QUANTILE AUTOREGRESSION, UNIT ROOTS AND
ASYMMETRIC INTEREST RATE DYNAMICS

ROGER KOENKER AND ZHIJIE XIAO

ABSTRACT. We consider quantile autoregression models in which the autoregres-
sive coefficients may vary over the unit interval. The models can capture systematic
influences of conditioning variables on the location, scale and shape of the condi-
tional distribution of the response, and therefore constitute a significant extension
of classical constant coefficient linear time series models in which the effect of con-
ditioning is confined to a location shift. The models may be interpreted as a special
case of the general random coefficient autoregression model with strongly dependent
coefficients. The statistical properties of the model and the associated estimators
are studied. The limiting distributions of the autoregression quantile process are
derived for both stationary versions of the model and for a unit root form of the
model. Inference methods for both variants of the model are also investigated.
An empirical application of the model to US short-term interest rate data displays
asymmetric interest rate dynamics.

1. INTRODUCTION

Constant coefficient linear time series models have played an enormously successful
role in applied statistics, and gradually various forms of random coefficient time series
models have also emerged as viable competitors in particular fields of application. One
variant of the latter class of models, although perhaps not immediately recognizable
as such, is the linear quantile regression model. This model has received considerable
attention in the theoretical literature, and can be easily estimated with the quantile
regression methods proposed in Koenker and Bassett (1978). Curiously, however,
all of the theoretical work dealing with this model (that we are aware of) focuses
exclusively on the iid innovation case that restricts the autoregressive coefficients to
be independent of the specified quantiles.

In this paper we seek to relax this restriction and consider linear quantile autore-
gression models whose autoregressive (slope) parameters may vary with 7 € [0, 1]. We
were initially motivated to explore these models in the hope that they might expand
the modeling options for economic time series that displayed “unit-root behavior”.
We will show that some forms of the model can exhibit unit-root like tendencies with
occasional episodes of mean reversion sufficient to insure stationarity. The models
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2 QUANTILE AUTOREGRESSION

lead to interesting new hypotheses and inference apparatus for both stationary and
non-stationary time series.

2. THE MODEL

There is a substantial theoretical literature, including Weiss (1987), Knight (1989),
Koul and Saleh(1995), Koul and Mukherjee(1994), Hercé (1996), Hasan and Koenker
(1997), Jureckova and Hallin (1999), dealing with the linear quantile autoregression
model. In this model the 7th conditional quantile function of the response y; is
expressed as a linear function of lagged values of the response. But a striking feature
of this literature is that it has focused exclusively on the case of iid innovations in
which the conditioning variables play their classical role of shifting the location of
the conditional density of y;, but they have no effect on conditional scale or shape.
In this paper we wish to study estimation and inference in a more general class of
quantile autoregressive (QAR) models in which all of the autoregressive coefficients
are allowed to be 7-dependent, and therefore capable of altering the location, scale
and shape of the conditional densities. We will write the general form of the model
as

Qy, (TYs—1, -y yt—p) = ao(7) + a(T)ye1 + ... + ap(T)Z/t—p-
or somewhat more compactly as,

(2.1) Q. (T|Fe-1) = o/ a(7).

where F; denotes the o-field generated by {y,, s < t}, and z; = (1, Ys—1, -, Yt—p) ' -
To motivate the model we will emphasize the simplest, first-order version of it,

(2-2) Qyt (7'\-7'}—1) = 040(7') + a’l(T)yt—l-

To fix ideas, it may be useful to observe that since @)y, (7|F;—1) is the conditional
quantile function, the model may also be expressed as

yr = op(Us) + o1 (U) ys—1-

where the U, are taken to be uniformly distributed on the unit interval and iid. The
classical Gaussian AR(1) model is obtained by setting cg(u) = c®~!(u) and oy (u) =
oy, a constant. The formulation in (2) reveals that the model may be interpreted as
rather unusual form of random coefficient autoregressive (RCAR) model. Such models
arise naturally in many time series applications. Discussions of the role of RCAR
models can be found in, inter alia, Nicholls and Quinn (1982), Tj@stheim(1986),
Pourahmadi (1986), Brandt (1986), Karlsen(1990), and Tong (1990). In contrast to
most of the literature on RCAR models, in which the coefficients are assumed to be
stochastically independent of one another, the QAR model has coefficients that are
functionally dependent. Since monotonicity is required of the quantile functions we
will see that this imposes some discipline on the forms taken by the « functions. This
discipline essentially requires that the vector a(7), or some affine transformation of
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it, be monotonic in each coordinate. This condition insures that the random vector
a; = a(U;) is comonotonic, as will be elaborated in Section 3.

We are particularly interested in exploring the ability of the QAR model to account
for unit-root like behavior in economic time series. And we will argue that QAR
models can play a useful role in expanding the modeling space between classical
stationary linear time series models and their unit root alternatives. To illustrate
this with the QAR(1) model, consider the model (2) with ay(7) = oc® () and
a1 (1) = max{yy + 77,1} for 79 € (0,1) and ; > 0. In this model if u; > (1 —y)/71
the model generates the y; according to the unit root model, but for sufficiently
small realizations of u; we have a mean reversion tendency. Thus the model exhibits
a form of asymmetric persistence in the sense that sequences of strongly positive
innovations tend to reinforce its unit root like behavior, while occasional negative
realizations induce mean reversion and thus undermine the persistence of the process.
We will have more to say about these phenonmena in Section 6, when we discuss an
application of the QAR model to interest rate dynamics.

Estimation of the linear quantile autoregressive model involves solving the problem

(23) min ZPT(yt - ‘T;ra)a
t=1

acRrt+1

where p;(u) = u(r—I(u < 0)) as in Koenker and Bassett (1978). Solutions, &(7) will
be call autoregression quantiles. Given &(7), the 7-th conditional quantile function
of y;, conditional on past information, can be estimated by,

Qui(T]z1) = 2 &(7),

and the conditional density of y; can be estimated by the difference quotients,

fyt(7-|xt—1 =(r — Ti—l)/(Qy:(Ti|xt—1) - Qyt(Tz‘—1|$t—1))a

for some appropriately chosen sequence of 7’s.

3. QAR(1) MoDEL

In this section we briefly describe some essential features of the QAR(1) model and
some associated estimation methods, first for the stationary version of the model, and
then for the unit root case.

3.1. Stationary QAR(1). We begin by reviewing some basic properties of the ran-
dom coefficient AR(1) model. Let {u;} be a sequence of iid random variables with
mean 0 and variance 02 < co. We consider the following process:

(3.1) Yt = QY1 + U,

where oy is a function of u;. We are interested in cases that the random autoregressive
coefficient oy satisfies oy < 1, but, as will become clear later in this paper, under
appropriate regularity assumptions, our analysis and some results can be naturally
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extended to cases with explosive roots over a range of quantiles (see Remark 3.2 below
for some related discussions).

Note that if |oy| < 1, with |a;| < 1 with probability > 0, and if ||u,||, = {Euj}'/" <
oo exists, then the r-th moment of «; is always strictly less than 1. Denoting ||y, <1
as a,, we have

19ell, < ar lyell, + pr-
Consequently
Nyell, < (1= ar) " pr < 00

The next result summarizes some important properties of this process.

Theorem 3.1 Ify; is determined by (3.1), Eu? = 0 < 00, || < 1, and Pr (Joy| < 1) >
0, then y; is covariance stationary and

1 n
ﬁzlytél\f(o,w;),
t=

where w) = (14 11)0% /(1 — pa) (1 — w2)), pa = E() <1 and w? = E(oy)* < 1.

Remark 3.1 Under the assumptions in Theorem 3.1, by recursively substituting in
(3.1), we can see that

00 7j—1
(3.2) Yy = Zﬁt,jvt,j, where ;0 =1, and f;; = Hat,i, for j > 1.
j=0 1=0

is a stationary F;-measurable solution to (3.1). In addition, if Y 7° B;;v:; converges
in LP, then y, has a finite p-th order moment.

Remark 3.2 From the proof we can see that even with o; > 1 over some range
of quantiles, as long as w? = E(a)? < 1, y; is still covariance stationary. Thus, a
quantile autoregressive process allows for some (transient) forms of explosive behavior
while maintaining stationarity in the long run.

Remark 3.3 The F;-measurable solution of (3.1) gives a doubly stochastic M A(co)
representation of 3. In particular, the impulse response of y, to a shock wu;_; is
stochastic and is given by £, ;. On the other hand, although the impulse response of
the quantile autoregressive process is stochastic, it does converge (to zero) in mean
square (and thus in probability) as j — oo, corroborating the stationarity of ;.

