably
good performance. Table 1 reports the empirical size and power for the case with
Gaussian innovations and sample size n = 100. Considering the fact that many finan-
cial applications have notoriously heavy-tailed behavior we consider processes with
heavy-tailed distributions. Table 2 reports results when ut are student-t innovations.
The sample size corresponding to Table 2 is still n = 100. Results in Table 2 confirm
that, using the quantile regression based approach, power gain can be obtained in
the presence of heavy-tailed disturbances. Experiments based on larger sample sizes
are also conductedand Table 3 reports the size and power for the case with Gaussian
innovations and sample size n = 300. Results in Table 3 is qualitatively similar to
that of Table 1, but it also shows that, as the sample sizes increase, the tests do have
improved size and power properties, corroborating the asymptotic theory. In sum-
mary, the Monte Carlo results indicate that, by choosing appropriate bandwidth, the
proposed tests have reasonable size and power properties. The test using a rescaled
version of Bofinger bandwidth (h = 0.6hB) yields good performance in all three cases.
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Table 1: Testing Constancy of Coefficient α
Bandwidth h = 3hHS h = hHS h = hB h = 0.6hB

Empirical Size
αt = 0.95 0.073 0.287 0.018 0.056
αt = 0.9 0.073 0.275 0.01 0.046
αt = 0.6 0.07 0.287 0.012 0.052

Empirical Power
αt = ϕ1(ut) 0.474 0.795 0.271 0.391
αt = ϕ2(ut) 0.262 0.620 0.121 0.234
αt = ϕ3(ut) 0.652 0.939 0.322 0.533
αt = ϕ4(ut) 0.159 0.548 0.046 0.114

ut = N(0,1), n = 100, Number of replication =1000

Table 2: Testing Constancy of Coefficient α
h = 3hHS h = hHS h = hB h = 0.6hB

Empirical Size
αt = 0.95 0.086 0.339 0.011 0.059
αt = 0.9 0.072 0.301 0.015 0.043
αt = 0.6 0.072 0.305 0.013 0.038

Empirical Power
αt = ϕ1(ut) 0.556 0.819 0.319 0.444
αt = ϕ2(ut) 0.348 0.671 0.174 0.279
αt = ϕ3(ut) 0.713 0.933 0.346 0.55
αt = ϕ4(ut) 0.284 0.685 0.061 0.162

ut = t(3), n = 100, Number of replication =1000
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Table 3: Testing Constancy of Coefficient α
h = 3hHS h = hHS h = hB h = 0.6hB

Empirical Size
αt = 0.95 0.081 0.191 0.028 0.049
αt = 0.9 0.098 0.189 0.03 0.056
αt = 0.6 0.097 0.16 0.02 0.045

Empirical Power
αt = ϕ1(ut) 0.974 0.992 0.921 0.937
αt = ϕ2(ut) 0.831 0.923 0.685 0.763
αt = ϕ3(ut) 0.998 1 0.971 0.989
αt = ϕ4(ut) 0.557 0.897 0.235 0.392

ut = N(0,1), n = 300, Number of replication =1000

7. Empirical Applications

There have been many claims and observations that some economic time series are
asymmetric. For example, it has been observed that increases in the unemployment
rate are sharper than declines; firms are more apt to increase than to decrease in
prices. It has also been argued that positive shocks to the economy may be more
persistent than negative shocks. For this reason, studies have been conducted on
the existence of asymmetric behavior in these series. If an economic time series
displays asymmetric dynamics systematically, then appropriate models are needed to
incorporate such behavior. In this section, we apply the QAR model to two economic
time series: unemployment rates and retail gasoline prices in the US. Our empirical
analysis indicate that both series display asymmetric dynamics.

7.1. Unemployment Rate. Many studies on unemployment suggest that the re-
sponse of unemployment to expansionary or contractionary shocks may be asymmet-
ric. An asymmetric response to different types of shocks has important implications
in policy. In this section, we examine unemployment dynamics using the proposed
procedures.

