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Abstract. We consider quantile autoregression (QAR) models in which the
autoregressive coefficients can be expressed as monotone functions of a sin-
gle, scalar random variable. The models can capture systematic influences
of conditioning variables on the location, scale and shape of the conditional
distribution of the response, and therefore constitute a significant extension
of classical constant coefficient linear time series models in which the effect of
conditioning is confined to a location shift. The models may be interpreted
as a special case of the general random coefficient autoregression model with
strongly dependent coefficients. Statistical properties of the proposed model
and associated estimators are studied. The limiting distributions of the au-
toregression quantile process are derived. Quantile autoregression inference
methods are also investigated. Empirical applications of the model to the
U.S. unemployment rate and U.S. gasoline prices highlight the potential of the

model.

1. Introduction

Constant coefficient linear time series models have played an enormously suc-
cessful role in econometrics, and gradually various forms of random coefficient time
series models have also emerged as viable competitors in particular fields of appli-
cation. One variant of the latter class of models, although perhaps not immediately
recognizable as such, is the linear quantile autoregression model. This model has
received considerable attention in the theoretical literature, and can be easily es-
timated with the quantile regression methods proposed in Koenker and Bassett
(1978). Curiously, however, all of the theoretical work dealing with this model
(that we are aware of) focuses exclusively on the iid innovation case that restricts
the autoregressive coefficients to be independent of the specified quantiles. In this
paper we seek to relax this restriction and consider linear quantile autoregression
models whose autoregressive (slope) parameters may vary with quantiles τ ∈ [0, 1].
We hope that these models might expand the modeling options for economic time
series that display asymmetric dynamics or local persistency.

In recent years, considerable research effort has been devoted to modifications
of traditional unit root models to incorporate the effect of various types of shocks.
An important motivation for such modifications is the introduction of asymmetries
into economic dynamics. It is widely acknowledged that many important economic
variables may display asymmetric adjustment paths (e.g. Neftci (1984), Enders
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2 Quantile Autoregression

and Granger (1998)). The observation that firms are more apt to increase than
to reduction in prices is a key feature of many macroeconomic models. Beaudry
and Koop (1993) showed that positive shocks to U.S. GDP are more persistent
than negative shocks, indicating asymmetric business cycle dynamics over different
quantiles of the innovation process. In addition, while it is recognized that output
fluctuations are persistent, less persistent results are also found at longer horizons
(Beaudry and Koop (1993)), indicating the existence of “local persistency” or “tem-
poral persistency” in economic time series. See, inter alia, Delong and Summers
(1986), Hamilton (1989), Sichel (1989), Diebold and Rudebusch (1990), Evans and
Wachtel (1993), Potter (1995), Bradley and Jansen (1997), Hess and Iwata (1997),
and Kuan and Huang (2001)) among others on the study of asymmetric dynamics in
economic time series. A related development is the growing literature on threshold
autoregression (TAR) with unit roots (e.g. Balke and Fomby (1997); Tsay (1997);
Gonzalez and Gonzalo (1998); Hansen (1999); and Caner and Hansen (2001)). In
particular, Tsay (1997) proposed a unit root test when the innovations follow a
threshold process; Gonzalez and Gonzalo (1998) studied a TAR(1) model that al-
lows for a unit root; Caner and Hansen (2001) develops an asymptotic theory of
inference for an unrestricted two regime TAR model with a unit root.

We believe that quantile regression methods can provide an alternative way to
study asymmetric dynamics and persistency in economic time series. Linton and
Whang (2004) have recently proposed related “quantilogram” inference methods
for exploring linear dependence in time series at various quantiles. In this paper,
we study a quantile autoregression (QAR) model whose autoregressive coefficient
may take different values (possibly unity) over different quantiles of the innova-
tion process. We show that some forms of the model can exhibit unit-root like
tendencies or even temporarily explosive behavior, but with occasional episodes of
mean reversion sufficient to insure stationarity. The models lead to interesting new
hypotheses and inference apparatus for economic time series.

The paper is organized as follows: We introduce the model and study some ba-
sic statistical properties of the QAR process in Section 2. Section 3 develops the
limiting distribution of the QAR estimator. Section 4 considers some restrictions
imposed on the model by the monotonicity requirement on the conditional quan-
tile functions. Statistical inference, including testing for asymmetric dynamics, is
explored in Section 5. Section 6 reports a Monte Carlo experiment on the sam-
pling performance of the proposed inference procedure. Empirical applications to
the U.S. unemployment rate and the U.S. price of gasoline are discussed in Section
7. Proofs are provided in the Appendix.

2. The Model

There is a substantial theoretical literature, including Weiss (1987), Knight
(1989), Koul and Saleh(1995), Koul and Mukherjee(1994), Hercé (1996), Hasan
and Koenker (1997), Jurečková and Hallin (1999) dealing with the linear quantile
autoregression model. In this model the τ -th conditional quantile function of the
response yt is expressed as a linear function of lagged values of the response. But
a striking feature of this literature is that it has focused exclusively on the case
of iid innovations in which the conditioning variables play their classical role of
shifting the location of the conditional density of yt, but they have no effect on
conditional scale or shape. In this paper we wish to study estimation and inference
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in a more general class of quantile autoregressive (QAR) models in which all of the
autoregressive coefficients are allowed to be τ -dependent, and therefore are capable
of altering the location, scale and shape of the conditional densities.

2.1. The Model. Let {Ut} be a sequence of iid standard uniform random vari-
ables, and consider the pth order autoregressive process,

(1) yt = θ0(Ut) + θ1(Ut)yt−1 + · · · + θp(Ut)yt−p,

where the θj ’s are unknown functions [0, 1] → R that we will want to estimate.
Provided that the right hand side of (1) is monotone increasing in Ut, it follows
that the τth conditional quantile function of yt can be written as,

(2) Qyt(τ |yt−1, ..., yt−p) = θ0(τ) + θ1(τ)yt−1 + ... + θp(τ)yt−p.

or somewhat more compactly as,

(3) Qyt(τ |Ft−1) = x>
t θ(τ).

where xt = (1, yt−1, ..., yt−p)
>, and Ft is the σ-field generated by {ys, s ≤ t}. The

transition from (1) to (2) is an immediate consequence of the fact that for any
monotone increasing function g and standard uniform random variable, U , we have

Qg(U)(τ) = g(QU (τ)) = g(τ),

where QU (τ) = τ is the quantile function of U . In the above model, the autore-
gressive coefficients may be τ -dependent and thus can vary over the quantiles. The
conditioning variables not only shift the location of the distribution of yt, but also
may alter the scale and shape of the conditional distribution. We will refer to this
model as the QAR(p) model.