Remark 3.4 If we consider a conventional AR(1) process with autoregressive co-
efficient y, and denote the corresponding process by y " the long-run variance of ¥,

(given by w?) is (as expected) larger than that of y,- The additional variance the QAR
process 7; comes from the variation of a;. In fact, wz can be decomposed into the
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summation of the long-run variance of y, and an additional term that is determined
by the variance of «4:

wr=w?+ o
O (1= ) (1 - W)

where w? = 0%/(1 — p14)? is the long-run variance of y,.

Var(ay),

Remark 3.5 If we denote the autocovariance function of y; by v,(h), it is easy to

verify that

0.2

Yy(h) = ,ulf'aj, where o) = 5
— w2

Given the model (3.1), if we denote the 7-th quantile of a;; as Qo (7), 7: = (1,9s—1) "
and a(7) = (Qu(T), Qa(T)) ", we have

(3.3) Qy(T|Fio1) = 2] (1),

and we estimate o(7) by (2.3).
If we denote 3 = y/i(@(r) — a(r)), then p, (4 — &(r) Tze) = py ey — (n=/20) ),
where u;, = y; — 2/ a(7). Minimization of (2.3) is equivalent to minimizing:

n

(3-4) Za(®) =Y [prlwer — (07 20) T2e) = pr(usr)] -

t=1

If ¥ is a minimizer of Z,(v), we have v = \/n(a@(7) — a(7)). The objective function
Z,(v) is a convex random function. Knight (1989, 1998) shows that if the finite-
dimensional distributions of Z,(-) converge weakly to those of Z(-) and Z(-) has a
unique minimum, the convexity of Z,(-) implies that ¥ converges in distribution to
the minimizer of Z(-).

Denoting 9,(u) = 7 — I(u < 0), we have E[¢);(u;;)|Fi—1] = 0. Using the identity
(A.2) given in the Appendix, the objective function of minimization problem (3.4)
can be written as

> [pr(ue — (07120) ) — pr (usr)]
t=1
~1/24)T g,

n n (n
= - Z(n_l/Qv)Txth(utT) + Z/O {I(ut’?’ < 8) - I(utT < 0)}d5

We denote the conditional distribution function

F,_1(e) = Prly, < o|F;_4],
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and its derivative as f;_i(e). The following Lemmas give asymptotic results that are
useful in deriving the limiting distribution of \/n(a(r) — a(7)).

Lemma 3.1 Under assumptions given in Theorem 3.1,

n_1/2 ixt,(/]T(utT) = N(07 T(l - T)QO)'

—1
where Qo = E(zz) ) = diag[1, 7], v = E[y?].

Lemma 3.2 Under assumptions given in Theorem 3.1,

n (n_1/2’l})T$t 1
3 / {Tr < 5) = I(uer < 0)}ds = 20
1 0

t=

where Q) = E[fi1[F, (7)]zz]]-

The matrices Qy and ; are limiting forms of the matrices of n=' >, 2,2/ and
n 1Y, fioi[FZ1 (7)) tespectively. Given the results of Lemmas 3.1 and 3.2, and
by application of the convexity lemma, we can derive the asymptotic distribution of

a(r).
Theorem 3.2 Under the assumptions given in Theorem 3.1,

Vn(@(r) — a(r)) = N(0,7(1 — 7)Q7 Q007 h).

Corollary 3.1 Under the assumptions given in Theorem 3.1, in the special case that
o = o = constant,
1

Vn(a(r) —a(r)) = W

where f(-) and F(-) are the density and distribution functions of u;, respectively.

N, 7(1 —7)Q5h),

Remark 3.6 As in other linear quantile regression models, the linear quantile au-
toregressive model usually must be cautiously interpreted as a local approximation
to a more complex nonlinear global model. If we interpret the linear form of the
model literally then obviously at some point, or points, there will be crossings of the
conditional quantile functions — unless these functions are precisely parallel, in which
case we have the pure location shift model for the covariate effects. This crossing
problem is actually more acute in the autoregressive case since the support of the de-
sign space, i.e. the set of z; that occur with positive probability, is determined within
the model. Nevertheless, we may still regard the linear models specified here as valid
approximations over a region of interest. Such approximations should always be re-
garded as provisional; richer data sources can be expected to yield more elaborate
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nonlinear specifications that would have validity over larger regions. The B-spline ex-
pansion QAR(1) model for Melbourne daily temperature described in Koenker(2000)
illustrates this approach.

It should be stressed that the estimated conditional quantile functions,

Qy(rlz) = 2T B(r),

are guaranteed to be monotone at the mean design point, x = Z, as shown in Bassett
and Koenker (1982), for linear quantile regression models, and crossing, when it
occurs, is generally confined to outlying regions of the design space. In our random
coefficient view of the QAR model,

v =z, a(Uy)

we express the observable random variable y; as a linear function conditioning covari-
ates. But rather than assuming that the coordinates of the vector oy = «(U;) are
independent random variables we adopt a diametrically opposite viewpoint — that
they are perfectly functionally dependent. If the functions (ay, ..., ;) are monotoni-
cally increasing then the random vector oy is comonotonic in the sense of Schmeidler
(1986). This is often the case, as our empirical examples will illustrate, but there are
important cases for which this monotonicity fails. What then?

What matters is that we can find a linear reparameterization of the model that
does exhibit comonotonicity over some relevant region of covariate space. Since for
any nonsingular matrix A we can write,

Qy(7|z) = " ATTAB(T),

we can choose p + 1 linearly independent design points {zs : s = 1,...,p + 1} where
Qy(T|zs) is monotone in 7, then choosing the matrix A so that Az, is the sth unit
basis vector for RP*! we have

Qy(7|zs) = 75(7),

where v = AB. And now inside the convex hull of of our selected points we have
a comontonic random coefficient representation of the model. In effect, we have
simply reparameterized the design so that the p + 1 coefficients are the conditional
quantile functions of y; at the selected points. The fact that quantile functions of sums
of nonnegative comonotonic random variables are sums of their marginal quantile
functions, see e.g. Denneberg(1994), allows us to interpolate inside the convex hull.
Of course, linear extrapolation is also possible but we must be cautious about possible
violations of the monotonicity requirement in this case.

3.2. Unit Root Quantile Autoregression. Our analysis in the previous section
focused on the case that o < 1 and the strict inequality (a; < 1) holds with positive
probability. We have shown that in this case the time series y; is stationary and the
autoregression quantiles converge at rate root-n. This analysis includes the special
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case that |ay| = o = constant < 1, in which case the model reduces to the conventional
stationary autoregressive process.

Arguably the most important alternative in many macroeconomic time series mod-
els is the unit root model:

Yt = Y1 + Uy,

which may be treated as a special case of (3.1) but with oy = 1. In this case, y; is
nonstationary and, of course, the previous autoregressive quantile regression asymp-
totic analysis no longer holds. In this section, we consider quantile autoregression
with a unit root.

In the presence of a unit root, a(7) = (a(7), 1(7)) " = (Qu(7),1)T. Herce (1996)
studied asymptotic properties of least absolute deviation estimator of a unit root
model. In this section, we consider quantile unit root regressions. Some major steps
of the asymptotic analysis for the unit root quantile regression estimator are similar
to those in the stationary case, but an important difference also exists due to the
nonstationarity. Since u; are iid (0,0?), the partial sum process constructed from
u; converges to a Brownian motion B, (e) with variance 0. Because of the nonsta-
tionarity of y;, the two components in @(7) = (Qo(7),@1(7)) will now have different
rates of convergence. In particular, @;(7) will converge to unity at rate n. We de-
note o = D,(a(7) — a(7)), where D,, = diag(y/n,n), and write p,(y; — a(7)"z;) as
pr(ugy — (D, 10) "x;). Minimization of (2.3) is now equivalent to:

(3.5) mvinz [pr (usr — (D) Tmy) — pr(usr)]

If 7 is a minimizer of Z,(v) = Y7, [pr(wr — (Dy'v) @) — pr(usr)], we have § =
D, (a(r) — a(1)).