The data that we consider are quarterly and annual rates of unemployment in the
US. In particular, we looked at (seasonally adjusted) quarterly rates, starting from the
first quarter of 1948 and ending at the last quarter of 2003, with 224 observations.
and the annual rates are from 1890 to 1996. Many empirical studies in the unit
root literature have investigated unemployment rate data. Nelson and Plosser (1982)
studied the unit root property of annual US unemployment rates in their seminal
work on fourteen macroeconomic time series. Evidence based on the unit root tests
suggests that the series is stationary. This series and other type unemployment rates
have been often re-examined in later analysis.
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We first apply regression (10) on the unemployment rates. We use the BIC criterion
of Schwarz (1978) and Rissanen (1978) in selecting the appropriate lag length of the
autoregressions. The selected lag length is p = 3 for the annual data and p = 2 for
the quarterly data. The OLS estimation of the largest autoregressive root is 0.718 for
the annual series and 0.941 for the quarterly rates. Quantile autoregression was also
performed for each deciles. The estimates of the largest autoregressive root at each
quantile is reported in Table 4. These estimated values are different over different
quantiles, displaying asymmetric dynamics over the business cycle. In particular,
we find that in the presence of negative shocks, the estimated autoregressive root is
generally larger.

Table 4: The Estimated Largest AR Root at Each Decile of Unemployment
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Annual Data
δ0(τ) 0.7406 0.7765 0.9293 0.8710 0.8588 0.7933 0.7270 0.6808 0.5991

Quarterly Data
δ0τ) 0.912 0.908 0.931 0.919 0.951 0.959 0.967 0.962 0.953

We then test asymmetric dynamics using the martingale transformation based
Kolmogorov-Smirnov procedure (13) based on quantile autoregression (8). Accord-
ing to the suggestion from the Monte Carlo results, we choose the rescaled Hall and
Sheather (1988) bandwidth 3hHS and the rescaled Bofinger (1975) bandwidth 0.6hB in
estimating the density function. The tests were constructed over τ ∈ T = [0.05, 0.95]
and results are reported in Table 5. The empirical results indicate that asymmetric
behavior exist in these series.

Table 5: The Kolmogrov Test supτ∈T

∥∥∥Ṽn(τ)
∥∥∥

Bandwidth 0.6hB 3hHS 5% Critical Values
Annual Rate 4.8962 5.1172 4.523

Quarterly Rate 4.4599 5.3637 3.393

7.2. Retail Gasoline Price Dynamics. Our second application investigates the
asymptotic price dynamics in the retail gasoline market. It has been documented that
many markets exist asymmetric price dynamics. In this section, we apply the QAR
madel to the US retail gasoline prices and investigate the existence of asymmetric
price adjustment. We consider weekly data of US regular gasoline retail price from
August 20, 1990 to Februry 16, 2004. The sample size is 699.

Table 7 report the OLS based augmented Dickey-Fuller regression estimation results
and the ADF tests for the null hypothesis of a unit root (again we use the BIC criterion
to select the lag length (p = 4) of the autoregressions.) The evidence we obtain is
marginal; the unit root null is rejected by the coefficient based test ADFα, but can
not be rejected by the t ratio based test ADFt.
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We next consider quantile regression based on the ADF model (9) to examine the
persistency behavior of the gasoline price series at various quantiles. In particular,

Table 6 reports the estimates of the largest autoregressive roots δ̂0(τ) at each decile.
The evidence based on these point estimates of the largest autoregressive root at each
quantile suggests that the gasoline price series has asymmetric dynamics. From the
table we can see that there exists asymmetry in persistency. The largest autoregres-

sive coefficient estimate δ̂0(τ) has different values over different quantiles, displaying

asymmetric dynamics over the business cycle. In particular, δ̂0(τ) monotonically in-
creases when we move from lower quantiles to higher quantiles. The autoregressive
coefficient values at the lower quantiles are relatively small, indicating that the local
behavior of the gasoline price would be stationary. However, at higher quantiles, the
largest autoregressive root is close to or even slightly above unity, consequently the
time series display unit root or locally explosive behavior at upper quantiles.