We will argue that QAR models can play a useful role in expanding the modeling
territory between classical stationary linear time series models and their unit root
alternatives. To illustrate this in the QAR(1) case, consider the model

(4) Qyt(τ |Ft−1) = θ0(τ) + θ1(τ)yt−1,

with θ0(τ) = σΦ−1(τ), and θ1(τ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1) and γ1 > 0. In
this model if Ut > (1−γ0)/γ1 the model generates the yt according to the standard
Gaussian unit root model, but for smaller realizations of ut we have a mean reversion
tendency. Thus, the model exhibits a form of asymmetric persistence in the sense
that sequences of strongly positive innovations tend to reinforce its unit root like
behavior, while occasional negative realizations induce mean reversion and thus
undermine the persistence of the process. The classical Gaussian AR(1) model is
obtained by setting θ1(τ) to a constant.

The formulation in (4) reveals that the model may be interpreted as somewhat
special form of random coefficient autoregressive (RCAR) model. Such models
arise naturally in many time series applications. Discussions of the role of RCAR
models can be found in, inter alia, Nicholls and Quinn (1982), Tjøstheim(1986),
Pourahmadi (1986), Brandt (1986), Karlsen(1990), and Tong (1990). In contrast
to most of the literature on RCAR models, in which the coefficients are typically
assumed to be stochastically independent of one another, the QAR model has
coefficients that are functionally dependent.

Monotonicity of the conditional quantile functions imposes some discipline on the
forms taken by the θ functions. This discipline essentially requires that the function
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Qyt(τ |yt−1, ..., yt−p) is monotone in τ in some relevant region Υ of (yt−1, ..., yt−p)-
space. The correspondance between the random coefficient formulation of the QAR
model (1) and the conditional quantile function formulation (2) presupposes the
monotonicity of the latter in τ . In the region Υ where this monotonicity holds
(1) can be regarded as a valid mechanism for simulating from the QAR model (2).
Of course, model (1) can, even in the absence of this monotonicity, be taken as a
valid data generating mechanism, however the link to the strictly linear conditional
quantile model is no longer valid. At points where the monotonicity is violated
the conditional quantile functions corresponding to the model described by (1)
have linear “kinks”. Attempting to fit such piecewise linear models with linear
specifications can be hazardous. We will return to this issue in the discussion of
Section 4. In the next section we briefly describe some essential features of the
QAR model.

2.2. Properties of the QAR Process. The QAR(p) model (1) can be reformu-
lated in more conventional random coefficient notation as,

(5) yt = µ0 + α1,tyt−1 + · · · + αp,tyt−p + ut

where µ0 = Eθ0(Ut), ut = θ0(Ut)−µ, and αj,t = θj(Ut), for j = 1, ..., p. Thus, {ut}
is an iid sequence of random variables with distribution function F (·) = θ−1

0 (·+µ),
and the αj,t coefficients are functions of this ut innovation random variable. The
QAR(p) process (5) can be expressed as an p-dimensional vector autoregression
process of order 1:

Yt = Γ + AtYt−1 + Vt

with

Γ =

[
µ0

0p−1

]
, At =

[
Ap−1,t αp,t

Ip−1 0p−1

]
, Vt =

[
ut

0p−1

]
,

where Ap−1,t = [ α1,t, . . . , αp−1,t ], Yt = [yt, · · ··, yt−p+1]
>, and 0p−1 is the

(p − 1)-dimensional vector of zeros. In the Appendix, we show that under regu-
larity conditions given in the following Theorem, an Ft-measurable solution for (5)
can be found.

To formalize the foregoing discussion and facilitate later asymptotic analysis, we
introduce the following conditions.

A.1: {ut} are iid random variables with mean 0 and variance σ2 < ∞. The
distribution function of ut, F , has a continuous density f with f(u) > 0 on
U = {u : 0 < F (u) < 1}.

A.2: Let E(At⊗At) = ΩA, the eigenvalues of ΩA have moduli less than unity.
A.3: Denote the conditional distribution function Pr[yt < ·|Ft−1] as Ft−1(·)

and its derivative as ft−1(·), ft−1 is uniformly integrable on U .

Theorem 2.1. Under assumptions A.1 and A.2, the time series yt given by (5) is
covariance stationary and satisfies a central limit theorem

1√
n

n∑

t=1

(yt − µy) ⇒ N
(
0, ω2

y

)
,

where

µy =
µ0

1 − ∑p
j=1 µj

; ω2
y = lim

1

n
E[

n∑

t=1

(yt − µy)]2, and µj = E(αj,t), j = 1, ..., p.
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To illustrate some important features of the QAR process, we consider the sim-
plest case of QAR(1) process,

(6) yt = αtyt−1 + ut,

where αt = θ1(Ut) and ut = θ0(Ut) corresponding to (4), whose properties are
summarized in the following corollary.

Corollary 2.1. If yt is determined by (6), and ω2
α = E(αt)

2 < 1, under assumption
A.1, yt is covariance stationary and satisfies a central limit theorem

1√
n

n∑

t=1

yt ⇒ N
(
0, ω2

y

)
,

where

ω2
y =

1 + µα

(1 − µα)(1 − ω2
α)

σ2,

with µα = E(αt) < 1.

In the example given in Section 2.1, αt = θ1(Ut) = min{γ0 + γ1Ut, 1} ≤ 1,
and Pr (|αt| < 1) > 0, the condition of Corollary 2 holds and the process yt is
globally stationary but can still display local (and asymmetric) persistency in the
presence of certain type of shocks (positive shocks in the example). Corollary 2
also indicates that even with αt > 1 over some range of quantiles, as long as
ω2

α = E(αt)
2 < 1, yt can still be covariance stationary in the long run. Thus, a

quantile autoregressive process may allow for some (transient) forms of explosive
behavior while maintaining stationarity in the long run.

Under the assumptions in Corollary 2, by recursively substituting in (6), we can
see that

(7) yt =

∞∑

j=0

βt,jut−j , where βt,0 = 1, and βt,j =

j−1∏

i=0

αt−i, for j ≥ 1.

is a stationaryFt-measurable solution to (6). In addition, if
∑∞

j=0 βt,jvt−j converges

in Lp, then yt has a finite p-th order moment. The Ft-measurable solution of (6)
gives a doubly stochastic MA(∞) representation of yt. In particular, the impulse
response of yt to a shock ut−j is stochastic and is given by βt,j . On the other hand,
although the impulse response of the quantile autoregressive process is stochastic,
it does converge (to zero) in mean square (and thus in probability) as j → ∞,
corroborating the stationarity of yt. If we denote the autocovariance function of yt

by γy(h), it is easy to verify that

γy(h) = µ|h|
α σ2

y , where σ2
y =

σ2

1 − ω2
α

.

Remark 2.1. Comparing to the QAR(1) process yt, if we consider a conventional
AR(1) process with autoregressive coefficient µα and denote the corresponding pro-
cess by y

t
, the long-run variance of yt (given by ω2

y) is (as expected) larger than
that of y

t
. The additional variance the QAR process yt comes from the variation of

αt. In fact, ω2
y can be decomposed into the summation of the long-run variance of

y
t
and an additional term that is determined by the variance of αt:

ω2
y = ω2

y +
σ2

(1 − µα)2(1 − ω2
α)

Var(αt),
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where ω2
y = σ2/(1 − µα)2 is the long-run variance of y

t
.