In the presence of a unit root, Y, , y—1%-(us;) has a different limit than the
stationary case. Notice that F[i,(us)] = 0, u; and ¢, (us) are correlated with
each other and the partial sums of the vector process (uy, ¥, (us,)) follow a bivariate
invariance principle (see, e.g. Phillips and Durlauf (1986)):

[nr]

2N (s, e ()T = (Bu(r), By ()T = BM(0, (7))

t=1

where (1) = E[(us, ¥r (usr)) " (ug, 5 (ugr))] is the covariance matrix of the bivariate
Brownian motion. Notice that n=1/2 7[:1T1] ¥, (uy,) converges to a two parameter pro-
cess BJ(r) = By(r,r) on (7,7) € [0,1]* which is a “mixture of Brownian motion and
Brownian bridge” in the sense: For fixed r, B (r) = By(7,r) is a rescaled Brownian

bridge; For each 7, n= /2 Y"1 4_(uy,) converge weakly to a Brownian motion with

variance 7(1 — 7). Thus, for each pair (7,7), B,(r) = By(7,7) ~ N(0,7(1 = 7)r).
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Notice that u; are i.i.d, it is easy to verify that

n 1
nt Z Y10, (U ) = / B,dBj,.
t=1 0

Again, using identity (A.2) in the Appendix, the objective function of minimization
problem (3.5) can be written as the sum of

- Z mtw'r ut‘r)

and
n

Z(utT — (D;7'0) T2 ){I(0 > uyr > (D7) Ty) — (0 < uyy < (D;10) T 20) Y,

t=1
and the asymptotics of each component is summarized in the following Lemma.

Lemma 3.3 If y, is determined by (3.1), Eu? = o0? < oo, under the unit root
assumption,

n 1
(3.6) DMy whr (uy) = /O B,dB},
t=1

n

S — (D7) e){IO >y > (Dy'v)Tw1) — 10 < wr < (D7) )}

: o [/OIEBZ} ’
where B,,(r) = [1, B,(r)]".

The limiting distribution of the first component in (3.6), fol dBy, is simply N (0, 7(1—
7)) and is the same as that in Lemma 3.1. It is the second component, fol B.dBy,

that differs from the stationary result. The limiting distribution of the QAR estima-
tor for the unit root model is summarized in the following result.

Theorem 3.3 If y,is determined by (3.1), Eu? = 0® < oo, then, under the unit root

assumption,
\/ﬁy(%(f(l)_—ai)(m ] = m { /0 BB } /0 1EudB;,.

As an immediate by-product of Theorem 3.3, we have
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Corollary 3.2 If y, is determined by (3.1), Eu? = 0® < oo, under the unit root

assumption,
R 1 1 1 .
@)= gy [ 2] s

where B, is the demeaned version of Brownian motion B,,.

-1

4. HiIGHER ORDER QAR

One of the most important extensions of the first order autoregression formulation
of the unit root model is probably the augmented Dickey-Fuller (1979) (ADF) type
regression model

q
Yt = oY1 + Zaj—l—lAyt—j + uy.
j=1
In this model, the autoregressive coefficient oy plays an important role in measuring
persistency in economic and financial time series. Under regularity conditions, if
a; = 1, y; contains a unit root and is persistent; and if |ay| < 1, y; is stationary.

In this section, we consider a quantile regression extension of the ADF type regres-
sion by allowing «; to take different values over different quantiles of u;. Similar to
the AR(1) case in the previous sections, we assume that ay; = g1 (u) is a function of
u; and consider the following p-th order quantile autoregression (QAR(p))

q
Yt = Q1Y + Z Qi1 Ay + uy,
j=1

where ¢ = p — 1. More generally, we may allow for randomness in other coefficients
and assume «;; = g;(ut), (j =2, ...,p), to be functions of u;. In this case we have

q
Yt = QY1 + Zaj—kl,tAytfj + Uy
7j=1
If we denote A;(L) = 1—ayL—) 1, @j+14L7(1—L), y; can be alternatively expressed
as
At(L)yt = Ug.

For convenience of our later analysis, we denote E(a;:) as oy, (j = 1,...,p), and
ElA(L)]=1-aL =3 a1 L7 (1= L) as A(L).

We may also introduce an intercept term g in the above model and consider time
series y; = p + y,,where A;(L)y, = u;. In this case, we obtain a QAR(p) with an
intercept

q
(4.1) Y = Qo+ 0le—1 + Z 1,0 AYp—j + U,
7j=1

where ag; = p(1 — o).
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4.1. Stationary QAR(p). Like the traditional p-th order autoregressive process, a
QAR(p) process

(4.2) Yt = Qot + Q1,Y¢—1 + -0+ Ap Y p T+ Ug,
can be expressed as an p-dimensional vector autoregression process of order 1

Y, =T+AY, 1 +V,

A, a
A, = p—1,t Dt
t [ Ipfl Opfl )

where A, 1, =[ais, .-, 1t ], Yo = Y, =, Ys—ps+1] ', and 0,_; is the (p — 1)-
dimensional vector of zeros. In the Appendix, we show that under regularity con-
ditions given in the following Theorem, an F;-measurable solution for (4.2) can be
found.

with

Theorem 4.1 Let E(A; ® A;) = Qa, if Eu? = 0? < oo and the eigenvalues of Q4
have moduli less than unity, the time series y; given by (4.2) is covariance stationary
and satisfies a central limit theorem

n

I N
7 z;yt =N (,uy,wZ) , where wj = limn lE[z;(yt — )]
t= -

If we focus our attention on the largest autoregressive root a;; in the ADF type
regression (4.1) and consider the special case that a;; = a;; = constant for j = 2, ..., p,
then, similar to the QAR(1) model, if o ; < 1 and |y 4| < 1 with positive probability,
the time series y; given by (4.1) is covariance stationary.

Corollary 4.1 If |ay | <1 and |ay,] < 1 with positive probability, Eu; = 0% < oo,
and the p-th order polynomial A(L) has all its roots outside the unit circle, then the
time series y; given by (4.1) is covariance stationary and satisfies a central limit
theorem.

If we denote E(y,y;—;) as v;, 6; = vj—Yj+1, and let Qg = E(z,z]) =limn Y"1 z2],
then

1 py 0;{r
Qo= p % T
0, T Qo

where

' = (=7, =7 "> Ye=1—7Yg )"
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[ 25, 5= - 5q_1—5q_21
81 — 8o 2%, -+ Ogz— Ogs

Q0o = { . . . :
Sgo1— g Ogn—043 -+ 25,

and 0, is the g-dimensional vector of zeros. In the special case that Fy, = 0,

— Y% TT
Qo—dwg[l,[r Qo H

We have the following asymptotic results on the p-th order quantile autoregression.

Lemma 4.1 Under assumptions given in Theorem 4.1,

n_1/2 thwT(utT) = N(O’ T(l - T)QO)a

t=1

n (n_l/Qv)Ta,‘t 1
3 / {Tmr < 5) — T(ur < 0)}s = 20T
0

t=1

where Q1 = Elfya[F7y(7)]wer) ] = limn ™ 3500, foa[F71(7)]zew]
Theorem 4.2 Under the assumptions given in Theorem 4.1,
Vn(@(r) — a(r)) = NO,7(1 — 1), 1Q ).

4.2. Unit Root Case. In the unit root case, a;; = ; = 1, and (4.1) reduces to the
conventional ADF regression,

q
Yt = 0o + oY1 + Z Qi1 Ay + Uy
7j=1

Let @(1) = (Qo(7),Q1(7),- - -,0p(7)) and D,, = diag(y/n,n,\/n,- - -,4/n), then the
analysis of @(7) follows a similar procedure to that of Section 3.

Denote w; = Ay, then, for each 7, the partial sums of the process (wy, 1, (ut,))
follow a bivariate invariance principle

[nr]

n Y (we e (u) T = (Bu(r), B(r) " = S(r) 2 (Wi(r), Wa(r)) " = BM(0,(r))
t=1
where Wi (r) and Wa(r) are independent standard Brownian motions and

$(r) = 0-1%; Owrp (1)

owy(7) 0y ()
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is the long run covariance matrix of the bivariate Brownian motion and can be
written as ¥o(7) + 1(7) + X] (), where Xo(7) = E[(ws, ¥, (usr)) T (wy, ¥y (ugr))] and

Yi(r) = Z Ef(ws, ¢T(UIT))T(wsa Ve (Usr))].

Notice again that u; are uncorrelated with y;_;, we have
n 1
nt Zyt—le(“tf) :>/ B,dBj,.
t=1 0

In addition, for convenience of our analysis, we denote [1, By, (r)]" as By(r).
We also need to consider the limiting distribution of

ﬁ Zt Ayt—lwr (U'tr)

(43) .
ﬁ Zt Ayt—qu (ut'r)

If we denote that E[w,w, ;| = v;, it can be shown that (4.3) converges to a ¢-

dimensional normal variate ® = [®;,- - -, ®,]" with covariance matrix 7(1 — 7)Qs

where

[ Vo o Vg -|
Lo w0 ]
and @ is independent with [, B,dBj,.
We summarize the limiting distribution of @(7) in the following Theorem.

Theorem 4.3 Under the unit root assumption,

Do(@(r) — a(r) = [ szlpr«: ?;;q r [ I ngB@ ] .
where By (r) = [1, By ()]

Remark 4.1 As an immediate by-product of Theorem 4.3, the limiting distribution
of n(@;(7) — 1) is invariant to the estimation of @;(7)(j = 2,...p) and the lag length
p, which is a result similar to the conventional ADF regression.

