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Abstract. We study statistical inference in quantile autoregression models when the largest au-
toregressive coefficient may be unity. The limiting distribution of a quantile autoregression estima-
tor and its t-statistic is derived. The asymptotic distribution is not the conventional Dickey-Fuller
distribution, but a linear combination of the Dickey-Fuller distribution and the standard normal,
with the weight determined by the correlation coefficient of related time series. Inference methods
based on the estimator are investigated asymptotically. Monte Carlo results indicate that the
new inference procedures have power gains over the conventional least squares based unit root
tests in the presence of non-Gaussian disturbances. An empirical application of the model to US
macroeconomic time series data further illustrates the potential of the new approach.

1. Introduction

An extensive literature in economics and finance suggests that many economic time-series are well
characterized as autoregressive processes with a root near unity. Much of the formal inference appa-
ratus used to investigate the so-called unit root hypothesis is, however, designed to provide optimal
performance under Gaussian conditions. Under departures from the Gaussian model, particularly for
innovation distributions with heavy tails, these methods can exhibit rather poor power performance.
Since many applications, particularly in economics and finance, have notoriously heavy-tailed behav-
ior it is important to consider estimation and inference procedures which are robust to departures
from Gaussian conditions and are applicable to nonstationary time series.

One way to achieve robustness is the use of M estimation and associated inference apparatus. M-
estimation methods for nonstationary time series with non-Gaussian innovations have been studied
by Cox and Llatas (1991), Knight (1991), Phillips (1995), Lucas (1995), Rothenberg and Stock
(1997), Juhl (1999), and Xiao (2001) among others. In particular, Cox and Llatas (1991) derive the
asymptotic distribution of the M estimator for an AR(1) process with a (near) unit root. Knight
(1991) studies unit root M estimation in the case with infinite variance errors. Lucas (1995) considers
a unit root test based on a nonparametric modification of M estimators, focusing on the Huber and
Student-t models.

Quantile regression methods provide an alternative approach for robust inference. Rather than re-
lying exclusively on a single measure of conditional central tendency, the quantile regression approach
allows the investigator to explore a range of conditional quantile functions thereby exposing a variety
of forms of conditional heterogeneity. There is a considerable literature on quantile autoregression
methods in time series including work by Weiss (1987), Knight (1989), Koul and Saleh(1995), Koul
and Mukherjee(1994), Hercé (1996), Jurečková and Hallin (1999), and Rogers(2001). Hasan and
Koenker (1997) consider rank-type tests based on regression rankscores in an augmented Dickey-
Fuller framework.

In this paper we propose new tests of the unit root hypothesis based on the quantile autoregression
approach. Both t-ratios based on estimates at selected quantiles and Kolmogorov-Smirnov (or
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2 Quantile Autoregression

Cramer-von-Mises) type tests based on estimates over a range of quantiles are considered. Compared
to existing procedures in the literature the new tests are targeted toward a somewhat broader class
of alternatives including the random coefficient alternatives described in Section 4. The proposed
tests have good power under non-Gaussian conditions and sacrifice little efficiency at the Gaussian
model. The tests also have good power in the presence of asymmetric dynamics, comparing to the
existing tests.

We introduce the model and estimation in Section 2. After proposing the tests and describing
their asymptotic behavior in Section 3, we illustrate their performance with a small Monte Carlo
experiment in Section 4. An application to U.S. macroeconomic data is given in Section 5.

A few words on notation: we use xt to denote the vector of regressors which vary with the order
of the autoregression, the symbol “⇒” indicates weak convergence of the associated probability
measures, [nr] denotes the integer part of nr, and := is used to signify definitional equivalence.
Continuous stochastic processes such as the Brownian motion B(r) on [0, 1] are usually written

simply as B, and integrals with respect to the Lebesgue measure such as
∫ 1

0
B(r)dr are simply

written as
∫
B.

2. Quantile Autoregression With A Unit Root

2.1. The QAR(1) Model. We first consider the following autoregression model

yt = αyt−1 + ut, t = 1, · · ·, n. (1)

focusing on the case that α = 1. For simplicity and without essential loss of generality, we focus
much of our attention on the first order autoregression in this section, but our analysis is easily
extended to the general case – see the discussion in Section 2.3 for extension to the AR(p) model.
For results on unit root estimation and testing based on least-squares methods, see, e.g., Dickey and
Fuller (1979), Chan and Wei (1987).

If we denote the τ -th quantile of ut as Qu(τ) and let Qyt
(τ |yt−1) denote the τ -th conditional

quantile of yt conditional on yt−1, then

Qyt
(τ |yt−1) = Qu(τ) + αyt−1.

Let α0(τ) = Qu(τ), α1(τ) = α, and define α(τ) = (α0(τ), α1(τ))
>, xt = (1, yt−1)

>, we have

Qyt
(τ |yt−1) = x>t α(τ). (2)

In this model the τth conditional quantile function of the response yt is expressed as a linear
function of lagged values of the response. We will explore estimation and inference in the above
quantile autoregression (QAR) model in the presence of a unit root.

Estimation of the linear quantile autoregressive model involves solving the problem

min
α∈R2

n∑

t=1

ρτ (yt − x>t α), (3)

where ρτ (u) = u(τ−I(u < 0)) as in Koenker and Bassett (1978). Solutions of (3), α̂(τ), will be called
τ -th autoregression quantiles; viewed as a function of τ we will refer to α̂(τ) as the QAR(1) process.
Given α̂(τ), the τ -th conditional quantile function of yt, conditional on the past information, can be
estimated by,

Q̂yt
(τ |xt) = x>t α̂(τ),

and the conditional density of yt can be estimated by the difference quotients,

f̂yt
(τ |xt) = (τi − τi−1)/(Q̂yt

(τi|xt) − Q̂yt
(τi−1|xt)),

for some appropriately chosen sequence of τ ’s.
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2.2. Limiting Distribution of the QAR(1) Process. In this section, we describe the limiting
behavior of the autoregression quantile process under the unit root hypothesis. Our analysis follows
the approach of Knight (1991). See Herce (1996), Hasan and Koenker (1997), and Hasan (2001) for
related results.