We consider estimation and related inference on the QAR model in the next two
sections.

3. Estimation

Estimation of the quantile autoregressive model (3) involves solving the problem

(8) min
θ∈Rp+1

n∑

t=1

ρτ (yt − x>
t θ),

where ρτ (u) = u(τ − I(u < 0)) as in Koenker and Bassett (1978). Solutions,

θ̂(τ), are called autoregression quantiles. Given θ̂(τ), the τ -th conditional quantile
function of yt, conditional on xt, could be estimated by,

Q̂yt(τ |xt) = x>
t θ̂(τ),

and the conditional density of yt can be estimated by the difference quotients,

f̂yt(τ |xt−1) = (τi − τi−1)/(Q̂yt(τi|xt−1) − Q̂yt(τi−1|xt−1)),

for some appropriately chosen sequence of τ ’s.
If we denote E(yt) as µy, E(ytyt−j) as γj , and let Ω0 = E(xtx

>
t ) = lim n−1

∑n
t=1 xtx

>
t ,

then

Ω0 =

[
1 µy

µy Ωy

]

where

Ωy =




γ0 · · · γp−1

...
. . .

...
γp−1 · · · γ0


 .

In the special case of QAR(1) model (6), Ω0 = E(xtx
>
t ) = diag[1, γ0], γ0 = E[y2

t ].
Let Ω1 = lim n−1

∑n
t=1 ft−1[F

−1
t−1(τ)]xtx

>
t , and define Σ = Ω−1

1 Ω0Ω
−1
1 . The as-

ymptotic distribution of θ̂(τ) is summarized in the following Theorem.

Theorem 3.1. Under assumptions A.1 - A.3,

Σ−1/2
√

n(θ̂(τ) − θ(τ)) ⇒ Bk(τ),

where Bk(τ) represents a k-dimensional standard Brownian Bridge, k = p + 1.

By definition, for any fixed τ , Bk(τ) is N (0, τ(1 − τ)Ik). In the important
special case with constant coefficients, Ω1 = f [F−1(τ)]Ω0, where f(·) and F (·) are
the density and distribution functions of ut, respectively. We state this result in
the following corollary.

Corollary 3.1. Under assumptions A.1 - A.3, if the coefficients αjt are constants,
then [

f [F−1(τ)]−1Ω0

]1/2 √
n(θ̂(τ) − θ(τ)) ⇒ Bk(τ).

An alternative form of the model that is widely used in economic applications is

(9) yt = µ0 + δ0,tyt−1 +

p−1∑

j=1

δj,t∆yt−j + ut,
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where, corresponding to (5),

δ0,t =

p∑

s=1

αs,t, δj,t = −
p∑

s=j+1

αs,t, j = 1, · · ·, p − 1.

In the above transformed model, δ0,t is the critical parameter corresponding the
largest autoregressive root. Let zt = (1, yt−1, ∆yt−1, ..., ∆yt−p+1)

>, we may write
the quantile regression counterpart of (9) as

(10) Qyt(τ |Ft−1) = z>t δ(τ).

where

δ(τ) = (α0(τ), δ0(τ), δ1(τ), · · ·, δp−1(τ))>.

The limiting distributions of the quantile regression estimators δ̂(τ) can be ob-
tained from our previous analysis. If we define

J =




1 0 0 · · · 0
0 1 1 · · · 1
0 0 −1 −1

. . .

0 0 0 · · · −1




, and ∆ = JΣJ

then we have, under assumptions A.1 - A.3,

∆−1/2
√

n(δ̂(τ) − δ(τ)) ⇒ Bk(τ).

If we focus our attention on the largest autoregressive root δ0,t in the ADF type
regression (9) and consider the special case that δj,t = constant for j = 1, ..., p− 1,
then, a result similar to Corollary 2 can be obtained.

Corollary 3.2. Under assumptions A.1-A.3, if δj,t = constant for j = 1, ..., p− 1,
and δ0,t ≤ 1 and |δ0,t| < 1 with positive probability, then the time series yt given by
(9) is covariance stationary and satisfies a central limit theorem.

4. Quantile Monotonicity

As in other linear quantile regression applications, linear QAR models should
be cautiously interpreted as useful local approximations to more complex nonlinear
global models. If we take the linear form of the model too literally then obviously at
some point, or points, there will be “crossings” of the conditional quantile functions
– unless these functions are precisely parallel in which case we are back to the pure
location shift form of the model. This crossing problem appears more acute in the
autoregressive case than in ordinary regression applications since the support of the
design space, i.e. the set of xt that occur with positive probability, is determined
within the model. Nevertheless, we may still regard the linear models specified
above as valid local approximations over a region of interest.

It should be stressed that the estimated conditional quantile functions,

Q̂y(τ |x) = x>θ̂(τ),

are guaranteed to be monotone at the mean design point, x = x̄, as shown in
Bassett and Koenker (1982), for linear quantile regression models. In our random
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Figure 1. QAR and Unit Root Time-Series: The figure contrasts
two time series generated by the same sequence of innovations. The
grey sample path is a random walk with standard Gaussian innova-
tions; the black sample path illustrates a QAR series generated by
the same innovations with random AR(1) coefficient .85+.25Φ(ut).
The latter series although exhibiting explosive behavior in the up-
per tail is stationary as described in the text.
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Figure 2. Estimating the QAR model: The figure illustrates es-
timates of the QAR(1) model based on the black time series of the
previous figure. The left panel represents the intercept estimate at
19 equally spaced quantiles, the right panel represents the AR(1)
slope estimate at the same quantiles. The shaded region is a .90
confidence band. Note that the slope estimate quite accurate re-
produces the linear form of the QAR(1) coefficient used to generate
the data.

coefficient view of the QAR model,

yt = x>
t θ(Ut),
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Figure 3. QAR(1) Model of U.S. Short Term Interest Rate: The
AR(1) scatterplot of the U.S. three month rate is superimposed
in the left panel with 49 equally spaced estimates of linear con-
ditional quantile functions. In the right panel the model is aug-
mented with a nonlinear (quadratic) component. The introduction
of the quadratic component alleviates some nonmonotonicity in the
estimated quantiles at low interest rates.
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Figure 4. QAR(1) Model of U.S. Short Term Interest Rate: The
QAR(1) estimates of the intercept and slope parameters for 19
equally spaced quantile functions are illustrated in the two plots.
Note that the slope parameter is, like the prior simulated example,
explosive in the upper tail but mean reverting in the lower tail.
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we express the observable random variable yt as a linear function of conditioning
covariates. But rather than assuming that the coordinates of the vector θ are inde-
pendent random variables we adopt a diametrically opposite viewpoint – that they
are perfectly functionally dependent, all driven by a single random uniform variable.
If the functions (θ0, ..., θp) are all monotonically increasing then the coordinates of
the random vector αt are said to be comonotonic in the sense of Schmeidler (1986).1

This is often the case, but there are important cases for which this monotonicity
fails. What then?