Table 6: The Estimated Largest AR Root at Each Decile of Gasoline Price
τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ̂0(τ) 0.948 0.958 0.971 0.980 0.996 1.005 1.016 1.024 1.047

Table 7: Unit Root Tests
Test Statistic 5% Critical Values

OLS Based ADFα test −17.1385 −14.1
OLS Based ADFt test −2.6731 −2.86

supτ∈T

∥∥∥Ṽn(τ)
∥∥∥ 8.34774 5.560

QKSα 35.7941 13.2181
QCMα 320.407 19.7209

We next perform formal tests for the null hypothesis that the gasoline price se-
ries has constant autoregressive coefficents. We apply the martingale transformation
based Kolmogorov-Smirnov procedure (13) based on quantile autoregression (2), con-
stancy of coefficients is rejected. The calculated Kolmogorov-Smirnov statistic (using
the rescaled Bofinger (1975) bandwidth 0.6hB is 8.347735 (lag length p = 4), which is
larger than the 5% level critical value (5.56). However, taking into account of the unit
root behavior under the null, we consider the following (coefficient-based) empirical
quantile process

Un(τ) = n(δ̂0(τ) − 1),

and the Kolmogorov-Smirnov (KS) or Cramer-von-Mises (CvM) type tests:

(14) QKSα = sup
τ∈T

|Un(τ)| , QCMα =

∫

τ∈T

Un(τ)
2dτ .
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Using the results of unit root quantile regression asymptotics provided by Koenker
and Xiao (2003), we have, under the unit root hypothesis,

(15) Un(τ) ⇒ U(τ) =
1

f(F−1(τ))

[∫ 1

0

B2
y

]−1 ∫ 1

0

BydB
τ
ψ.

where Bw(r) andBτ
ψ(r) are limiting processes of n−1/2

∑[nr]
t=1 ∆yt and n−1/2

∑[nr]
t=1 ψτ (utτ )).

We adopt the approach of Koenker and Xiao (2003) and approximate the distribu-
tions of the limiting variates by resampling method and construct bootstrap tests for
the unit root hypothesis based on (14).

Table 7 reports the QKSα and QCMα tests for the null hypothesis of a constant
unit root. The 5% level critical values calculated based on the resampling procedure
are also reported in the table. The constant unit root hypothesis is rejected at 5%
level by both tests. These results, together with the point estimates reported in Table
6, indicate that the gasoline price series has asymmetric adjustment dynamics and
thus is not well characterized as a constant coefficient unit root process.
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8. Appendix: Proofs

8.1. Proof of Theorem 1. Giving a p-th order autoregression process (5), we denote
E(αj,t) = µj, and assume that 1 −∑µj 6= 0. Let µ = µ0/(1 −

∑p
j=1 µj), and denote

y
t
= yt − µ

we have

(16) y
t
= α1,tyt−1

+ · · · + αp,tyt−p + vt,

where

vt = ut + µ

p∑

l=1

(αl,t − µl).

It’s easy to see that Evt = 0 and Evtvs = 0 for any t 6= s since Eαl,t = µl and ut
are independent. In order to derive stationarity conditions for the process y

t
, we first

find an Ft-measurable solution for (16). We define the p× 1 random vectors

Y t = [y
t
, · · ··, y

t−p+1
]′, Vt = [vt, 0, · · ·, 0]′

and the p× p random matrix

At =

[
Ap−1,t αp,t
Ip−1 0p−1

]
,

where Ap−1,t = [ α1,t, . . . , αp−1,t ] and 0p−1 is the (p − 1)-dimensional vector of
zeros, then

E(VtV
′
t ) =

[
σ2
v 01×(p−1)

0(p−1)×1 0(p−1)×(p−1)

]
= Σ

and the original process can be written as

Y t = AtY t−1 + Vt

By substitution, we have

Y t = Vt + AtVt−1 + AtAt−1Vt−2 + [At · · · At−m+1]Vt−m + [At · · ·At−m]Y t−m−1

= Y t,m +Rt,m

where

Y t,m =

m∑

j=0

BjVt−j, Rt,m = Bm+1Y t−m−1, and Bj =

{ ∏j−1
l=0 At−l, j ≥ 1.