As will become clear in our later analysis, due to the nonstationarity of yt, the two components
in α̂(τ) = (α̂0(τ), α̂1(τ)) have different rates of convergence. In particular, α̂1(τ) converges to unity
at rate n, while α̂0(τ) converges at rate

√
n. For this reason, we introduce the standardization

matrix Dn = diag(
√
n, n) and denote v̂ = Dn(α̂(τ)−α(τ)), and write ρτ (yt − α̂(τ)>xt) as ρτ (utτ −

(D−1
n v̂)>xt), where utτ = yt − x′tα(τ). Minimization of (3) is equivalent to the following problem:

min
v

n∑

t=1

[
ρτ (utτ − (D−1

n v)>xt) − ρτ (utτ )
]
. (4)

If v̂ is a minimizer of Zn(v) =
∑n

t=1

[
ρτ (utτ − (D−1

n v)>xt) − ρτ (utτ )
]
, we have v̂ = Dn(α̂(τ)−α(τ)).

The objective function Zn(v) is a convex random function. Knight (1989, 1991) and Pollard
(1991) show that if the finite-dimensional distributions of Zn(·) converge weakly to those of Z(·)
and Z(·) has a unique minimum, the convexity of Zn(·) implies that v̂ converges in distribution to
the minimizer of Z(·).

Our asymptotic analysis is based on the following assumptions.

Assumption A1: {ut} are i.i.d. random variables with mean zero and variance σ2 <∞.
Assumption A2: The distribution function of {ut}, F , has a continuous Lebesgue density,
f , with 0 < f(u) <∞ on {u : 0 < F (u) < 1}.

Denoting ψτ (u) = τ − I(u < 0), by definition of utτ , we have E[ψτ (utτ )|Ft−1] = 0. The as-
ymptotic distribution of the autoregression quantile is closely related to the asymptotic behavior
of n−1

∑n
t=1 yt−1ψτ (utτ ). Note that both ut and ψτ (utτ ) have mean 0, and are correlated. Under

Assumption A1, the partial sums of the vector process (ut, ψτ (utτ )) follow a bivariate invariance
principle (see, e.g., Phillips and Durlauf (1986, Theorem 2.1, 474-476, and 486-489); Wooldridge
and White (1988, Corollary 4.2); and Hansen 1992):

n−1/2

[nr]∑

t=1

(ut, ψτ (utτ ))
> ⇒ (Bu(r), B

τ
ψ(r))> = BM(0,Σ(τ))

, where Σ(τ) = E[(ut, ψτ (utτ ))
>(ut, ψτ (utτ ))] is the covariance matrix of the bivariate Brownian

motion. Consequently, it is easy to verify (e.g. Phillips and Durlauf (1986, Lemma 3.1); and Hansen
1992)) that

n−1
n∑

t=1

yt−1ψτ (utτ ) ⇒
∫ 1

0

BudB
τ
ψ .

The random function n−1/2
∑[nr]
t=1 ψτ (utτ ) converges to a two parameter process Bτ

ψ(r) = Bψ(τ, r).

Following the arguments of Portnoy (1984) and Gutenbrunner and Jurečková (1994) it can be shown
that the autoregression quantile process is tight and thus the limiting variate Bτ

ψ(r), viewed as a

random function of τ , is a Brownian bridge over τ ∈ [0, 1]. Thus, the two parameter process
Bτψ(r) is partially Brownian motion and partially Brownian bridge in the sense that for fixed r,

Bτψ(r) = Bψ(τ, r) is a rescaled Brownian bridge, while for each τ , n−1/2
∑[nr]

t=1 ψτ (utτ ) converges

weakly to a Brownian motion with variance τ(1 − τ). Thus, for each fixed pair (τ, r), Bτ
ψ(r) =

Bψ(τ, r) ∼ N(0, τ(1 − τ)r).
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Using the identity (18) given in the Appendix, the objective function of minimization problem
(4) can be written as

n∑

t=1

[
ρτ (utτ − (D−1

n v)>xt) − ρτ (utτ )
]

= −
n∑

t=1

(D−1
n v)>xtψτ (utτ ) +

n∑

t=1

∫ (D−1

n
v)>xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds.

The following Lemma gives asymptotic results that are useful in deriving the limiting distribution
of Dn(α̂(τ) − α(τ)).

Lemma 2.1 Let yt be determined by (1) with α = 1, under Assumptions A1-A2,

D−1
n

n∑

t=1

xtψτ (utτ ) ⇒
∫ 1

0

BudB
τ
ψ, (5)

n∑

t=1

∫ (D−1

n
v)>xt

0

{I(utτ ≤ s) − I(utτ < 0)}ds⇒ 1

2
f(F−1(τ))v>

[∫ 1

0

BuB
>
u

]
v,

where Bu(r) = [1, Bu(r)]
>.

The limiting distribution (5) can be written as (
∫ 1

0
dBτψ,

∫ 1

0
BudB

τ
ψ) where the first component,∫ 1

0
dBτψ, is simply N(0, τ(1 − τ)). The limiting distribution of the QAR estimator for the unit root

model is summarized in the following Theorem.

Theorem 2.1 If yt is determined by (1) with α = 1, under Assumptions A1-A2,

Dn(α̂(τ) − α(τ)) ⇒ 1

f(F−1(τ))

[∫ 1

0

BuB
>
u

]−1 ∫ 1

0

BudB
τ
ψ .

As an immediate consequence of the above Theorem, we have the following corollary which is
useful for construction of tests of the unit root hypothesis.