What really matters is that we can find a linear reparameterization of the model
that does exhibit comonotonicity over some relevant region of covariate space. Since
for any nonsingular matrix A we can write,

Qy(τ |x) = x>A−1Aθ(τ),

we can choose p + 1 linearly independent design points {xs : s = 1, ..., p + 1} where
Qy(τ |xs) is monotone in τ , then choosing the matrix A so that Axs is the sth unit
basis vector for R

p+1 we have

Qy(τ |xs) = γs(τ),

where γ = Aθ. And now inside the convex hull of our selected points we have
a comonotonic random coefficient representation of the model. In effect, we have
simply reparameterized the design so that the p + 1 coefficients are the conditional
quantile functions of yt at the selected points. The fact that quantile functions of
sums of nonnegative comonotonic random variables are sums of their marginal quan-
tile functions, see e.g. Denneberg(1994) or Bassett, Koenker and Kordas (2004),
allows us to interpolate inside the convex hull. Of course, linear extrapolation is
also possible but we must be cautious about possible violations of the monotonicity
requirement in this region.

The interpretation of linear conditional quantile functions as approximations to
the local behavior in central range of the covariate space should always be regarded
as provisional; richer data sources can be expected to yield more elaborate nonlinear
specifications that would have validity over larger regions. Figure 1 illustrates a
realization of the simple QAR(1) model described in Section 2. The black sample
path shows 1000 observations generated from the model (4) with AR(1) coefficient
θ1(u) = .85 + .25u and θ0(u) = Φ−1(u). The grey sample path depicts the a
random walk generated from the same innovation sequence, i.e. the same θ0(Ut)’s
but with constant θ1 equal to one. It is easy to verify that the QAR(1) form
of the model satisfies the stationarity conditions of Section 2.2, and despite the
explosive character of its upper tail behavior we observe that the series appears
quite stationary, at least by comparison to the random walk series. Estimating
the QAR(1) model at 19 equally spaced quantiles yields the intercept and slope
estimates depicted in Figure 2.

Figure 3 depicts estimated linear conditional quantile functions for short term
(three month) US interest rates using the QAR(1) model superimposed on the
AR(1) scatter plot. In this example the scatterplot shows clearly that there is more
dispersion at higher interest rates, with nearly degenerate behavior at very low
rates. The fitted linear quantile regression lines in the left panel show little evidence

1Random variables X and Y on a probability space (Ω,A, P ) are said to be comonotonic if
there are monotone functions, g and h and a random variable Z on (Ω,A, P ) such that X = g(Z)
and Y = h(Z).
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of crossing, but at rates below .04 there are some violations of the monotonicity
requirement in the fitted quantile functions. Fitting the data using a somewhat
more complex nonlinear (in variables) model by introducing a another additive
component θ2(τ)(yt−1− δ)2I(yt−1 < δ) with δ = 8 in our example we can eliminate
the problem of the crossing of the fitted quantile functions. In Figure 4 depicting the
fitted coefficients of the QAR(1) model and their confidence region, we see that the
estimated slope coefficient of the QAR(1) model has somewhat similar appearance
to the simulated example. Even more flexible models may be needed in other
settings. A B-spline expansion QAR(1) model for Melbourne daily temperature is
described in Koenker(2000) illustrating this approach.

The statistical properties of nonlinear QAR models and associated estimators are
much more complicated than the linear QAR model that we study in the present
paper. Despite the possible crossing of quantile curves, we believe that the linear
QAR model provides a convenient and useful local approximation to nonlinear
QAR models. Such simplied QAR models can still deliver important insight about
dynamics, e.g. adjustment asymmetries, in economic time series and thus provides
a useful tool in empirical diagnostic time series analysis.

5. Inference On The QAR Process

In this section, we turn our attention to inference in QAR models. Although
other inference problems can be analyzed, we consider here the following inference
problems that are of paramount interest in many applications. The first hypothesis
is the quantile regression analog of the classical representation of linear restrictions
on θ: (1) H01 : Rθ(τ) = r, with known R and r, where R denotes an q × p-
dimensional matrix and r is an q-dimensional vector. In addition to the classical
inference problem, we are also interested in testing for asymmetric dynamics under
the QAR framework. Thus we consider the hypothesis of parameter constancy,
which can be formulated in the form of: (2) H02 : Rθ(τ) = r, with unknown but
estimable r. We consider both the cases at specific quantiles τ (say, median, lower
quartile, upper quartile) and the case over a range of quantiles τ ∈ T .

5.1. The Regression Wald Process and Related Tests. Under the linear hy-
pothesis H01 : Rθ(τ) = r and the assumptions of Theorem 3, we have

(11) Vn(τ) =
√

n
[
RΩ−1

1 Ω0Ω
−1
1 R>

]−1/2
(Rθ̂(τ) − r) ⇒ Bq(τ),

where Bq(τ) represents a q-dimensional standard Brownian Bridge. For any fixed τ ,
Bq(τ) is N (0, τ(1−τ)Iq). Therefore, the regression Wald process can be constructed
as

Wn(τ) = n(Rθ̂(τ) − r)>[τ(1 − τ)RΩ̂−1
1 Ω̂0Ω̂

−1
1 R>]−1(Rθ̂(τ) − r),

where Ω̂1 and Ω̂0 are consistent estimators of Ω1 and Ω0. If we are interested in
testing Rθ(τ) = r over τ ∈ T , we may consider, say, the following Kolmogorov-
Smirnov (KS) type sup-Wald test:

KSWn = sup
τ∈T

Wn(τ),

If we are interested in testing Rθ(τ) = r at a particular quantile τ = τ0, a Chi-square
test can be conducted based on the statistic Wn(τ0). The limiting distributions are
summarized in the following theorem.
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Theorem 5.1. Under the assumptions of Theorem 3 and the linear restriction H01,

Wn(τ0) ⇒ χ2
q, and KSWn = sup

τ∈T
Wn(τ) ⇒ sup

τ∈T
Q2

q(τ),

where Qq(τ) = ‖Bq(τ)‖ /
√

τ(1 − τ) is a Bessel process of order q, where ‖·‖ rep-
resents the Euclidean norm. For any fixed τ, Q2

q(τ) ∼ χ2
q is a centered Chi-square

random variable with q-degrees of freedom.

5.2. Testing For Asymmetric Dynamics. The hypothesis that θj(τ), j = 1, . . . , p,
are constants over τ (i.e. θj(τ) = µj) can be represented in the form of H02 :

Rθ(τ) = r by taking R = [0p×1

...Ip] and r = [µ1, · · ·, µp]
′, with unknown parameters

µ1, · · ·, µp. The Wald process and associated limiting theory provide a natural test
for the hypothesis Rθ(τ) = r when r is known. To test the hypothesis with un-
known r, appropriate estimator of r is needed. In many econometrics applications,
a
√

n-consistent estimator of r is available. If we look at the process

V̂n(τ) =
√

n
[
RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>

]−1/2

(Rθ̂(τ) − r̂),

then under H02,

V̂n(τ) =
√

n
[
RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>

]−1/2

(Rθ̂(τ) − r) −√
n

[
RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>

]−1/2

(r̂ − r)

⇒ Bq(τ) − f(F−1(τ))
[
RΩ−1

0 R>
]−1/2

Z(12)

where Z = lim
√

n(r̂ − r). The necessity of estimating r introduces a drift com-

ponent (f(F−1(τ))
[
RΩ−1

0 R>
]−1/2

Z) in addition to the simple Brownian bridge
process, invalidating the distribution-free character of the original Kolmogorov-
Smirnov (KS) test.