Corollary 4.2 Under the unit root assumption,

G B ) SR Ly
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In particular,

(1.4) @) -1 = ot | [ 5}

-1

1
B, dBj,
i e

where B,,(r) = By(r) — fl By, is the corresponding demeaned Brownian motion.

0

5. INFERENCE ON THE QAR PROCESS

The asymptotic theory we developed in the previous sections facilitates statistical
inference on the quantile autoregression process. In this section, we turn our atten-
tion to inference in QAR models. We are particularly interested in three types of
models: The first model is the QAR model that allows different persistent effects at
different quantiles. In relatively “short” range such a time series may display “local
persistency” but over longer time horizon it behave like a stationary system. The
second case of interest is the classical constant-coefficient stationary autoregressive
model and the third case is the unit root model that has attracted a great deal of
research attention in recent years. We shall study quantile regression inference of
these models. In particular, although other inference problems can be analyzed, we
consider here the following three types of inference problems that are of paramount
interest in many applications: (1) Hy : aq(7) = @ < 1, with known @; (2) Hyp :
Constancy of (1), i.e., ay(r) = @ < 1, for 7 € T and with unknown @; (3) The
unit root hypothesis Hos : a1 (7) = 1. For inference problems (1) and (3), we consider
both the case at specific quantiles 7 (say, median, lower quartile, upper quartile) or
over a range of quantiles 7 € 7.

5.1. Testing Hy : «a;(7) = @, with known [&|;. The hypothesis Hy; may be
treated as an important special case of a more general inference problem in the form
of a linear hypothesis Hg, : Ra(r) = r (at 7 = 79 or, 7 € T ) and y; is stationary,
where R denotes an m X p-dimensional matrix.

Under the assumptions of Theorem 3.1 or Theorem 4.1, we have

VRR@(T) — a(r)) = [ROT'QQT R N (0, 7(1 = 7)Ip11)

Therefore, a regression Wald statistic (if we consider 7 = 7) or process (if we consider
7 € T) can be constructed as

W, () = n(Ra(r) — r)T[r(1 — 1) RO Qo' RT) Y (Ra(T) — 1),

where @1 and Qo are consistent estimators of €; and €2y. If we are interested in
testing Ra(7) = r at a particular quantile 7 = 7, a Chi-square test can be conducted
based on the statistic W,,(75). If we are interested in testing Ra(7) = over 7 € T,
we may consider, say, a Kolmogorov-Smirnov (KS) type sup-Wald test sup,.+ W, (7).
The limiting distributions are summarized in the following Theorem.
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Theorem 5.1 Under the assumptions of Theorem 1 or 4, and under the hypothesis
H(Tlf

Wn (7—0) = X?n, and sup Wn(T) = sup Q?n(T))
TET TET

where Q, () is a Bessel process of order m. For any fized 7, Q2 () ~ X2, is a centered
Chi-square random vartable with m-degrees of freedom.

For the special case Hy, : a1 (T) = @y, since we only have one restriction, t-test may

be considered. Let
V(@i (r) — @)

%)

Va(T) =

where w2, is the (2,2)-element in Q7'QoQ L. To test a;(r) = @ at 7, we consider
tn(T7) = Vi(7)/+/7(1 — 7). Under the null hypothesis, t,(7) = N (0, 1), providing an
asymptotic normal test. To test the hypothesis oy (1) = @ for 7 € T , we may con-
sider a Kolmogorov-Smirnov statistic sup,cs |V, (7)|, which converges (under the null)
weakly to sup, oy |G1(7)|, where G1(7) is a standard Brownian bridge; or a Cramer-
von-Mises (CM) type test of the form [ . V,(r)*dr, converging to [ . G:(7)%dr
under the null hypothesis..

For the estimation of ;, see, inter alia, Koenker and Bassett(1982), Koenker
(1994), Powell (1987), and Koenker and Machado (1999) for related discussions.

5.2. Constancy of a; (7). We consider testing the hypothesis of constancy of a; (7) =
a; < 1lover 7 € T (stationary case) in the presence of estimated nuisance parameters.
This can be treated as a test for the asymmetric dynamics in time series y;. Natural
candidates for testing constancy of a;(7) over 7 € T are again, the KS type test
sup,e7 [Va(7)| or CM test [ .V, (7)%dr, where

(5.1) V(1) = V(@i (1) — a1) [Das.

However, we do not know «; and thus the test sup, . |V, (7)] is infeasible. Under the
null, it is possible to estimate oy by, say, &1, at rate root-n, thus we may replace oy
by @; in (5.1) and consider testing constancy of «;(7) based on sup, .+ |01 (7) — Q4.
Unfortunately, the estimation of a; brings nuisance parameters into the limiting dis-
tributions of

0 () — YAGE() - @)
Wa2
As shown in (5.2) below, the necessity of estimating «; introduces a drift component
([f (F~(7)) lim /n(a; — 1) /Q0.22) in addition to the simple Brownian bridge process,
invalidating the distribution-free character of the original tests sup,.; |V,(7)| and
[ocq Valr)?dr.
To restore the asymptotically distribution free nature of inference, we emg\loy a

martingale transformation proposed by Khmaladze (1981) over the process V,,(7).
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Notice that under Hyy, Q7 Q00! = [f(F~'(7))]72Q;*, thus

Vn(T) = \/ﬁ((al(T) —aq) — (01 — 1)) /Way
(5.2) = Gi(r) = [f(F'(n)Z

where G1(7) is a standard Brownian bridge and Z = lim+/n(@; — ay)/Q0.22, where
Q.20 is the (2,2)-element of the matrix €, '. We construct the following transforma-
tion over V,,(7) :

~ ~

W =T - [ ' [g'n(S)TCn_l(s) / 1 g-n(r)dvn(r)] s

where §,(s) and C,,(s) are uniformly consistent estimators of ¢(r) = (1, (f/f)(F~(r)))"
and C(s) = fsl §(r)g(r)Tdr. The transformed process V,,() converges to a standard
Brownian motion. For estimation of g, (s) and more discussions of quantile regression
inference based on the martingale transformation approach, see, Koenker and Xiao
(2002) and references therein.

Theorem 5.2 Under Hys,

Vo(T) = W(T), sup
TET

XN/R(T)‘ :>§1€1,12|W(T)|’ and [rVn(T)2:>[rW(7—)2,

where W (r) is a standard Brownian motion.

Remark 5.1 Again, we can consider a more general inference problem H, : Ra(7) =
r and y; is stationary. R denotes an m X p-dimensional matrix and r is an m-
dimensional vector with some or all elements unknown but estimable. The hypothesis
Hys can then be treated as the special case where r equals the true value of «; (which
has to be estimated) and R is an (p + 1)-dimensional row vectors with the second
element being one and other elements being zeros. The vector r is unknown but can
be estimated.

5.3. Unit Root Tests. The unit root hypothesis has been frequently examined in
time series applications in recent years. In this Section, we consider unit root tests
based on the quantile autoregression. The proposed autoregressive quantile regres-
sion provides a robust approach that examines the unit root property not only at
the median, but also at other quantiles of the process. We expect that at least for
certain cases, say in the presence of non-Gaussian innovations or asymptotic dynam-
ics, the quantile regression based unit root tests may have some advantages over the
traditional testing procedure.

We express the unit root hypothesis in terms of Hys : a;(7) = 1. To test the unit
root hypothesis, we may test a;(7) = 1 at some selected representative quantiles
(say, {7j}7=1 ) (see discussions later in this section). Alternatively, we can construct
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Kolmogorov-Smirnov or Cramer-von-Mises type tests based on the regression quantile
process for 7 € 7. We define the coefficient-based process

Un(1) = n(ay(r) — 1),
and let ¢,(7) be the t-ratio statistic of @y (7) :

ta(T) = % YT PY. )2 @u(r) - 1).

where f(F~'(7)) is a consistent estimator of f(F~!(7)), Y_; is the vector of lagged
dependent variables (y;_1) and P is the projection matrix onto the space orthogonal
to (1, Ay—1,- -+, Ays—q). By the results in previous sections, we have that under the
unit root hypothesis

53 00 = 00 = s | [ 8] [ Baans
and
(5.4) £a(7) = t(r) = ﬁ [ /0 1 Eﬁ,} o /0 BB

The above two processes are quantile regression counterparts of the coefficient and
t-ratio based statistics of the conventional Augmented Dickey-Fuller tests. Consider
T € T = [0, 1—70| for some small 75 > 0, we propose the following quantile regression-
based statistics for testing the null hypothesis of a unit root:

(55) QKSa = sup |Un(T)| ) QKSt = sup |tn (T)‘ )
TET TET
and
(5.6) QCM, :/ Un(7)%d7, QCM; = / to(1)%dr.
TET TET

In practice, we may calculate U, (7) and t,(7) at, say, {r; = ¢/n},_,, and thus the test
statistics are obtained by taking maximum over 7; (for the KS type tests) or using
numerical integration (for the CM type tests).