Corollary 2.1 Under the assumptions of Theorem 2.1,

n(α̂1(τ) − 1) ⇒ 1

f(F−1(τ))

[∫ 1

0

B2
u

]−1 ∫ 1

0

BudB
τ
ψ ,

where Bu(r) = Bu(r) −
∫ 1

0 Bu is the demeaned version of Brownian motion Bu.

2.3. Higher Order QAR Models. One of the most important extensions of the first order autore-
gression formulation of the unit root model is the augmented Dickey-Fuller (1979) (ADF) regression
model

yt = α1yt−1 +

q∑

j=1

αj+1∆yt−j + ut. (6)

In this model, the autoregressive coefficient α1 plays an important role in measuring persistency in
economic and financial time series. Under regularity conditions, if α1 = 1, yt contains a unit root
and is persistent; and if |α1| < 1, yt is stationary. Denoting the σ-field generated by {us, s ≤ t} by
Ft, the τ -th conditional quantile of yt, conditional on Ft−1, is given by

Qyt
(τ |Ft−1) = Qu(τ) + α1yt−1 +

q∑

j=1

αj+1∆yt−j .
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Let α0(τ) = Qu(τ)), and αj(τ) = αj , j = 1, ...., q + 1, and define

α(τ) = (α0(τ), α1, · · ·, αq+1), xt = (1, yt−1,∆yt−1, · · ·,∆yt−q)′,

we have

Qyt
(τ |Ft−1) = x′tα(τ). (7)

Again the τth conditional quantile function of the response yt is expressed as a linear function of
lagged values of the response.

Let α̂(τ) = (α̂0(τ), α̂1, · · ·, α̂p), p = q+1, and Dn = diag(
√
n, n,

√
n, · · ·,√n), then the analysis of

α̂(τ) follows a similar procedure to that of first order quantile autoregression with a unit root. We
replace Assumption A1 by the following modification.

Assumption A1′: The roots of A(L) = 1 − ∑q
j=1 αj+1L

j all lie outside the unit circle, and

{ut} are i.i.d. random variables with mean zero and variance σ2 <∞.

Denote wt = ∆yt, then, under the unit root hypothesis and Assumption A1′

n−1/2

[nr]∑

t=1

(wt, ψτ (utτ ))
> ⇒ (Bw(r), Bτψ(r))> = BM(0,Σ(τ)),

where

Σ(τ) =

[
σ2
w σwψ(τ)
σwψ(τ) σ2

ψ(τ)

]

is the long run covariance matrix of the bivariate Brownian motion and can be written as Σ0(τ) +
Σ1(τ) + Σ>

1 (τ), where Σ0(τ) = E[(wt, ψτ (utτ ))
>(wt, ψτ (utτ ))] and

Σ1(τ) =

∞∑

s=2

E[(w1, ψτ (u1τ ))
>(ws, ψτ (usτ ))].

We summarize the limiting distribution of α̂(τ) in the following Theorem.

Theorem 2.2 Let yt be determined by (6), under Assumptions A1′, A2, and the unit root assump-
tion α1 = 1,

Dn(α̂(τ) − α(τ)) ⇒ 1

f(F−1(τ))

[ ∫ 1

0 BwB
>
w 02×q

0q×2 ΩΦ

]−1 [ ∫ 1

0 BwdB
τ
ψ

Φ

]
,

where Bw(r) = [1, Bw(r)]>, Φ = [Φ1, · · ·,Φq]> is a q-dimensional normal variate with covariance
matrix τ(1 − τ)ΩΦ where

ΩΦ =



ν0 · · · νq−1

...
. . .

...
νq−1 · · · ν0


 , νj = E[wtwt−j ],

and Φ is independent with
∫ 1

0 BwdB
τ
ψ.

Remark 2.1 As an immediate by-product of Theorem 2.2, the limiting distribution of n(α̂1(τ)−1)
is invariant to the estimation of α̂j(τ)(j = 2, ...p) and the lag length p, which is a result similar to
the conventional ADF regression.
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Corollary 2.2 Under the assumptions of Theorem 2.2,
[ √

n(α̂0(τ) − α0(τ))
n(α̂1(τ) − 1)

]
⇒ 1

f(F−1(τ))

[∫ 1

0

BwB
>
w

]−1 ∫ 1

0

BwdB
τ
ψ.

In particular,

n(α̂1(τ) − 1) ⇒ 1

f(F−1(τ))

[∫ 1

0

B2
w

]−1 ∫ 1

0

BwdB
τ
ψ , (8)

where Bw(r) = Bw(r) −
∫ 1

0
Bw is the corresponding demeaned Brownian motion.

3. Inference On The QAR Process

Inference based on the autoregression quantile process provides a more robust approach to testing
the unit root hypothesis. Like the conventional augmented Dickey-Fuller (ADF) t-ratio test, we
consider the t-ratio statistic

tn(τ) =
̂f(F−1(τ))√
τ(1 − τ)

(
Y >
−1PXY−1

)1/2
(α̂1(τ) − 1) ,

where ̂f(F−1(τ)) is a consistent estimator of f(F−1(τ)), Y−1 is the vector of lagged dependent
variables (yt−1) and PX is the projection matrix onto the space orthogonal to X = (1,∆yt−1, · ·
·,∆yt−q). Under the unit root hypothesis, we have using the results in the previous section,

tn(τ) ⇒ t(τ) =
1√

τ(1 − τ)

[∫ 1

0

B2
w

]−1/2 ∫ 1

0

BwdB
τ
ψ. (9)

At any fixed τ the test statistic tn(τ) is simply the quantile regression counterpart of the well-known
ADF t-ratio test for a unit root. The limiting distribution of tn(τ) is nonstandard and depends
on nuisance parameters (σ2

w, σwψ(τ)) since Bw and Bτψ are correlated Brownian motions. The
above limiting distribution is similar to distributions appearing in various unit root tests using other
methods. In particular, similar limiting distributions arise in Lucas (1995) for unit root tests based
on his nonparametric modified M-estimators, in Hasan and Koenker (1997) for their unmodified
statistic ST based on rank scores, and, as we show below, in Hansen (1995) for his least-sqares
based covariate augmented Dickey-Fuller test. In this section, we consider two options to facilitate
inference based on the QAR processes.

The limiting distribution of tn(τ) can be decomposed as a linear combination of two (independent)
distributions, with weights determined by a long-run (zero frequency) correlation coefficient that can
be consistently estimated. Consequently, the limiting distribution can be easily approximated using
simulation methods. In fact, required critical values are already tabulated in the literature and thus
are available for use in applications. This decomposition facilitates our first approach of unit root
test. In the second approach, we abandon the asymptotically distribution free nature of tests and
use critical values generated by resampling methods. We explore both approaches1 in the following
analysis.

Unit root tests may be constructed based on a quantile autoregression at some selected repre-
sentative quantiles (say, median, lower quartile, upper quartile, or deciles). Alternatively, we could
examine the unit root property over a range of quantiles τ ∈ T . We first consider testing procedures
based on quantile regression at a selected representative quantile.