To restore the asymptotically distribution free nature of inference, we employ a

martingale transformation proposed by Khmaladze (1981) over the process V̂n(τ).

Denote df(x)/dx as ḟ , and define

ġ(r) = (1, (ḟ /f)(F−1(r)))>, and C(s) =

∫ 1

s

ġ(r)ġ(r)>dr,

we construct a martingale transformation K on V̂n(τ) defined as:

Ṽn(τ) = KV̂n(τ) = V̂n(τ) −
∫ τ

0

[
ġn(s)>C−1

n (s)

∫ 1

s

ġn(r)dV̂n(r)

]
ds,

where ġn(s) and Cn(s) are uniformly consistent estimators of ġ(r) and C(s) over
τ ∈ T , and propose the following Kolmogorov-Smirnov2 type test based on the
transformed process:

(13) KHn = sup
τ∈T

∥∥∥Ṽn(τ)
∥∥∥ .

Under the null hypothesis, the transformed process Ṽn(τ) converges to a standard
Brownian motion. For more discussions of quantile regression inference based on

2A Cramer-von-Mises type test based on the transformed process can also be constructed and
analysed in a similar way.
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the martingale transformation approach, see, Koenker and Xiao (2002) and refer-
ences therein.

We assume the following assumptions on the estimators.

A.4: There exist estimators ġn(τ), Ω̂0 and Ω̂1 satisfying:
i.: supτ∈ |ġn(τ) − ġ(τ)| = op(1),

ii.: ||Ω̂0 − Ω0|| = op(1), ||Ω̂1 − Ω1|| = op(1),
√

n(r̂ − r) = Op(1).

Theorem 5.2. Under the assumptions A.1 - A.4 and the hypothesis H02,

Ṽn(τ) ⇒ Wq(τ), KHn = sup
τ∈T

∥∥∥Ṽn(τ)
∥∥∥ ⇒ sup

τ∈T
‖Wq(τ)‖ ,

where Wq(r) is a q-dimensional standard Brownian motion.

The martingale transformation is based on function ġ(s) which needs to be esti-
mated. There are several approaches to estimating the score:

f ′

f
(F−1(s)).

Portnoy and Koenker (1989) studied adaptive estimation and employed kernel-
smoothing method in estimating the density and score functions, uniform consis-
tency of the estimators is also discussed. Cox (1985) proposed an elegant smoothing
spline approach to the estimation of f ′/f , and Ng (1995) provided an efficient al-
gorithm for computing this score estimator. Estimation of Ω0 is straightforward:

Ω̂0 = n−1
∑

t xtx
>
t . For the estimation of Ω̂1, see, inter alia, Koenker and Bas-

sett(1982), Koenker (1994), Powell (1987), and Koenker and Machado (1999) for
related discussions.

6. Monte Carlo

We have conducted a Monte Carlo experiment to examine the effectiveness of
inference procedures based on the QAR method. To investigate the finite sample
performance of QAR based inference procedures, we examine the empirical size and
power of the proposed tests and report the representative results in Tables 1-3. The
data in our experiments were generated from model (6), where ut are i.i.d. random
variables. We are particularly interested in whether or not the time series yt display
asymmetric dynamics. Thus, we consider quantile autoregression (2) with p = 1
and test the hypothesis that α1(τ) = constant over τ .

For the tests, we consider the Kolmogorov-Smirnov type test KHn given by
(13) for different sample sizes and different innovation distributions. We choose
T = [0.1, 0.9]. Both the case where ut are standard normal variates and the case
that ut are student-t distributed variables with 3 degrees of freedom are considered.
The number of repetitions is 1000, and two sample sizes are examined: n = 100,
and n = 300.

When αt = constant, the empirical rejection rates gives the size of test. we
report the sizees of this test for three choices of αt : (1) αt = 0.95; (2) αt = 0.9;
(3) αt = 0.6. The first two choices of αt (0.95 and 0.9) are large and close to
unity so that the corresponding time series display cartain degree of (symmetric)
persistence. Under the alternatives, the processes display asymmetric dynamics.
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For the choice of alternatives, we considered the following four choices of αt,

αt = ϕ1(ut) =

{
1, ut ≥ 0,
0.8, ut < 0.

αt = ϕ2(ut) =

{
0.95, ut ≥ 0,
0.8, ut < 0.

αt = ϕ3(ut) = min{0.5 + Fu(ut), 1}
αt = ϕ4(ut) = min{0.75 + Fu(ut), 1}

These alternatives deliver processes with different types of asymmetric (or local)
persistency. In particular, when αt = ϕ1(ut), ϕ3(ut), ϕ4(ut), yt display unit root
behavior in the presence of positive or large values of innovations, but have a mean
reversion tendency with negative shocks. The alternative αt = ϕ2(ut) has local to
(or weak) unit root behavior in the presence of positive of innovations, and behave
more stationarily when there are negative shocks.

The construction of tests uses estimators of the density and score. We estimate
the density (or sparsity function) using the approach described in the text. For the
score function ġ, we employ the adaptive kernel estimator of Silverman (1986), as
used in Portnoy and Koenker (1989).

The density estimation exerts important influence on the finite sample perfor-
mance of our test. Unsuitable bandwidth selection can produce poor estimates. For
this reason, we pay particular attention to the bandwidth choice in density estima-
tion. In the experiments, we consider the bandwidth choices suggested by Hall and
Sheather (1988) and Bofinger (1975) and rescaled versions of them. A bandwidth
rule that Hall and Sheather (1988) suggested based on Edgeworth expansion for
studentized quantiles is

hHS = n−1/3z2/3
α [1.5s(t)/s′′(t)]1/3,

where zα satisfies Φ(zα) = 1−α/2 for the construction of 1−α confidence intervals,
and s(t) = ϕ0(t)

−1. In the absence of other information about the form of s(·), we
plug-in the Gaussian model to select bandwidth and obtain

hHS = n−1/3z2/3
α [1.5φ2(Φ−1(t))/(2(Φ−1(t))2 + 1)]1/3.

Another bandwidth selection has been proposed by Bofinger (1975). The Bofinger
bandwidth hB was derived based on minimizing the mean squared error of the
density estimator and is of order n−1/5:

hB = n−1/5[4.5s2(t)/(s′′(t))2]1/5.

Again, we plug-in the Gaussian density and obtain the following bandwidth that
has been widely used in practice

hB = n−1/5[4.5φ4(Φ−1(t))/(2(Φ−1(t))2 + 1)2]1/5.