I, j = 0.
.

The stationarity of an Ft-measurable solution for yt involves the convergence of
{∑m

j=0BjVt−j} and {Rt,m} as m increases, for fixed t. Following a similar analysis as

Nicholls and Quinn (1982, Chapter 2), We need to verify that vecE
[
Y t,mY

′
t,m

]
con-

verges as m→ ∞. Notice that Bj is independent with Vt−j and {ut, t = 0,±1,±2, ···}
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are independent random variables, thus, {BjVt−j}∞j=0 is an orthogonal sequence in the

sense that E[BjVt−jBkVt−k] = 0 for any j 6= k. Thus

vecE
[
Y t,mY

′
t,m

]
= vecE

[
(
m∑

j=0

BjVt−j)(
m∑

j=0

BjVt−j)
′

]
= vecE

[
m∑

j=0

BjVt−jV
′
t−jB

′
j

]

Notice that vec(ABC) = (C ′⊗A)vec(B), and
(∏j

l=0Al

)
⊗
(∏j

k=0Bk

)
=
∏j

k=0(Ak⊗
Bk), we have

vecE

[
m∑

j=0

BjVt−jV
′
t−jB

′
j

]
= E

[
m∑

j=0

(Bj ⊗Bj)vec(Vt−jV
′
t−j)

]

= E

[
m∑

j=0

(
j−1∏

l=0

At−l

)
⊗
(
j−1∏

l=0

At−l

)
vec(Vt−jV

′
t−j)

]

=
m∑

j=0

j−1∏

l=0

E(At−l ⊗ At−l)vecE(Vt−jV
′
t−j)

If we denote

A = E[At] =

[
µp−1 αp
Ip−1 0p−1

]
,

where µp−1 = [ α1, . . . , αp−1 ], then At = A+ Ξt, where E(Ξt) = 0, and

E(At−l ⊗ At−l) = E [(A+ Ξt) ⊗ (A+ Ξt)] = A⊗ A+ E(Ξt ⊗ Ξt) = ΩA

then

vecE

[
(
m∑

j=0

BjVt−j)(
m∑

j=0

BjVt−j)
′

]
=

m∑

j=0

Ωj
Avec(Σ).

The critical condition for the stationarity of the process y
t
is that

∑m
j=0 Ωj

A converges
as m→ ∞.

The matrix ΩA may be represented in Jordan canonical form as ΩA = PΛP−1,
where Λ has the eigenvalues of ΩA along its main diagonal. If the eigenvalues of ΩA

have moduli less than unity, Λj converges to zero at a geometric rate. Notice that
Ωj
A = PΛjP−1, following a similar analysis as Nicholls and Quinn (1982, Chapter 2),

Y t (and thus yt) is stationary and can be represented as

Y t =

∞∑

j=0

BjVt−j.

The central limit theorem then follows from Billingsley (1961) (also see Nicholls and
Quinn (1982, Theorem A.1.4)).
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8.2. Proof of Theorem 3. If we denote v̂ =
√
n(θ̂(τ)−θ(τ)), then ρτ (yt−θ̂(τ)>xt) =

ρτ (utτ − (n−1/2v̂)>xt), where utτ = yt − x>t θ(τ). Minimization of (8) is equivalent to
minimizing:

(17) Zn(v) =
n∑

t=1

[
ρτ (utτ − (n−1/2v)>xt) − ρτ (utτ )

]
.

If v̂ is a minimizer of Zn(v), we have v̂ =
√
n(θ̂(τ) − θ(τ)). The objective function

Zn(v) is a convex random function. Knight (1989) (also see Pollard (1991) and Knight
(1998)) shows that if the finite-dimensional distributions of Zn(·) converge weakly to
those of Z(·) and Z(·) has a unique minimum, the convexity of Zn(·) implies that v̂
converges in distribution to the minimizer of Z(·).