1A third approach is to construct a transformation of the original statistic tn(τ) that annihilates the nuisance
parameter, and thereby provides a distributional-free form of inference In the presence of Gaussian innovations,
performance of this “fully-modified” test is not as good as the tests based on the unmodified statistic. For this reason,
we focus our attention on the two procedures proposed in this section.
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3.1. Decomposing the Limiting Distribution of tn(τ). Following Phillips and Hansen (1990)
and Phillips (1995)) we have the decomposition,

∫ 1

0

BwdB
τ
ψ =

∫
BwdB

τ
ψ.w + λωψ(τ)

∫
BwdBw,

where λωψ(τ) = σwψ(τ)/σ2
w and Bτψ.w is a Brownian motion with variance

σ2
ψ.w(τ) = σ2

ψ(τ) − σ2
wψ(τ)/σ2

w

and is independent of Bw. The limiting distribution of tn(τ) can therefore be decomposed as

1√
τ(1 − τ)

∫
BwdB

τ
ψ.w(∫ 1

0
B2
w

)1/2
+

λwψ(τ)√
τ(1 − τ)

∫
BwdBw(∫ 1

0
B2
w

)1/2
.

For convenience of exposition, we may re-write the Brownian motions Bw(r) and Bτψ.w(r) as

Bw(r) = σwW1(r), B
τ
ψ.w(r) = σψ.w(τ)W2(r),

Bw(r) = σwW 1(r), W 1(r) = W1(r) −
∫ 1

0

W1(s)ds,

where W1(r) and W2(r) are standard Brownian motions and are independent of one another. Note
that σ2

ψ(τ) = τ(1− τ), so it is easy to show that the limiting distribution of tn(τ) can be written as,

δ

(∫ 1

0

W 1
2

)−1/2 ∫ 1

0

W 1dW1 +
√

1 − δ2N(0, 1), (10)

where

δ = δ(τ) =
σwψ(τ)

σwσψ(τ)
=

σwψ(τ)

σw
√
τ(1 − τ)

.

Thus we conclude that the limiting distribution of the tn(τ) is a mixture of a Dickey-Fuller compo-
nent,

(∫ 1

0

W 1
2

)−1/2 ∫ 1

0

W 1dW1,

and a standard normal component (which is independent of the Dickey-Fuller component), with the
weights determined by the parameter δ. Notice that σ2

w is the long-run (zero frequency) variance of
{wt}, σ2

ψ(τ) is the long-run variance of {ψτ (utτ )}, and σwψ(τ) is the long-run covariance of {wt} and

{ψτ (utτ )}, thus δ = δ(τ) is simply the long-run correlation coefficient between {wt} and {ψτ (utτ )}.
Given a consistent estimate of δ, the limiting distribution of tn(τ) can be approximated by a

direct simulation. The limiting distribution (10) is the same as that of the covariate-augmented
Dickey-Fuller (CADF) test of Hansen (1995). Tables of critical values for the statistic tn(τ) are
provided by Hansen (1995, page 1155) for values of δ2 in steps of 0.1. For intermediate values of δ2,
Hansen suggest using critical values obtained by interpolation2. For convenience, we give the table
of critical values from Hansen in the Appendix as Table A. In practice, to use the correct critical

values from Table A, we estimate δ2 by δ̂2 = σ̂2
wψ(τ)/[τ(1 − τ)σ̂2

w ] and then use the estimated δ̂2 to
select the appropriate row from the Table. See Section 3.4 for further details.

2An alternative approach would be to fit a polynomial in δ2 to certain order and approximate the critical values
for any δ2 by the fitted regression.
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3.2. Calculating Critical Values Using Resampling. The second approach is to generate crit-
ical values for the unmodified statistics using resampling methods. We use the usual notation ∗
to signify the bootstrap samples and use P∗ to denote the probability conditional on the original
sample. We may consider the following resampling procedure.

(1) First, let wt = ∆yt, (t = 2, ..., n), we fit the following q-th order autoregression3 by OLS:

wt =

q∑

j=1

β̂jwt−j + ût, t = q + 1, ...., n,

and obtain estimates β̂1, · · · · ·, β̂q , and the residuals ût.
(2) Draw i.i.d. variables {u∗t}nt=q+1 from the centered residuals ût − 1

n−q
∑n

j=q+1 ûj and generate

w∗
t from u∗t using the fitted autoregression:

w∗
t =

q∑

j=1

β̂jw
∗
t−j + u∗t , t = q + 1, ...., n,

with w∗
j = ∆yj for j = 1, ..., q.

(3) Then we can generate y∗t under the null restriction of a unit root: y∗t = y∗t−1 + w∗
t , with

y∗1 = y1.
(4) Finally, we estimate the following p-th order autoregressive quantile regression

y∗t = α0 + α1y
∗
t−1 +

q∑

j=1

αj+1∆y
∗
t−j + ut. (11)

and denote the estimator of α1(τ) by α̂∗
1(τ). Corresponding to tn(τ), we construct

t∗n(τ) =
̂f(F−1(τ))√
τ(1 − τ)

(
Y ∗>
−1 P

∗
XY

∗
−1

)1/2
(α̂∗

1(τ) − 1) .

In the above procedure, we generate y∗t under the null hypothesis of unit root to ensure the
nonstationarity of the generated sample {y∗t } and thus make the subsequent bootstrap test valid.
The asymptotic validity of the bootstrap procedure relies on a bootstrap invariance principle, i.e.,
the weak convergence of the bootstrap partial sum process to Brownian motion that holds almost
surely for all sample realizations. Park (2002) establishes a bootstrap invariance principle for sieve
bootstrap that allows the AR lag length q to go to infinity. In a subsequent paper, Chang, Park and
Song (2002) develop a multivariate bootstrap invariance principle. The theory they derive in the
vector time series model can be used here to derive a bivariate bootstrap invariance principle that
validates the above resampling procedure. (For other versions of bootstrap invariance principles,
see, e.g., Kinateder (1992), Ferretti and Romo (1996), and Giersbergen (1996).) The limiting null
distribution of the test statistics can then be approximated by repeating steps 2-4 many times. Let
C∗
t (τ, θ) be the (100θ)-th quantiles, i.e.,

P∗ [t∗n(τ) ≤ C∗
t (τ, θ)] = θ,

then the unit root hypothesis will be rejected at the (1 − θ) level if tn(τ) ≤ C∗
t (τ, θ).