The Monte Carlo results indicate that the Hall-Sheather bandwidth provides a
good lower bound and the Bofinger bandwidth provides a reasonable upper bound
for bandwidth selection in testing parameter constancy. For this reason, we consider
bandwidth values between hHS and hB. In particular, we consider rescaled versions
of hB and hHS (θhB and δhHS where 0 < θ < 1 and δ > 1 are scalars) in our Monte
Carlo and representative results are reported. Bandwidth values that are constant
over the whole range of quantiles are not recommended. The sampling performance
of tests using a constant bandwidth turned out to be poor, and are inferior than
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bandwidth choices such as the Hall/Sheather or Bofinger bandwidth that varies
over the quantiles. For these reason, we focus on bandwidth hB, hHS , θhB, and
δhHS .

The score function was estimated by the method of Portnoy and Koenker (1989)
and we choose the Silverman (1986) bandwidth in our Monte Carlo. Our simulation
results show that the test is more affected by the estimation of the density than
that of the score. Intuitively, the estimator of the density plays the role of a scalar
and thus has the largest influence. The Monte Carlo results also indicates that
the method of Portnoy and Koenker (1989) coupled with the Silverman bandwidth
has reasonably good performance. Table 1 reports the empirical size and power
for the case with Gaussian innovations and sample size n = 100. Considering the
fact that many financial applications have notoriously heavy-tailed behavior we
consider processes with heavy-tailed distributions. Table 2 reports results when
ut are student-t innovations. The sample size corresponding to Table 2 is still
n = 100. Results in Table 2 confirm that, using the quantile regression based
approach, power gain can be obtained in the presence of heavy-tailed disturbances.
Experiments based on larger sample sizes are also conductedand Table 3 reports
the size and power for the case with Gaussian innovations and sample size n = 300.
Results in Table 3 is qualitatively similar to that of Table 1, but it also shows that,
as the sample sizes increase, the tests do have improved size and power properties,
corroborating the asymptotic theory. In summary, the Monte Carlo results indicate
that, by choosing appropriate bandwidth, the proposed tests have reasonable size
and power properties. The test using a rescaled version of Bofinger bandwidth
(h = 0.6hB) yields good performance in all three cases.

Table 1: Testing Constancy of Coefficient α

Empirical Size
Bandwidth h = 3hHS h = hHS h = hB h = 0.6hB

αt = 0.95 0.073 0.287 0.018 0.056
αt = 0.9 0.073 0.275 0.01 0.046
αt = 0.6 0.07 0.287 0.012 0.052

Empirical Power
Bandwidth h = 3hHS h = hHS h = hB h = 0.6hB

αt = ϕ1(ut) 0.474 0.795 0.271 0.391
αt = ϕ2(ut) 0.262 0.620 0.121 0.234
αt = ϕ3(ut) 0.652 0.939 0.322 0.533
αt = ϕ4(ut) 0.159 0.548 0.046 0.114

ut = N(0,1), n = 100, Number of replication =1000



16 Quantile Autoregression

Table 2: Testing Constancy of Coefficient α

Empirical Size
h = 3hHS h = hHS h = hB h = 0.6hB

αt = 0.95 0.086 0.339 0.011 0.059
αt = 0.9 0.072 0.301 0.015 0.043
αt = 0.6 0.072 0.305 0.013 0.038

Empirical Power
h = 3hHS h = hHS h = hB h = 0.6hB

αt = ϕ1(ut) 0.556 0.819 0.319 0.444
αt = ϕ2(ut) 0.348 0.671 0.174 0.279
αt = ϕ3(ut) 0.713 0.933 0.346 0.55
αt = ϕ4(ut) 0.284 0.685 0.061 0.162

ut = t(3), n = 100, Number of replication =1000

Table 3: Testing Constancy of Coefficient α

Empirical Size
h = 3hHS h = hHS h = hB h = 0.6hB

αt = 0.95 0.081 0.191 0.028 0.049
αt = 0.9 0.098 0.189 0.03 0.056
αt = 0.6 0.097 0.16 0.02 0.045

Empirical Power
h = 3hHS h = hHS h = hB h = 0.6hB

αt = ϕ1(ut) 0.974 0.992 0.921 0.937
αt = ϕ2(ut) 0.831 0.923 0.685 0.763
αt = ϕ3(ut) 0.998 1 0.971 0.989
αt = ϕ4(ut) 0.557 0.897 0.235 0.392

ut = N(0,1), n = 300, Number of replication =1000

7. Empirical Applications

There have been many claims and observations that some economic time series
are asymmetric. For example, it has been observed that increases in the unem-
ployment rate are sharper than declines; firms are more apt to increase than to
decrease in prices. It has also been argued that positive shocks to the economy
may be more persistent than negative shocks. For this reason, studies have been
conducted on the existence of asymmetric behavior in these series. If an economic
time series displays asymmetric dynamics systematically, then appropriate models
are needed to incorporate such behavior. In this section, we apply the QAR model
to two economic time series: unemployment rates and retail gasoline prices in the
US. Our empirical analysis indicate that both series display asymmetric dynamics.
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7.1. Unemployment Rate. Many studies on unemployment suggest that the re-
sponse of unemployment to expansionary or contractionary shocks may be asym-
metric. An asymmetric response to different types of shocks has important impli-
cations in policy. In this section, we examine unemployment dynamics using the
proposed procedures.

The data that we consider are quarterly and annual rates of unemployment in
the US. In particular, we looked at (seasonally adjusted) quarterly rates, starting
from the first quarter of 1948 and ending at the last quarter of 2003, with 224
observations. and the annual rates are from 1890 to 1996. Many empirical studies
in the unit root literature have investigated unemployment rate data. Nelson and
Plosser (1982) studied the unit root property of annual US unemployment rates
in their seminal work on fourteen macroeconomic time series. Evidence based on
the unit root tests suggests that the series is stationary. This series and other type
unemployment rates have been often re-examined in later analysis.

We first apply regression (10) on the unemployment rates. We use the BIC
criterion of Schwarz (1978) and Rissanen (1978) in selecting the appropriate lag
length of the autoregressions. The selected lag length is p = 3 for the annual data
and p = 2 for the quarterly data. The OLS estimation of the largest autoregres-
sive root is 0.718 for the annual series and 0.941 for the quarterly rates. Quantile
autoregression was also performed for each deciles. The estimates of the largest
autoregressive root at each quantile is reported in Table 4. These estimated val-
ues are different over different quantiles, displaying asymmetric dynamics over the
business cycle. In particular, we find that in the presence of negative shocks, the
estimated autoregressive root is generally larger.