It is clear from (5.3) and (5.4) that the above distributions are not standard and
depend on nuisance parameters. If we test Hys at selected quantiles, modifications
are possible to remove the nuisance parameters (see our discussion later in this sec-
tion). However, Monte Carlo experiments indicate that the finite sample performance
based on the modified statistics may be poor, especially in the presence of normal
innovations [also see Thompson (2002) for related discussion|. For this reason, we
may consider generating critical values for the unmodified statistics using simulation
or resampling methods.

We first consider the following resampling procedure:
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1. Let wy = Ay, (t = 2,...,n), estimate B, ----- , B4 by a g-th order autoregression':

q
wy = Zﬁjwt_j +u,t=q+1,....n,
i=1

and obtain residuals u;.

2. Draw iid. variables {u;}{_,,; from the centered residuals 4, — .- >°7_ . U;
and generate w; from u; using the fitted autoregression by

q
wi =Y Bwi+uj, t=q+1,..,n,
j=1
with wi = Ay; for j =1,...,q.
3. Generate y; under the unit root null: y; = y; ; + w;, with yf = y;.
4. Estimate the following p-th order autoregressive quantile regression

q
vi =0+ oy + Y e Ay +
7j=1
and denote the estimator of a;(7) by aj (7). Corresponding to U,(7) and t,(7), we
construct

Up(r) = n(@i(r) = 1),

and

-1
) = D (v py ) @) - ),
T(1—7)
and calculate QK S, QK S}, QCM?, and QCM; based on U} (7) and % (7).

In the above procedure, we generate y; under the null hypothesis of unit root. The
limiting null distribution of the test statistics can then be approximated by repeating
steps 2-4 many times. Let Ckg, (0), Cks,(0), Com, (0) and Ceoay, (0) be the (1000)-th
quantiles, i.e.,

PYQKS, < Uks, (0)] = PT[QKS; < Cks,(0)] = 6,

P QCM; < Cowm, (0)] = PT[QOM; < Cenm,(0)] = 6,

then the unit root hypothesis will be rejected at the (1 — ) level if, say, QK S, >
Cks, (0).

Alternatively, instead of using resampling methods, we may directly simulate the
Brownian motions. Notice that B, and By, are Brownian motions and can be ap-
proximated by sums of Gaussian random variables, the limiting distribution of the

Iwe may also use the Yule-Walker method, which is asymptotically equivalent to the OLS method,
to estimate the autoregression.
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-1
quantity [ fol Efy} fol B,,dBj, may be approximated by simulation. In particular, we

may replace step 4 by directly approximating fol Eﬁ, and fol B,,dBj, using

1
(i = 7" and 7 (5 —7) e o)
t t

n?
where 7* = n 2 Y y7, and u}, = uf — F, (), where F, () is the quantile function
of uy. Thus, the limiting null distribution of U, (7) and t,(7) can be approximated

based on the following quantities

W [Z (v =) ] [; (Y = 7) ¥r(ug;) ] ;

and

~1/2
N [Z i - y*)?] [Z 0 — ) r(iiy) ] .

t t
Since we simply calculate sample moment and avoid solving the linear programming
in each repetition in this alternative procedure, computationally this is faster.

To test the unit root hypothesis, we may also consider testing a;(7) = 1 at some
selected representative quantiles {7,}5_, (say, quartiles or deciles). Again, we may
consider our test using the coefficient based statistic U,(7s) or the t-ratio statistic
tn(7s) and use critical values generated by simulation or resampling methods. In this
case, modifications are possible to restore the distributional free properties of the test
statistics at quantile 7.

In particular, we can decompose fol B, dBj, as

)\W(T)/Edew-i—/deB;_w,

where A,y (7) = 0wy (7)/02 and B],, is a Brownian motion with variance

y(T) = 03 (7) = 0y (1) [0,
and is independent with B,,. The limiting distribution of n(@;(7) — 1) can be decom-

posed into
)‘ww(T) fﬁdew + fﬁdeQZ.w’
JEO) By
Let y = n 'Y,y and f(F~(7)), 62 and Oy (7) be consistent nonparametric es-
timators of f(F~'(7)), 02 and oy,y(7), and Ay (T) = Guy(7)/02, then under the
null,

TN 1) - P DA s [ BudBl .,
i) ) ~ 1) Sw-pz 7 Jy B
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We may construct the following modified statistics

~

_ % Ty a () — 1) - W = DAy
Q(r) = 52 | )@ () = 1) = SIS, )|,
and
. 1/2
@ = [met—y)Q] Q.

/*1\7' 1/2 ~ . .
I GRIG)! [Z(yt_y)z] () 1) - Aus() Sl =) (B

Tpu(T) |5 Ty (7) [, (0 — 9)2

Under the unit root hypothesis,

Qu(r) = [ /0 1M] B / W, dW,, and Qa(r) = N(0,1).

The statistic Q2(7) provides a normal test for the unit root hypothesis at the 7-th
quantile.

Remark 5.2 Other test statistics that are asymptotically equivalent to Q;(7) and

Q2(7) can be constructed following Herce (1996). The decomposition of fol B,dBj
may be written as

runl) [ W0+ 80 [0,

where A(7) = det(X(1)) = oZ07,(7) — 05,(7), and W,(r) = Wi(r) — fol Wi. In
addition, if we consider the ordinary least squares ADF regression

q
(5.7) Yo = 0p + oY1 + Z 1Ay +
i=1

and denote the estimator of oy as ay, it is well known that

W dW
’I’L(&l—l):}ﬁ 0T121
Tw fo Wy
Following Herce (1996), we may construct the following modified statistic
F1(r)32 . Gulup(T)
Li(r) = wn(al(ﬂ -1)— ,\,\71#()71(% —1)
A(T)1/? uA(T)1/?

and

1/2
Ly(1) = [# Z(yt - @)2] Ly(7)
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where 62 = n ' Y7, U7, with U; being the residual of the ordinary ADF regression,
and A(7) = 7(1 — 7)52 — Gyuy(7)?. Under the unit root assumption,

Li(1) = [/Olm} o N(0,1), and Ly(7) = N(0,1).

6. NUMERICAL RESULTS

6.1. Monte Carlo Results. We conducted a limited Monte Carlo experiment to
examine the effectiveness of the QAR method. In particular, we examine the size and
power properties of the proposed tests. Given the empirical interests on unit root
and persistency properties, we report our simulation results on the tests of the unit
root hypothesis.

The data were generated from

(6.1) Y = QY1 + Uy,

where u; are i.i.d. random variables. We consider both the case where u; are stan-
dard normal variates and the case that u; are student-t distributed variables with 3
degrees of freedom. For the tests, we considered both the Kolmogorov-Smirnov type
test (denoted as QK S in the tables) and the Cramer-von-Mises type test (denoted
as QCM in the tables), and compared them with the traditional ADF test. The
coefficient based tests and t-ratio based tests gave similar results and we report those
of the coefficient based tests, i.e. QK S,, QCM,, and ADF, tests. For the quantile
regression based tests, we use critical values obtained by resampling procedures. The
number of repetitions in the resampling process is 2000. For each test, the number
of repetition is 100. We also choose 7 = [0.1,0.9]. The sample size is n = 100.
When o, = 1 = constant, ; is a unit root process and the empirical rejection
rates gives the size of tests. For the choice of alternatives, we considered both the
conventional constant autoregression with a; = o = 0.95, 0.9, and 0.85, and the case
with asymmetric dynamics. In this case, we considered the following choices of a4,

{atzl u >0

o — o ueg, »Vitha=09509,085

Table 1 reports the empirical size and power for the case with Gaussian innovations
and table 2 reports results for student-¢ innovations. The following general conclu-
sion can be draw from the Monte Carlo results: (1) The proposed QAR method has
reasonable performance relative to the conventional procedures in the presence of
Gaussian innovations, and has higher power in the presence of non-Gaussian innova-
tions. (2) In the presence of asymmetric dynamics under the alternatives, the QAR
method has in general better performance. (3). The Cramer-von-Mises type test has
relatively better finite sample performance than the Kolmogorov-Smirnov type test.
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Table 1: Empirical Rejection Rates
with Gaussian Innovations

ADF, | ADF, | QKS | QCM

a=1 0.06 | 0.05 | 0.05 | 0.06
a=0.95 0.10 | 0.12 | 0.11 | 0.12
a=0.90 0.22 | 026 | 0.21 | 0.23
a=0.85 0.60 | 0.68 1 1

{“:1 u>0 10061 009 | 01| 01

a=095 u<0.
a=1 u>0
{a=0.9 u < 0.
a=1 u>0
{a:0.85 u < 0.