Alternatively, instead of using resampling methods, we may directly simulate the Brownian mo-
tions. In particular, we may replace step 4 of quantile regression (11) by directly approximating

3We may also use the Yule-Walker method, which is asymptotically equivalent to the OLS method, to estimate
the autoregression.
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∫ 1

0
B2
w and

∫ 1

0
BwdB

τ
ψ using

1

n2

∑

t

(y∗t − y∗)
2

and
1

n

∑

t

(y∗t − y∗)ψτ (u
∗
tτ ) ,

where y∗ = n−1
∑
y∗t , and u∗tτ = u∗t − F̃−1

u (τ), where F̃−1
u (τ) is the quantile function of u∗t . Thus,

the limiting null distribution of tn(τ) can be approximated based on the following quantities

1√
τ(1 − τ)

[
∑

t

(y∗t − y∗)
2

]−1/2 [
∑

t

(y∗t − y∗)ψτ (u
∗
tτ )

]
.

Since we simply calculate sample moment and avoid solving the linear programming in each repeti-
tion in this alternative procedure, computationally this is faster.

3.3. Other Tests. In addition to the t-ratio statistic tn(τ) , just as the ADF coefficient test and
the Phillips-Perron Zα test, we may also use the coefficient-based statistic in the QAR model for
unit root testing. We may define the following coefficient-based statistic

Un(τ) = n(α̂1(τ) − 1).

Under the unit root hypothesis and our assumptions,

Un(τ) ⇒ U(τ) =
1

f(F−1(τ))

[∫ 1

0

B2
w

]−1 ∫ 1

0

BwdB
τ
ψ. (12)

At fixed τ the test statistic Un(τ) is the quantile regression counterpart of the coefficient based
ADF test. Like the t-ratio statistic, the limiting distribution of Un(τ) is not standard and depend
on nuisance parameters. We can consider similar options as those we used for the t-statistic. For
example, notice that Bw and Bτψ are Brownian motions and can be approximated by sums of

Gaussian random variables, thus the distributions of the limiting variates
[∫ 1

0 B
2
w

]−1 ∫ 1

0 BwdB
τ
ψ

may be approximated by a direct simulation or resampling.
Another approach to test the unit root property is to examine the unit root property over a range

of quantiles τ ∈ T , instead of focusing only on a selected quantile. For example, we may construct
Kolmogorov-Smirnov (KS) or Cramer-von-Mises (CM) type tests based on the regression quantile
process for τ ∈ T .

Consider τ ∈ T = [τ0, 1− τ0] for some small τ0 > 0, we propose the following quantile regression-
based statistics for testing the null hypothesis of a unit root:

QKSα = sup
τ∈T

|Un(τ)| , QKSt = sup
τ∈T

|tn(τ)| , (13)

and

QCMα =

∫

τ∈T
Un(τ)

2dτ, QCMt =

∫

τ∈T
tn(τ)

2dτ. (14)

In practice, we may calculate Un(τ) and tn(τ) at, say, {τi = i/n}ni=1, and thus the statistics QKSα
and QKSt can be constructed by taking maximum over τi ∈ T and QCMα and QCMt are obtained
using numerical integration.

The limiting distributions of these tests are given by supτ∈T |U(τ)| supτ∈T |t(τ)|,
∫
τ∈T U(τ)2dτ ,

and
∫
τ∈T t(τ)

2dτ respectively. Again, we may approximate these limiting distributions by direct

simulation or resampling methods. To resample the limiting distributions we follow steps (1), (2),
and (3) in the above procedure, and replace step (4) by
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(4′) We estimate the p-th order autoregressive quantile regression (11) at, say, {τi ∈ I}ni=1, where
I = {i : τi = i/n, and τi ∈ T }, denote the τi-th quantile autoregression estimator of α1 by α̂∗

1(τi),
and calculate QKS∗

α, QKS∗
t , QCM

∗
α, and QCM∗

t based on U∗
n(τi) = n(α̂∗

1(τi) − 1) and t∗n(τi):

QKS∗
t = max

i∈I
|t∗n(τi)| , QCM∗

t =
∑

i∈I
t∗n(τi)

2 (τi − τi−1) ,

QKS∗
α = max

i∈I
|U∗
n(τi)| , QCM∗

α =
∑

i∈I
U∗
n(τi)

2 (τi − τi−1) .

The limiting null distribution of the test statistics can again be approximated by repeating steps
2-4′. Let CKSα

(θ), CKSt
(θ), CCMα

(θ) and CCMt
(θ) be the (100θ)-th quantiles, i.e.,

P∗ [QKS∗
α ≤ CKSα

(θ)] = P∗ [QKS∗
t ≤ CKSt

(θ)] = θ,

P∗ [QCM∗
α ≤ CCMα

(θ)] = P∗ [QCM∗
t ≤ CCMt

(θ)] = θ,

then the unit root hypothesis will be rejected at the (1 − θ) level if, say, QKSα > CKSα
(θ).

3.4. Estimation of Nuisance Parameters. Our proposed tests require estimates of the quantile
density function f(F−1(τ)) and the variance and covariance parameters σ2

w, σwψ(τ) and λw. There is
a large related literature on estimating f(F−1(τ)), including, e.g. Siddiqui (1960), Bofinger (1975).
Following Siddiqui(1960), and noting that, dF−1(t)/dt = (f(F−1(t)))−1, it is natural to use the
estimator,

fn(F
−1
n (t)) =

2hn

F−1
n (t+ hn) − F−1

n (t− hn)
, (15)

where F−1
n (s) is an estimate of F−1(s) and hn is a bandwidth which tends to zero as n→ ∞.

One way of estimating F−1(s) is to use a variant of the empirical quantile function for the linear
model proposed in Bassett and Koenker (1982),

Q̂(τ |x) = x>α̂(τ). (16)

If we use (16) in the formula (15), the density f(F−1(t)) can be estimated by

fn(F
−1
n (t)) =

2hn

x> (α̂(t+ hn) − α̂(t− hn))
.