Table 4: The Estimated Largest AR Root at Each Decile of Unemployment

Annual Data

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ0(τ ) 0.7406 0.7765 0.9293 0.8710 0.8588 0.7933 0.7270 0.6808 0.5991

Quarterly Data

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ0(τ ) 0.912 0.908 0.931 0.919 0.951 0.959 0.967 0.962 0.953

We then test asymmetric dynamics using the martingale transformation based Kolmogorov-
Smirnov procedure (13) based on quantile autoregression (8). According to the suggestion
from the Monte Carlo results, we choose the rescaled Hall and Sheather (1988) bandwidth
3hHS and the rescaled Bofinger (1975) bandwidth 0.6hB in estimating the density func-
tion. The tests were constructed over τ ∈ T = [0.05, 0.95] and results are reported in
Table 5. The empirical results indicate that asymmetric behavior exist in these series.

Table 5: The Kolmogorov Test supτ∈T

‚‚‚eVn(τ )
‚‚‚

Bandwidth 0.6hB 3hHS 5% Critical Values
Annual Rate 4.8962 5.1172 4.523
Quarterly Rate 4.4599 5.3637 3.393
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7.2. Retail Gasoline Price Dynamics. Our second application investigates the asymp-
totic price dynamics in the retail gasoline market. It has been documented that many
markets exist asymmetric price dynamics. In this section, we apply the QAR madel to the
US retail gasoline prices and investigate the existence of asymmetric price adjustment. We
consider weekly data of US regular gasoline retail price from August 20, 1990 to Februry
16, 2004. The sample size is 699.

Table 7 report the OLS based augmented Dickey-Fuller regression estimation results
and the ADF tests for the null hypothesis of a unit root (again we use the BIC criterion to
select the lag length (p = 4) of the autoregressions.) The evidence we obtain is marginal;
the unit root null is rejected by the coefficient based test ADFα, but can not be rejected
by the t ratio based test ADFt.

We next consider quantile regression based on the ADF model (9) to examine the
persistency behavior of the gasoline price series at various quantiles. In particular, Table 6

reports the estimates of the largest autoregressive roots bδ0(τ ) at each decile. The evidence
based on these point estimates of the largest autoregressive root at each quantile suggests
that the gasoline price series has asymmetric dynamics. From the table we can see that
there exists asymmetry in persistency. The largest autoregressive coefficient estimate
bδ0(τ ) has different values over different quantiles, displaying asymmetric dynamics over

the business cycle. In particular, bδ0(τ ) monotonically increases when we move from lower
quantiles to higher quantiles. The autoregressive coefficient values at the lower quantiles
are relatively small, indicating that the local behavior of the gasoline price would be
stationary. However, at higher quantiles, the largest autoregressive root is close to or even
slightly above unity, consequently the time series display unit root or locally explosive
behavior at upper quantiles.

Table 6: The Estimated Largest AR Root at Each Decile of Gasoline Price

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bδ0(τ ) 0.948 0.958 0.971 0.980 0.996 1.005 1.016 1.024 1.047

Table 7: Unit Root Tests

Test Statistic 5% Critical Values

OLS Based ADFα test −17.1385 −14.1
OLS Based ADFt test −2.6731 −2.86

supτ∈T

‚‚‚eVn(τ )
‚‚‚ 8.34774 5.560

QKSα 35.7941 13.2181
QCMα 320.407 19.7209

We next perform formal tests for the null hypothesis that the gasoline price series
has constant autoregressive coefficents. We apply the martingale transformation based
Kolmogorov-Smirnov procedure (13) based on quantile autoregression (2), constancy of
coefficients is rejected. The calculated Kolmogorov-Smirnov statistic (using the rescaled
Bofinger (1975) bandwidth 0.6hB is 8.347735 (lag length p = 4), which is larger than
the 5% level critical value (5.56). However, taking into account of the unit root behavior
under the null, we consider the following (coefficient-based) empirical quantile process

Un(τ ) = n(bδ0(τ ) − 1),

and the Kolmogorov-Smirnov (KS) or Cramer-von-Mises (CvM) type tests:

(14) QKSα = sup
τ∈T

|Un(τ )| , QCMα =

Z

τ∈T

Un(τ )2dτ .
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Using the results of unit root quantile regression asymptotics provided by Koenker and
Xiao (2003), we have, under the unit root hypothesis,

(15) Un(τ ) ⇒ U(τ ) =
1

f(F−1(τ ))

»Z 1

0

B2
y

–−1 Z 1

0

BydB
τ
ψ.

whereBw(r) andBτψ(r) are limiting processes of n−1/2
P[nr]
t=1 ∆yt and n−1/2

P[nr]
t=1 ψτ (utτ )).

We adopt the approach of Koenker and Xiao (2003) and approximate the distributions
of the limiting variates by resampling method and construct bootstrap tests for the unit
root hypothesis based on (14).

Table 7 reports the QKSα and QCMα tests for the null hypothesis of a constant
unit root. The 5% level critical values calculated based on the resampling procedure are
also reported in the table. The constant unit root hypothesis is rejected at 5% level by
both tests. These results, together with the point estimates reported in Table 6, indicate
that the gasoline price series has asymmetric adjustment dynamics and thus is not well
characterized as a constant coefficient unit root process.
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8. Appendix: Proofs

8.1. Proof of Theorem 1. Giving a p-th order autoregression process (5), we denote
E(αj,t) = µj , and assume that 1 −Pµj 6= 0. Let µ = µ0/(1 −Pp

j=1 µj), and denote

y
t
= yt − µ

we have

(16) y
t
= α1,ty

t−1
+ · · · + αp,ty

t−p
+ vt,

where

vt = ut + µ

pX

l=1

(αl,t − µl).

It’s easy to see that Evt = 0 and Evtvs = 0 for any t 6= s since Eαl,t = µl and ut are
independent. In order to derive stationarity conditions for the process y

t
, we first find an

Ft-measurable solution for (16). We define the p× 1 random vectors

Y t = [y
t
, · · ··, y

t−p+1
]′, Vt = [vt, 0, · · ·, 0]′

and the p× p random matrix

At =

»
Ap−1,t αp,t
Ip−1 0p−1

–
,

where Ap−1,t = [ α1,t, . . . , αp−1,t ] and 0p−1 is the (p−1)-dimensional vector of zeros,
then

E(VtV
′
t ) =

»
σ2
v 01×(p−1)

0(p−1)×1 0(p−1)×(p−1)

–
= Σ

and the original process can be written as

Y t = AtY t−1 + Vt

By substitution, we have

Y t = Vt + AtVt−1 +AtAt−1Vt−2 + [At · · · At−m+1]Vt−m + [At · · ·At−m]Y t−m−1

= Y t,m +Rt,m

where

Y t,m =

mX

j=0

BjVt−j , Rt,m = Bm+1Y t−m−1, and Bj =

 Qj−1
l=0 At−l, j ≥ 1.

I, j = 0.
.