0.12 | 0.15 | 0.16 | 0.23

0.36 | 0.41 | 0.45 | 047

Table 2: Empirical Rejection Rates
with ¢(3)-Distributed Innovations
ADF | ADF | QKS | QCM

a=1 0.06 | 0.08 | 0.05 | 0.05
a=0.95 0.16 | 0.23 | 0.18 | 0.24
a=09 0.37 | 0.45 | 0.42 | 0.60
o =0.85 0.54 | 0.68 | 0.61 | 0.84

{“:1 u>0"1 608 | 0.08 | 0.07 | 0.12

a=0.95 u<0.
a=1 u>0
{a:0.9 u < 0.
a=1 u >0
{a:0.85 u < 0.

0.15 | 0.20 | 0.23 | 0.27

0.22 |1 0.26 | 0.32 | 0.44

7. U.S. INTEREST RATE DYNAMICS

There have been many claims and observations that some economic time series are
asymmetric over the business cycle. For example, it has been observed that increases
in the unemployment rate are much sharper than declines; firms are more apt to
increase than to decrease in prices. It has also been argued that positive shocks to
the economy may be more persistent than negative shocks. For this reason, studies
have been conducted on the existence of asymmetric behavior in these series. If an
economic time series displays asymmetric dynamics systematically, then appropriate
theoretical models are needed to incorporate such behavior.

In this section, we apply the QAR model to several US interest rate series. The
short-term interest rate is central to much of theoretical and empirical macroeco-
nomics and finance. However, there is still no consensus on the dynamics of short
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term interest rate. In this section, we examine interest rate dynamics using our pro-
posed procedures. We focus on the interest rate itself and do not consider multifactor
(term structure) models.

The data that we consider are one month, three month, and annual rates of interest
in the US. Following the literature, we focus on nominal rates to avoid the data
problems that would be created by attempting to define real rates. In particular,
we looked at (seasonally adjusted) monthly observations of the one month and three
month commercial paper rates, and the annual bond yield from the extended Nelson-
Plosser data. Both the one month rate and the three month rate start from April,
1971 and end at June, 2002, with 378 observations. The annual data are from 1900
to 1988.

Many empirical studies in the unit root literature have investigated U.S. interest
rate data. Nelson and Plosser (1982) studied the unit root property of US annual
interest rates in their seminal work on fourteen macroeconomic time series. This
series and other type interest rates have been often re-examined. Evidence based on
the traditional unit root tests has accumulated suggesting that there is a unit root in
interest rates. See, inter alia, Nelson and Plosser 1982, Schotman and Van Dijk 1991,
El-Jahel et al. 1997, Ball and Torous, 1996).

We the augmented Dickey-Fuller (ADF) unit root tests to these series. In the
ADF regressions, the BIC criterion of Schwarz (1978) and Rissanen (1978) is used
in selecting the appropriate lag length of the autoregressions. The ADF regression
estimates of the largest autoregressive roots of the three interest series are all very
close to unity (see the last rows of Tables 3A, 4A, 5A). Tables 3A, 4A, and 5A report
the ADF test statistics for the 1 month, 3 month and annual series respectively. The
unit root hypothesis can not be rejected by the traditional ADF test at the 5% level of
significance, leading to the conclusion that the interest rate series exhibit unit roots.

We re-visit these interest rate series using the proposed QAR methods. We first
test the unit root hypothesis in these series using the Kolmogorov type statistic
QK S, and the Cramer-von-Mises type test QCM,. The tests were constructed over
7 € T = [0.1,0.9]. The last two columns of Tables 3A, 4A, and 5A report the
calculated statistics and the 5% level critical values that were calculated based on the
resampling procedure given in Section 5. For both the 1 month and 3 month data,
the unit root hypothesis is rejected at 1% level by both tests. For the annual data,
the unit root hypothesis is marginally rejected by the Cramer-von-Mises test at 5%
level, but not rejected by the Kolmogorov-Smirnov test QKS,. In summary, there
is a strong evidence that the short term interest rate series (1 month and 3 month
rates) are not pure unit root process.

Tables 3B, 4B, and 5B provide a more detailed examination on the interest rate
series at selected quantiles. In particular, we investigate the behavior of these series
at each decile. The second column in each of these tables report the estimates of
the largest autoregressive root at each specified quantile. These estimates indicate
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that there exist asymmetry in the persistency. The largest autoregressive coefficient
estimate @y(7) has different values over different quantiles, displaying asymmetric
dynamics over the business cycle. In particular, we find that @;(7) monotonically
increases when we move from lower quantiles to higher quantiles. The autoregressive
coefficient values at the lower quantiles are smaller than those at higher quantiles,
indicating that the local behavior of the interest rate during a recession would be
much more stationary than its behavior during an expansion. The interest rate has an
asymmetric adjustment dynamics. In the presence of positive shocks to the economy,
the interest rate is more persistent. This finding of asymmetric dynamics is consistent
with the interest rate smoothing by the Fed. That is, it might be more acceptable for
the Fed to lower rates by a large amount and quickly than to raise rates in the same
way. Instead, the Fed tends to gradually raise rates in small amounts for a longer
period of time. Consequently, the interest rates are more persistent in the presence
of positive shocks than the negative ones.

We also consider tests for the unit root hypothesis based the autoregression esti-
mates @1 (7) at selected quantiles. The third columns in Tables 3B, 4B, 5B report the
calculated coefficient statistic U, (7) for the three time series. Given the possibility
of both locally stationary and locally explosive behavior at different quantiles, we
consider both the one-sided and the two-sided alternative hypotheses. Columns 4 to
7 of these tables reports 2.5%, 5%, 95% and 97.5% quantiles (and thus the generated
critical values) of the null distribution of U, (7) calculated under the unit root null
using the resampling procedure in Section 5. If we test the unit root hypothesis at
these specified quantiles, we can see that only at quantiles that are around median
can the unit root hypothesis not be rejected. At both low quantiles and high quantiles
the unit root hypothesis is rejected. At low quantiles, the autoregressive roots are
usually smaller than unity. At high quantiles, the estimate become larger than one,
displaying mildly explosive behavior during an expansion.

The QAR method also provides an alternative explanation to the conditional het-
eroskedasticity in the short term interest rate time series. There have been many
empirical studies on volatility of interest rate data. Among existing studies, one of
the most popular classes of empirical models for the study of short-term interest rate
volatility are the continuous time model, in which volatility is parameterized as a
function of previous interest rates levels (y;_1). A partial listing of these type models
are Merton (1973), Brennan and Schwartz (1980), Cox, Ingersoll and Ross (1985),
Longstaff and Schwartz (1992), including the squre root model of Cox, Ingersoll and
Ross (1985). Chan, Karolyi, Longstaff, and Sanders (1992) considered several gener-
alizations of these continuous time models and studied their interest rate dynamics.
They conclude that one of the most important features of the short-term interest rate
dynamics is the relationship between interest rate volatility and the previous level of
interest rate. Also see empirical studies of interest rate using ARCH/GARCH type
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Table 3A
ADF, ADF, QKS, QCM,
Test Statistics 1154 -2.22 41.39% 326.21"

5% Critical Values -14.1  -2.86  20.04 48.73

OLS Estimator: a; = 0.976

Table 3B
Quantiles | @1 (7) | Un(1) |2.5% c.v. | 5% c.v. | 95% c.v. | 97.5% c.v.
0.1 0.886 | -41.4* | -22.75 | -18.06 2.88 4.19
0.2 0.929 | -26.4* | -12.31 | -10.11 1.62 2.40
0.3 0.961 | -14.3* -7.48 -5.94 1.05 1.55
0.4 0.981 | -7.06* -3.69 -3.10 0.49 0.75
0.5 0.994 | -2.08 -3.61 -2.85 0.49 0.74
0.6 1.014 | 5.39% -5.65 -4.51 0.76 1.17
0.7 1.029 | 11.13#%# | -7.75 -6.30 1.12 1.67
0.8 1.055 | 20.47## | -11.17 -9.14 1.67 2.36
0.9 1.111 | 41.39#%# | -18.83 | -15.11 2.49 3.73
OLS Estimator: a; = 0.976

TABLE 1. T

hose values denoted by a (*) are significant the 5% level against the alternative
a1(7) < 1, and those with (**) are significant at the 1% level against this
alternative. Similarly, the values denoted by a (#) are significant the 5% level
against the alternative is aq(7) > 1, and those with a (#4#) are significant at the 1%
level.

models where the volatilities are affected by shocks (unexpected “news”), see, inter
alia, Engle, Lilien and Robins (1987), Evans (1989).