For the long-run variance and covariance parameters, we may use the kernel estimators

σ2
w =

M∑

h=−M
k

(
h

M

)
Cww(h), σwψ(τ) =

M∑

h=−M
k

(
h

M

)
Cwψ(h), λw =

M∑

h=1

k

(
h

M

)
Cww(h),

where k(·) is the lag window defined on [−1, 1] with k(0) = 1, and M is the bandwidth (truncation)
parameter satisfying the property thatM → ∞ andM/n→ 0 (sayM = O(n1/3) for many commonly
used kernels, as in Andrews, 1991) as the sample size n→ ∞. The quantities Cww(h), and Cwψ(h) are

sample covariances defined by Cww(h) = n−1
∑′

wtwt+h, Cwψ(h) = n−1
∑′

wtψτ (û(t+h)τ ), where∑′
signifies summation over 1 ≤ t, t+ h ≤ n. Candidate kernel functions can be found in standard

texts (e.g., Hannan, 1970).
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4. Monte Carlo Results

In this section, we report on a Monte Carlo experiment designed to examine the finite sample
performance of the inference procedures that we proposed in Section 3. There is a large literature
of Monte Carlo studies on the size and power properties of the traditional unit root tests (see,
e.g., Dickey and Fuller (1979), Said and Dickey (1985), Schwert (1989), Stock (1995)). One general
conclusion to emerge is that, although difference exists across tests, the discriminatory power in the
traditional tests between models with a root at unity and a root close to unity is generally low. In
this section, we examine, for various error distributions, the finite sample properties for the quantile
autoregression-based procedures, and compare them to the conventional unit root tests based on
least squares regression. The experiment is designed particularly to explore the comparison for the
heavy-tailed data, but includes a comparision for Gaussian time series as a benchmark.

The Monte Carlo considers the following design which is the leading case studied in the literature:

yt = αyt−1 + ut, (17)

where ut are i.i.d. random variables. Different values of α and different types of error distribution
are examined in the experiment. In particular, four values of α were considered: 1.0, 0.95, 0.9, 0.85.
In addition, we also consider an alternative with random coefficient α = αt = min{0.5 + Φ(ut), 1},
where ut is standard normal and Φ is the CDF of standard normal, this alternative is denoted as
α = αt in Table 1. When α = 1, the rejection rate gives the empirical size of the tests. Other cases
deliver the empirical power.

Both normal and nonnormal disturbances are considered in our experiment. We are interested
in the sampling performance of these tests with the presence of different type of error distributions,
especially heavy-tailed innovations, which is an important feature in many financial and economic
data. We report results for the following cases of error distribution: (1) ut are i.i.d.N(0,1) variates;
(2) ut are student-t distributed variables with 2 degrees of freedom; (3) ut are student-t distributed
variables with 3 degrees of freedom; (4) ut are student-t distributed variables with 4 degrees of
freedom. The last three disturbances have heavy-tail distributions, and Assumption A1 does not
hold in the second case where ut are t variates with 2 degrees of freedom.

We report the Monte Carlo results for the following tests4: (1) The t-ratio test tn(τ) based
on quantile autoregression at τ = 0.5, using the critical values in Table A; (2) The t-ratio test
t∗n(τ) based on quantile autoregression at τ = 0.5, using the bootstrapped critical values; (3) The
Kolmogorov-Smirnov (KS) type test (QKSα) based on quantile autoregression with T = [0.1, 0.9],
using the bootstrapped critical values; (4) The Cramer-von-Mises (CM) type test (QCMα) with
T = [0.1, 0.9] and the bootstrapped critical values; (5) The unmodified rank test of Hasan and
Koenker (1997) using the Wilcoxon score function;5 (6) The unmodified rank test of Hasan and
Koenker (1997) using the normal (van der Waerden) score function; (7) The unmodified rank test of
Hasan and Koenker (1997) using the sign score function; (8) The classical ADF t-ratio test (ADFt);
(9) The classical ADF coefficient-based test (ADFα); (10) The Phillips-Perron semiparametric Zt
test; (11) The Phillips-Perron semiparametric Zα test. The first four tests are based on the QAR
model proposed in this paper, the 5-7th tests are rank tests using different scores, and the last four
tests are OLS-based procedures that are widely used in applications. The order of ADF regressions

4The results here are drawn from a larger experiment with additional tests, including various procedures con-
structed based on Un(τ) and tn(τ), and modified versions of the rank tests. Qualitatively similar results are found
from these tests. To conserve space, we report only the results from the 11 representative procedures.

5The unmodified versions of the Hasan and Koenker tests are based on their ST statistic, defined in their equation
(3.4) with the score functions normalized to have L2 norm one. Critical values for these tests are based on the procedure
discussed at the end of Section 3.1 using an estimated value of δ2 and the Hansen (1995) table. Performance of this
unmodified version of the test is somewhat superior to the modified version particularly near the Gaussian model.
This is consistent with the findings reported in Thompson (2001).
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Table 1: Size and Power, Case with Gaussian Innovations

n = 100
ADFt ADFα Zt Zα HKW HKN HKS QKS QCM tn(τ) t∗n(τ)

α = 1 0.061 0.056 0.070 0.060 0.043 0.036 0.051 0.05 0.06 0.122 0.06

α = 0.95 0.121 0.134 0.130 0.139 0.101 0.096 0.084 0.110 0.120 0.194 0.11

α = 0.90 0.246 0.261 0.238 0.252 0.241 0.252 0.173 0.211 0.230 0.281 0.196

α = 0.85 0.581 0.680 0.611 0.672 0.482 0.468 0.318 0.486 0.514 0.578 0.430

α = αt 0.52 0.665 0.535 0.656 0.093 0.163 0.024 0.850 0.780 0.150 0.250

n = 200
α = 1 0.06 0.05 0.07 0.06 0.054 0.053 0.044 0.06 0.05 0.106 0.06

α = 0.95 0.359 0.391 0.348 0.372 0.277 0.288 0.218 0.289 0.350 0.391 0.26

α = 0.90 0.82 0.922 0.84 0.906 0.765 0.783 0.493 0.73 0.78 0.78 0.64

α = 0.85 1 1 0.99 1 0.968 0.977 0.747 0.90 0.95 0.94 0.88

α = αt 0.920 0.935 0.918 0.936 0.221 0.431 0.018 0.975 0.990 0.051 0.064

and the QAR regressions are set at 2. We use the Bofinger (1975) bandwidth in estimation of the
sparsity function in constructing the t statistic. The Cramer-von-Mises statistic is calculated using
numerical integration with step size equals 0.01, and the Kolmogorov-Smirnov (KS) type test is
calculated using the same step size. The semiparametric tests Zt and Zα are calculated using the
procedure PPZAZT of COINT 2.0 (Ouliaris and Phillips 1994). The number of repetitions in the
bootstrapping process is 2000. For each test, the number of repetition is 1000. Two sample sizes
are studied: n = 100 and n = 200.