The stationarity of an Ft-measurable solution for yt involves the convergence of {Pm
j=0 BjVt−j}

and {Rt,m} as m increases, for fixed t. Following a similar analysis as Nicholls and Quinn
(1982, Chapter 2), We need to verify that vecE

ˆ
Y t,mY

′

t,m

˜
converges as m→ ∞. Notice

that Bj is independent with Vt−j and {ut, t = 0,±1,±2, ···} are independent random vari-
ables, thus, {BjVt−j}∞j=0 is an orthogonal sequence in the sense that E[BjVt−jBkVt−k] = 0
for any j 6= k. Thus

vecE
ˆ
Y t,mY

′

t,m

˜
= vecE

"
(
mX

j=0

BjVt−j)(
mX

j=0

BjVt−j)
′

#
= vecE

"
mX

j=0

BjVt−jV
′
t−jB

′
j

#
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Notice that vec(ABC) = (C′⊗A)vec(B), and
“Qj

l=0Al
”
⊗
“Qj

k=0Bk
”

=
Qj
k=0(Ak⊗Bk),

we have

vecE

"
mX

j=0

BjVt−jV
′
t−jB

′
j

#
= E

"
mX

j=0

(Bj ⊗Bj)vec(Vt−jV
′
t−j)

#

= E

"
mX

j=0

 
j−1Y

l=0

At−l

!
⊗
 
j−1Y

l=0

At−l

!
vec(Vt−jV

′
t−j)

#

=
mX

j=0

j−1Y

l=0

E(At−l ⊗ At−l)vecE(Vt−jV
′
t−j)

If we denote

A = E[At] =

»
µp−1 αp
Ip−1 0p−1

–
,

where µp−1 = [ α1, . . . , αp−1 ], then At = A+ Ξt, where E(Ξt) = 0, and

E(At−l ⊗ At−l) = E [(A+ Ξt) ⊗ (A+ Ξt)] = A⊗A+ E(Ξt ⊗ Ξt) = ΩA

then

vecE

"
(
mX

j=0

BjVt−j)(
mX

j=0

BjVt−j)
′

#
=

mX

j=0

ΩjAvec(Σ).

The critical condition for the stationarity of the process y
t

is that
Pm
j=0 ΩjA converges as

m→ ∞.
The matrix ΩA may be represented in Jordan canonical form as ΩA = PΛP−1, where

Λ has the eigenvalues of ΩA along its main diagonal. If the eigenvalues of ΩA have moduli
less than unity, Λj converges to zero at a geometric rate. Notice that ΩjA = PΛjP−1,
following a similar analysis as Nicholls and Quinn (1982, Chapter 2), Y t (and thus yt) is
stationary and can be represented as

Y t =
∞X

j=0

BjVt−j .

The central limit theorem then follows from Billingsley (1961) (also see Nicholls and Quinn
(1982, Theorem A.1.4)).

8.2. Proof of Theorem 3. If we denote bv =
√
n(bθ(τ ) − θ(τ )), then ρτ (yt − bθ(τ )>xt) =

ρτ (utτ − (n−1/2bv)>xt), where utτ = yt − x>
t θ(τ ). Minimization of (8) is equivalent to

minimizing:

(17) Zn(v) =
nX

t=1

h
ρτ (utτ − (n−1/2v)>xt) − ρτ (utτ )

i
.

If bv is a minimizer of Zn(v), we have bv =
√
n(bθ(τ ) − θ(τ )). The objective function Zn(v)

is a convex random function. Knight (1989) (also see Pollard (1991) and Knight (1998))
shows that if the finite-dimensional distributions of Zn(·) converge weakly to those of
Z(·) and Z(·) has a unique minimum, the convexity of Zn(·) implies that bv converges in
distribution to the minimizer of Z(·).

We use the following identity: if we denote ψτ (u) = τ − I(u < 0), for u 6= 0,

ρτ (u− v) − ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v) − I(0 < u < v)}

= −vψτ (u) +

Z v

0

{I(u ≤ s) − I(u < 0)}ds.(18)
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Thus the objective function of minimization problem can be written as

nX

t=1

h
ρτ (utτ − (n−1/2v)′xt) − ρτ (utτ )

i

= −
nX

t=1

(n−1/2v)′xtψτ (utτ ) +
nX

t=1

Z (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds

We first consider the limiting behavior of

Wn(v) =
nX

t=1

Z (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

For convenience of asymptotic analysis, we denote

Wn(v) =

nX

t=1

ξt(v), ξt(v) =

Z (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

We further define ξt(v) = E{ξt(v)|Ft−1}, and Wn(v) =
Pn
t=1 ξt(v), then {ξt(v) − ξt(v)}

is a martingale difference sequence.
Notice that

uτt = yt − x′
tα(τ ) = yt − F−1

t−1(τ )

Wn(v) =
nX

t=1

E{
Z (n−1/2v)′xt

0

[I(utτ ≤ s) − I(utτ < 0)] |Ft−1}

=
nX

t=1

Z (n−1/2v)′xt

0

"Z s+F−1

t−1
(τ)

F−1

t−1
(τ)

ft−1(r)dr

#
ds

=
nX

t=1

Z (n−1/2v)′xt

0

"
Ft−1(s+ F−1

t−1(τ )) − Ft−1(F
−1
t−1(τ ))

s

#
sds

Under assumption A.3,

Wn(v) =
nX

t=1

Z n−1/2v′xt

0

ft−1(F
−1
t−1(τ ))sds+ op(1)

=
1

2n

nX

t=1

ft−1(F
−1
t−1(τ ))v

′xtx
′
tv + op(1)

By our assumptions and stationarity of yt, we have

Wn(v) ⇒ 1

2
v′Ω1v

Using the same argument as Herce(1996), the limiting distribution of
P
t ξt(v) is the same

as that of
P
t ξt(v).

For the behavior of the first term, n−1/2Pn
t=1 xtψτ (utτ ), in the objective function,

notice that xt ∈ Ft−1 and E[ψτ (utτ )|Ft−1] = 0, xtψτ (utτ ) is a martingale difference

sequence and thus n−1/2Pn
t=1 xtψτ (utτ ) satisfies a central limit theorem. Following the

arguments of Portnoy (1984) and Gutenbrunner and Jurevckova (1992), the autoregression
quantile process is tight and thus the limiting variate viewed as a random function of τ ,
is a Brownian bridge over τ ∈ T ,

n−1/2
nX

t=1

xtψτ (utτ ) ⇒ Ω
1/2
0 Bk(τ ).
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For each fixed τ , n−1/2Pn
t=1 xtψτ (utτ ) converges to a q-dimensional vector normal variate

with covariance matrix τ (1− τ )Ω0. Thus,

Zn(v)

=
nX

t=1

h
ρτ (utτ − (n−1/2v)′xt) − ρτ (utτ )

i

= −
nX

t=1

(n−1/2v)′xtψτ (utτ ) +
nX

t=1

Z (n−1/2v)′xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

⇒ −v′Ω1/2
0 Bk(τ ) +

1

2
v′Ω1v = Z(v)

By the convexity Lemma of Pollard (1991) and arguments of Knight (1989), notice

that Zn(v) and Z(v) are minimized at bv =
√
n(bα(τ ) − α(τ )) and Σ1/2Bk(τ ) respectively,

by Lemma A of Knight (1989) we have,

Σ−1/2√n(bα(τ ) − α(τ )) ⇒ Bk(τ ).
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