We use the following identity: if we denote ψτ (u) = τ − I(u < 0), for u 6= 0,

ρτ (u− v) − ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v) − I(0 < u < v)}

= −vψτ (u) +

∫ v

0

{I(u ≤ s) − I(u < 0)}ds.(18)

Thus the objective function of minimization problem can be written as

n∑

t=1

[
ρτ (utτ − (n−1/2v)′xt) − ρτ (utτ )

]

= −
n∑

t=1

(n−1/2v)′xtψτ (utτ ) +

n∑

t=1

∫ (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds

We first consider the limiting behavior of

Wn(v) =

n∑

t=1

∫ (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

For convenience of asymptotic analysis, we denote

Wn(v) =
n∑

t=1

ξt(v), ξt(v) =

∫ (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

We further define ξt(v) = E{ξt(v)|Ft−1}, and W n(v) =
∑n

t=1 ξt(v), then {ξt(v) −
ξt(v)} is a martingale difference sequence.

Notice that

uτt = yt − x′tα(τ) = yt − F−1
t−1(τ)
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W n(v) =

n∑

t=1

E{
∫ (n−1/2v)′xt

0

[I(utτ ≤ s) − I(utτ < 0)] |Ft−1}

=

n∑

t=1

∫ (n−1/2v)′xt

0

[∫ s+F−1

t−1
(τ)

F−1

t−1
(τ)

ft−1(r)dr

]
ds

=

n∑

t=1

∫ (n−1/2v)′xt

0

[
Ft−1(s+ F−1

t−1(τ)) − Ft−1(F
−1
t−1(τ))

s

]
sds

Under assumption A.3,

W n(v) =

n∑

t=1

∫ n−1/2v′xt

0

ft−1(F
−1
t−1(τ))sds+ op(1)

=
1

2n

n∑

t=1

ft−1(F
−1
t−1(τ))v

′xtx
′
tv + op(1)

By our assumptions and stationarity of yt, we have

W n(v) ⇒
1

2
v′Ω1v

Using the same argument as Herce(1996), the limiting distribution of
∑

t ξt(v) is the

same as that of
∑

t ξt(v).
For the behavior of the first term, n−1/2

∑n
t=1 xtψτ (utτ ), in the objective function,

notice that xt ∈ Ft−1 and E[ψτ (utτ )|Ft−1] = 0, xtψτ (utτ ) is a martingale difference
sequence and thus n−1/2

∑n
t=1 xtψτ (utτ ) satisfies a central limit theorem. Following

the arguments of Portnoy (1984) and Gutenbrunner and Jurevckova (1992), the au-
toregression quantile process is tight and thus the limiting variate viewed as a random
function of τ , is a Brownian bridge over τ ∈ T ,

n−1/2

n∑

t=1

xtψτ (utτ ) ⇒ Ω
1/2
0 Bk(τ).

For each fixed τ , n−1/2
∑n

t=1 xtψτ (utτ ) converges to a q-dimensional vector normal
variate with covariance matrix τ(1 − τ)Ω0. Thus,

Zn(v)

=

n∑

t=1

[
ρτ (utτ − (n−1/2v)′xt) − ρτ (utτ )

]

= −
n∑

t=1

(n−1/2v)′xtψτ (utτ ) +

n∑

t=1

∫ (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

⇒ −v′Ω1/2
0 Bk(τ) +

1

2
v′Ω1v = Z(v)
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By the convexity Lemma of Pollard (1991) and arguments of Knight (1989), no-
tice that Zn(v) and Z(v) are minimized at v̂ =

√
n(α̂(τ) − α(τ)) and Σ1/2Bk(τ)

respectively, by Lemma A of Knight (1989) we have,

Σ−1/2
√
n(α̂(τ) − α(τ)) ⇒ Bk(τ).
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