The QAR model provides a simple lternative model of conditional heteroskedas-
ticity. In this model, the interest rate volatility is still affected by the previous level,
but also adjusted by unexpected “news”. Our empirical analysis find strong evidence
of asymmetry in the business cycle dynamics of short term interest rate. These em-
pirical results suggests that the conditional heteroskedasticity in short term interest
rate series may (at least partially) be caused by the asymmetric response of the Fed.
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Table 4A

ADF, ADF, QKS, QCM,

Test Statistics -11.14 -2.17 43.03* 341.33**

5% Critical Values -14.1  -2.86 19.74 40.67

OLS Estimator: a; = 0.977

Table 4B

Quantiles | a1(7) | Un(7) |2.5% c.v. | 5% c.v. | 95% c.v. | 97.5% c.v.

0.1 0.884 | -43.03 -19.99 -16.51 2.54 3.88
0.2 0.926 | -27.55 -9.45 -7.62 1.24 1.84
0.3 0.959 | -15.22** -6.59 -5.90 1.03 1.47
0.4 0.984 | -5.83 -4.39 -3.50 0.62 0.86
0.5 0.991 | -3.51 -4.03 -3.26 0.51 0.76
0.6 1.012 | 4.82 -5.53 -4.48 0.76 1.19
0.7 1.034 | 12.62 -7.79 -6.44 1.06 1.52
0.8 1.065 | 23.91 -10.95 -8.78 1.60 2.21
0.9 1.107 | 39.73 -20.41 -15.99 2.93 4.13

OLS Estimator: o = 0.977

Table HA
ADF, ADF, QKS, QCM,
Test Statistics -3.15 -1.02 14.65 67.39*

5% Critical Values -14.1  -2.86 2349  65.42

OLS Estimator: o; = 0.974
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Table 5B
Quantiles | @1 (1) | Up(7) | 2.5% c.v. | 5% c.v. | 95% c.v. | 97.5% c.v.
0.1 0.829 | -14.64 | -26.89 -22.13 3.33 4.95
0.2 0.865 | -11.61 | -12.12 -9.15 1.24 2.02
0.3 0.965 | -2.99 -6.00 -4.50 0.89 1.25
0.4 0.981 | -1.64 -5.24 -4.12 0.92 1.22
0.5 1.004 | 0.39 -5.52 -4.40 0.90 1.35
0.6 1.052 | 4.44 -6.88 -5.48 1.17 1.74
0.7 1.126 | 10.84 -9.53 -7.69 1.61 2.45
0.8 1.165 | 14.25 | -13.32 -11.11 2.22 3.36
0.9 1.126 | 10.83 | -17.88 -14.65 3.06 4.75

OLS Estimator: o; = 0.974

27
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APPENDIX A. PROOFS

A.1. Proof of Theorem 3.1. To find an F;-measurable solution to (3.1), we first express y; in
terms of measurable functions on F; by repeating (3.1), the existence and properties of the solution
to (3.1) can then be reduced to those of a moving average process with random coefficients:

oo
E 5tjut—j;
Jj=0

where S0 =1, B = 1‘[;;3 oy_;, for j > 1. To show that y; = Z;’io Btjut—; is a Doubly Stochastic
Moving Average Process, we need to show that, for each ¢, the infinite series defining y; converges in
mean or in L2 (Doob 1953, p155). Denote E(a;) = po and E(a;)? = w2, then |us| < 1 and w? < 1.
It’s easy to verify that

oo o 1
12 _ 2j _

ZE[/BU] - Zwa 1 _wg < 00.

Jj=0 =0
In addition, since u; (and thus ;) are iid, E[fB;;us—jfuus—i] = 0 for any j # l. Consequently, for
each t the sequence {f;;u;;}32, is an orthogonal sequence with E[fyu;;]* = wilo”. As a result,
the limit E;io Bijus—; exists in mean square, and thus in probability. By routine computations, we
can obtain the following results:

v =3 AEWFimj) = E@ilFrmj=1)} + E@el Fom)-

From the above analysis we have E(y;|F;_m) — 0 in quadratic mean as m — oo, thus if we denote
&,j = E(ye|Fi—j) — E(yt|Fi—j—1), and we have

o0
Yt = Z €t,5-
=0
Since {&;,j, F1—;)} is a martingale difference sequence and Y22, (var(£))'/? < oo, an application
of Gordin(1969), gives

1 ¢ (1 + pa)o?
— y: = N (0,w?) , where w? = —.
«ag (0.62) YT (1= pa) (1 - w2)

The proofs of Lemma 3.1, Lemma 3.2 and Theorem 3.2 are largely simplified versions of Lemma
4.1 and Theorem 4.2, which are contained in the proof of Theorem 4.2. The proofs of Lemma 3.3
and Theorem 3.3 are similar to the proof of Theorem 4.3.
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A.2. Proof of Theorem 4.1. We consider the general form of a p-th order autoregression model
with an intercept term given by (4.2). Denote E(a;;) = p;, and assume that 1 — )" u; # 0. Let
i=ao/(1— S_, 1y), and y, = y; — p, we have

(A1) Y =@l T Fapilyy T+ Vs

where vy, = ug + p Y p_ (ars — ). It’s easy to see that Ev, = 0 and Evw, = 0 for any ¢ # s since
Eap = p and u; are independent. In order to derive stationarity conditions for the process y , we
first find an F;-measurable solution for (A.1). We define the p x 1 random vectors
T
Y, = [gt’ o “’gtfp+1]—r’v;5 = [Ut70’ e '50]

and the p X p random matrix

Ap 1t apy
A, = p—1, P,
t |: Ipfl Opfl )

where A, 14 =[ a4, ..., ap—1,; ] and 0,1 is the (p — 1)-dimensional vector of zeros, then
2 01x(p—
E VVT — Oy 1x(p—1) :| =3
Vve') [ Op-1)x1 Op-1)x(p-1)

and the original process can be written as
Y, =AY, +V;
By substitution, we have Y, =Y, . + Ry ,, where

m 7j—1 .

Ap >1.

Lim = ZBJ'W—J', Rim = Bm1Yy 1, and Bj = { IHI;O:S L)z
=0 ’ ’

The stationarity of an JF;-measurable solution for y; involves the convergence of {E;nzo B;Vi_;}
and {R¢m} as m increases, for fixed ¢. Following a similar analysis as Nicholls and Quinn (1982,
Chapter 2), We need to verify that vecE [Xt’mz;': m] converges as m — oo. Notice that B; is inde-
pendent with V;_; and {u;, t = 0,+1,+£2,---} are independent random variables, thus, {B;V;_; };.";0
is an orthogonal sequence in the sense that E[B;V;_;ByV;_;] = 0 for any j # k. Thus

vecE [V, Y] = vecE ]ZOBVt ; ]ZOBVt N7 =vecE ]ZOBV; AN

Notice that vec(ABC) = (CT ® A)vec(B), and (H{:o Al) ® (Hizo Bk) = Hi:o(Ak ® By,), we have

vecE ZB VioiV,\';B] | = E | (B;®Bj)vec(Vi;V;"))
j=0 | =0
[m j—1
= E Z (H A z> ® (H At—l) vee(Vi—;Vi! ;)
_7:0 =0

= Y [I B(Aii ® Ar_i)vecE(V;_;V,L))
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If we denote

amea=[ B o ],

where i, ; =[ p1, ..., pp-1 |, then 4y = A+ Z4, where E(Z;) = 0, and
E(At_l ® At—l) = E[(A + Et) ® (A + Et)] =AQA+ E(Et ® Et) =0y

then
vecE ZBVt i ZBVt j ZQAvec

The critical condition for the stationarity of the process y .18 that Z;"ZO Qf4 converges as m — 0.
The matrix 4 may be represented in Jordan canonical form as Q4 = PAP~!, where A has the
eigenvalues of (24 along its main diagonal. If the eigenvalues of 24 have moduli less than unity, A
converges to zero at a geometric rate. Notice that 7, = PAJP~!, following a similar analysis as
Nicholls and Quinn (1982, Chapter 2), Y, (and thus y,) is stationary and can be represented as

oo
Y, =Y B;jVi;.
=0

The central limiting Theorem then follows from Billingsley (1961) (also see Nicholls and Quinn
(1982, Theorem A.1.4)).