Table 1 reports the empirical size and power for the case with Gaussian innovations. In the
presence of Gaussian errors, the OLS based tests have better performance than procedures based
on quantile regression. In this case, the t-ratio test tn(τ) using the critical values in Table A has
the largest size distortions than other tests. Although the performance is improved as the sample
size increase from 100 to 200, the results are qualitatively very similar. Table 1 also gives the
empirical power of these tests against the random coefficient alternative α = αt. In this case, the
Kolmogorov-Smirnov (KS) or Cramer-von-Mises (CM) type tests based on the regression quantile
process for τ ∈ T have the highest power over all procedures.

Table 2, 3, and 4 report results for cases where the errors have student-t innovations with degrees
of freedom 2, 3 and 4 respectively. Results in these tables indicate that the QAR based procedures
are in general superior in the presence of heavy-tail disturbances. The OLS based tests have lower
power. From results in Tables 2 and 3, we can see that the power gain by using quantile based
method can be quite substantial over certain range of parameter values. Although (from Table 1)
there is a loss in power by using the quantile autoregression based tests under normality, the power
loss is small relative to the gain in power in the presence of heavy tailed distribution.

A comparison can also be made among the four procedures based on the QAR model. The tests
using bootstrapped critical values have better size properties than the t-test tn(τ) using the critical
values in Table A. However, tn(τ) using the critical values in Table A has the best power in the
presence of heavy-tailed innovations. For the comparison between the two QAR-based tests using
information over T = [0.1, 0.9], the Cramer-von-Mises type test (QCM) has relatively better finite
sample performance than the Kolmogorov-Smirnov type test (QKS).

A final comparison can be made between the proposed quantile autoregression based tests and the
rank type tests. The QAR-based tests proposed in this paper are constructed from the unrestricted
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Table 2: Size and Power, Case with t(2) Innovations

n = 100
ADFt ADFα Zt Zα HKW HKN HKS QKS QCM tn(τ) t∗n(τ)

α = 1 0.062 0.048 0.066 0.058 0.045 0.040 0.050 0.054 0.051 0.058 0.052

α = 0.95 0.114 0.173 0.127 0.193 0.505 0.392 0.504 0.365 0.444 0.526 0.38

α = 0.9 0.334 0.530 0.356 0.561 0.808 0.723 0.743 0.698 0.782 0.834 0.730

α = 0.85 0.616 0.779 0.622 0.781 0.930 0.886 0.880 0.815 0.909 0.961 0.872

n = 200
α = 1 0.08 0.06 0.08 0.06 0.056 0.062 0.060 0.061 0.053 0.057 0.052

α = 0.95 0.29 0.36 0.30 0.36 0.897 0.835 0.843 0.813 0.880 0.922 0.870

α = 0.9 0.89 0.92 0.90 0.912 1.000 0.998 0.991 0.982 0.996 0.999 0.991

α = 0.85 0.97 1 0.97 0.99 1 1 0.998 0.995 1 1 1

Table 3: Size and Power, Case with t(3) Innovations

n = 100
ADFα ADFα Zt Zα HKW HKN HKS QKS QCM tn(τ) t∗n(τ)

α = 1 0.056 0.048 0.057 0.057 0.048 0.055 0.044 0.053 0.052 0.078 0.054

α = 0.95 0.126 0.203 0.147 0.211 0.244 0.191 0.258 0.180 0.240 0.330 0.232

α = 0.9 0.37 0.45 0.38 0.46 0.552 0.443 0.495 0.420 0.600 0.62 0.47

α = 0.85 0.54 0.68 0.55 0.68 0.804 0.723 0.702 0.610 0.840 0.85 0.70

n = 200
α = 1 0.06 0.07 0.07 0.06 0.059 0.048 0.050 0.06 0.05 0.08 0.05

α = 0.95 0.30 0.43 0.31 0.44 0.641 0.535 0.528 0.61 0.70 0.79 0.67

α = 0.9 0.85 0.94 0.87 0.95 0.977 0.960 0.892 0.95 0.97 0.98 0.95

α = 0.85 0.99 1 0.99 1 1 1 0.986 0.99 1 1 1

Table 4: Size and Power, Case with t(4) Innovations

n = 100
ADFt ADFα Zt Zα HKW HKN HKS QKS QCM tn(τ) t∗n(τ)

α = 1 0.066 0.070 0.068 0.071 0.058 0.043 0.060 0.047 0.056 0.074 0.057

α = 0.95 0.137 0.205 0.146 0.224 0.173 0.134 0.160 0.190 0.250 0.270 0.172

α = 0.9 0.352 0.501 0.355 0.512 0.475 0.407 0.393 0.510 0.550 0.575 0.474

α = 0.85 0.68 0.77 0.69 0.78 0.714 0.643 0.564 0.76 0.79 0.83 0.70

n = 200
α = 1 0.055 0.057 0.057 0.062 0.051 0.051 0.047 0.051 0.052 0.078 0.061

α = 0.95 0.31 0.47 0.33 0.46 0.486 0.397 0.407 0.51 0.60 0.65 0.55

α = 0.9 0.87 0.91 0.88 0.90 0.938 0.899 0.805 0.92 0.93 0.95 0.92

α = 0.85 0.97 0.99 0.99 1 0.995 0.994 0.952 0.98 1 0.99 0.97
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Table 5: Descriptive Statistics
1 month rate 3 month rate annual rate

Skewness -1.8435 -1.543 -0.1410
Kurtosis 28.062 24.41 3.88

Jarque-Bera 9759 7117 2.80

quantile autoregression, while the rank tests of Hasan and Koenker are based on the restricted
(under the unit root null) quantile regression. The Monte Carlo results indicate that these tests
have similar performance when the alternatives are constant coefficient process. In the presence
of random coefficient alternative α = αt, the KS or CM type tests proposed in this paper have
better performance than other tests, although the rank tests are also based on quantile regression
estimates over a range of quantiles. Such a difference might be attributed to bias in estimating α1

in constructing the rank tests based on the restricted (null) model under the alternative.