For the special case that o+ = o; = constant (j = 2,...,p) in (4.1) and |a1¢| < 1 and |Eai | <1,
if A(L) has all its roots outside the unit circle, the eigenvalues of 24 have moduli less than unity.
Thus, the time series y; given by (4.1) is covariance stationary. [ |

A.3. Proof of Theorem 4.2. We follow the approach of Knight (1989) (also see Pollard (1991))
which is based on a convexity lemma that the quantile regression objective function satisfies. We
use the following identity: if we denote ¢, (u) = 7 — I(u < 0), for u # 0,

prlu—v) = pr(u) = —vip,(u) + (=) {I(0>u>v) =10 < u < v)}

(A.2) —vtpr (u / {I(u < 5) — I(u < 0)}ds.

Let uy, = Yy — :L';ra(T), and denote ¥ = /n(a(1) — a(7)), then p,(y; — a(7) "2¢) = pr(ugr —
(n=Y2%)Tay). If ¥ is a minimizer of Z,(v) = Y1, [pr(uer — (n7Y%0) T3y) — pr(usr)], we have
v = v/n(a(r) — a(7)).

Notice that E[¢), (ut,)|Fi—1] = 0. Using the identity (A.2), the objective function of minimization
problem can be written as

Z [pr utr 1/2U)Txt) - p‘r(ut‘r)]

=1

-

—1/2U)T

= (n70) Twip (urr) + Z/ I(ugr < 5) — I{ugr < 0)}ds

t=1
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The asymptotics for n~1/2 Yoy ehr (ugr) is straightforward. Note that z; € Fy—q so since
E[t: (ugr)| Fe—1] = 0, x4 (ugr) is a martingale difference sequence and by the properties of y;

n_1/2 i $t¢r(utr) = N(O’T(l - T)QO)'
t=1

We now consider the limit of

—1/2v)T

Z /(n I(ugr < 8) — I(ug; < 0)}ds.

For convenience of asymptotic analysis, we denote

~1/2)T g,

n (n
v) = th(v), &(v) = /0 {I(ur < 8) — I(ugr < 0)}ds.
We further define
£,(v) = B{&(v)|Fe1}, and Wp(v) =) _&,(v),

then {&(v) — &,(v)} is a martingale difference sequence.
Denote the conditional distribution function F; ;(e) = Pr[y; < e|F;_1], and its derivative as
fi—1(e), a.s., notice that

Urt = Yt — -T;ra(T) =Yt — Ftill (1)
—1/21))T

Waw) = ZE{ / Tty < 5)— Iutr < 0)]|Fomn}

n —1/2v)T z4

= Z /(n E [I('U,tT < 8) - I(Ut-,— < 0)'-7:1‘,—1] ds
t=170

n (n—l/Q,U)T
-3/ B Iy < 5+ F24 () = I(e < Foh ()| Far] ds
0

t=1
s+F,Z (1)
/ fe_1(r)dr
F2' (1)

i /(n_l/zv)Twz
t=1 70 t—1
~ i /(n_l/Zv)th F_1(s+ Ftill (1)) — Fi—1 (Ftill (T))]
0

S
t=1

ds

sds

Notice that f; 1(s,) is uniformly integrable for any sequence s,, — F,"% (1),

n=1/2,T

Waw) = z/ T B ()sds + 0,(1)

[n 1/2yT xt]2

= z 72 + 0p(1)
1
n

Z v 2z v+ 0,(1)
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By our assumptions and stationarity of { f;_1[F,_}(7)]} and y;, we have

— 1
W) = ivTQw

By the Asymptotic Equivalence Lemma, the limiting distribution of )", &(v) is the same as that
of 3, &,(v). As a result,

(Tb_l/Q’U)TEt

Zaw) = =3 (0 Y20) ms(uer) + 3 /0 (I(uer < 8) — I(ugr < 0)}ds.

t=1

1
= —v' N(,7(1-7)) + EUTQW = Z(v)

By the convexity Lemma of Pollard (1991) and arguments of Knight (1989), notice that Z,(v)
and Z(v) are minimized at ¥ = /n(a(r) — a(r)) and N(0,7(1 — 7)Q7'QeQ; ") respectively, by
Lemma A of Knight (1989) we have,

Vn(@(r) —a(r) = NO,7(1 - 1) ' Q0 )

A.4. Proof of Theorem 4.3. Again we follow the approach of Knight (1989). The proof is similar
to that of Theorem 5 but with changes to accommodate the nonstationarity. Using this approach,
Herce (1996) derives the asymptotic distribution of the least absolute deviation estimators. We use
a similar argument here. If we denote v = D, (8 — 0(7)), where D,, = diag(x/n,n,/n - -,4/n), the
minimization is equivalent to

n
mz}nz [pT(utT - UTDEI‘Tt) - pr(ut‘r)] .
t=1
Using identity (A.2), we have

n

> [or(uer —v" Ditwe) = pr(usr)]

n
= - ZUTDglarth(utT) + Z(utT - UTDrjla:t){I(O > upr > UTD;Imt) —I(0 < ur < UTDgla:t)}.

t=1 t=1
For the first term,

Ln Zt 1/)7' (ut'r) fol dB;Z
n 2ot Ye—19r (uir) Jy BudBj,

n 1 1= T
Dt Zm%(wﬂ = | HFXAYadr(wr) | o | @ = [ Jo BuwdB;, ] = @~
t=1 : .

®

ﬁ 2ot Ay q¥r (uir) d,

where @ is a g-dimensional normal variate with covariance matrix 7(1 — 7)Qg, and is independent
with f, B,dBj.
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We now consider the limit of

n
Z(utT —v" D a) (0 < ugy <v' D tay).
t=1

For convenience of asymptotic analysis, we denote

n
Un,(v) = Zzt(v), where 2 (v) = (v" D wy — ue ) 1(0 < wgr < v D lay).
t=1

33

To avoid technical problems in taking conditional expectations, following Knight (1989), we consider

truncation of van=1/2

We further define

yt—1 at some finite number m > 0 and denote

Unm(v) = Zth(”)a

zem(v) = (vTDglxt — U ) (0 < gy < UTDEI:Ut)Mt

M, = I(0<L v2n71/2yt_1 <m).

Zim() = E{(v" D, 2y — u;)I(0 < wgr < v' D, ay) My| Fi_1},

and

Unm('v) = Zztm(v);
t=1

80 {24m (V) — Zm (v) } is a martingale difference sequence. Notice that

Thus

ZE{(UTDEIHJ} —ugr) (0 < ugr <v' DY 'we) My|Fy1}
[(v" D my + F (1) My — ] fu(r)dr

[

F7l(r) r

[vTD;1z¢ +Fu_1(‘r)]M¢ [vTDglmt+Fu_l(‘r)]Mt
/ / ds]fu(r)dr

Z/ ) / fu(r)drds
=1 JFS N (1) <s<wT Dy ta+ FH(T)IM, JFD Y (T)<r<s

/[v Dz +F, (1) M Fu(S) - Fu(Ful(T)):| ds
)
S — Fu (T)

o= F )|

n [vT D'z +F 7 (1) M,
/ (5= B AulFL (7)lds + 0,(1)

=1 JF ()

" _ S_Fu_l(T)Q v D g+ F (1) My

> aur e { B RO Tt d o)
t=1

% 2": FulF Y ()0 [D; Lzga] D oM, + 0,(1).
t=1



34 QUANTILE AUTOREGRESSION

Thus

where

Vim =

We now follow the arguments of Pollard (1984, p171), notice that (v D a;)1(0 < von~2y; | <
m) 50 uniformly in ¢,

> Eletm(v)*|Fe1] < max{(v" Dy z)I(0 < van™Py,_y <m)} D Zim(v) — 0.
t=1

thus the following summation of martingale difference sequence
Z{Ztm(v) — Ztm (U)}
t

converges to zero in probability. Thus the limiting distribution of }_, 24, (v) is the same as that of
> Zim(v), i.e., Unm(v) = nm. Let m — oo, we have
1
M = 0 =5 f(F7H(1))v" ©10l(v3Bu(5) > 0),
and
= =T
¥, = Jo BuB,I(0 < v] Bu(s)) 0] |
0, Qg

By a similar argument as Herce (1996), we can show that

li_r>n lim sup Pr[|Up(v) — Upm(v)| > €] =0.

n—oo

Similarly, we show that Yy (usr — (D v) T24){I(0 > ugr > (D 'v) T24) converges to

1
if(F_l(T))’UT\I’QUI(Usz(S) <0).
with
-
v, — Jo BuB,I(v] By(s) <0) 07
0, Qg
Thus,




As a result,

Zn(v)
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=Y (D) Tz, (uy,)
t=1
i (u,,—(D; ") T 2){1(0 > u,.> (D ') " 2) — I(0 < u,.< (D;'v) " 2)}
t=1
—0 T ®* + f(F~Y(1))v" Tv

35
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