5. US Interest Rate Dynamics

We now apply the QAR-based unit root tests to several US interest rate series. The behavior of
short-term interest rates is central to much of the theoretical and empirical work in macroeconomics
and finance. However, there is still no consensus on the dynamics of short term interest rates. In
this section, we examine the unit root property of several interest rate series using our proposed
procedures. We focus on the interest rate itself and do not consider multifactor (term structure)
models.

Many empirical studies in the unit root literature have investigated U.S. interest rate data. Nelson
and Plosser (1982) studied the unit root property of US annual interest rates in their seminal work
on fourteen macroeconomic time series. This series and other type interest rates have been often
re-examined. Among various empirical findings, two important features have been well-documented:
(1) First, evidence based on the traditional unit root tests has accumulated suggesting that there is
a unit root in interest rates. See, e.g., Nelson and Plosser (1982), Schotman and Van Dijk (1991),
El-Jahel et al. (1997), Ball and Torous, (1996); (2) Another well-documented characteristic of the
interest rate time series is its non-Gaussianity, the leptokurtosis and heavy-tailed features in these
time series are usually accentuated when the data are sampled more frequently. In this section, we
revisit the interest rate series using the proposed QAR methods.

The time series that we consider are one month, three month, and annual interest rates in the
US. In particular, we looked at (seasonally adjusted) one month and three month commercial paper
rates, and the annual bond yield from the extended Nelson-Plosser data. Both the one month rate
and the three month rate start from April, 1971 and end at June, 2002, with 378 observations. The
annual data are from 1900 to 1988. We first apply the augmented Dickey-Fuller (ADF) unit root
tests to these series. In the ADF regressions, the BIC criterion of Schwarz (1978) and Rissanen
(1978) is used in selecting the appropriate lag length of the autoregressions. The OLS based ADF
regression estimates of the largest autoregressive roots of the three interest series are all very close
to unity (see the estimates of the largest AR coefficients in Tables 6A, 7A, 8A). Tables 6A, 7A, and
8A report the ADF test statistics for the 1 month, 3 month and annual series respectively. The unit
root hypothesis can not be rejected by the traditional ADF test at 5% level of significance, leading
to the conclusion that the interest rate series exhibit unit roots.

Table 5 presents some descriptive statistics of the ADF regression residuals of three interest rate
time series. All series exhibit negative skewness. The kurtosis of all these series exceed 3. Tests
based on the Jarque-Bera procedure suggest departures from Gaussianity in the 1 month and 3
month series.
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Table 6A
ADFα ADFt QKSα QCMα

Test Statistics -11.54 -2.22 41.39∗∗ 326.21∗∗

5% Critical Values -14.1 -2.86 20.04 48.73

OLS Estimator α̂1 = 0.976

Table 6B

Quantiles α̂1(τ) tn(τ) δ̂2 Un(τ) Critical Values for Un(τ)
2.5% c.v 5% c.v. 95% c.v. 97.5% c.v.

0.1 0.886 -4.65 0.142 -41.4∗∗ -22.75 -18.06 2.88 4.19
0.2 0.929 -4.74 0.184 -26.4∗∗ -12.31 -10.11 1.62 2.40
0.3 0.961 -4.20 0.201 -14.3∗∗ -7.48 -5.94 1.05 1.55
0.4 0.981 -2.44 0.248 -7.06∗ -3.69 -3.10 0.49 0.75
0.5 0.994 -0.75 0.177 -2.08 -3.61 -2.85 0.49 0.74

0.6 1.014 1.84 0.160 5.39# -5.65 -4.51 0.76 1.17
0.7 1.029 3.18 0.163 11.13## -7.75 -6.30 1.12 1.67

0.8 1.055 3.82 0.137 20.47## -11.17 -9.14 1.67 2.36

0.9 1.111 5.55 0.116 41.39## -18.83 -15.11 2.49 3.73

The values of Un(τ) denoted by an (*) are significant the 5% level when the alter-
native is H1A : α1 < 1. Those with an (**) are significant at the 1% level with
alternative H1A. Similarly, the values of α̂1(τ) denoted by an (#) are significant the
5% level when the alternative is H1B : α1 > 1. Those with an (##) are significant
at the 1% level when the alternative is H1B .

Table 7A
ADFα ADFt QKSα QCMα

Test Statistics -11.14 -2.17 43.03∗∗ 341.33∗∗

5% Critical Values -14.1 -2.86 19.74 40.67

OLS Estimator α̂1 = 0.977

Table 7B

Quantiles α̂1(τ) tn(τ) δ̂2 Un(τ) Critical Values for Un(τ)
2.5% 5% 95% 97.5%

0.1 0.884 -4.74 0.189 -43.03 -19.99 -16.51 2.54 3.88
0.2 0.926 -5.52 0.200 -27.55 -9.45 -7.62 1.24 1.84
0.3 0.959 -4.30 0.165 -15.22∗∗ -6.59 -5.50 1.03 1.47
0.4 0.984 -1.71 0.188 -5.83 -4.39 -3.50 0.62 0.86
0.5 0.991 -0.76 0.161 -3.51 -4.03 -3.26 0.51 0.76
0.6 1.012 1.65 0.179 4.82 -5.53 -4.48 0.76 1.19
0.7 1.034 3.23 0.136 12.62 -7.79 -6.44 1.06 1.52
0.8 1.065 4.76 0.185 23.91 -10.95 -8.78 1.60 2.21
0.9 1.107 6.35 0.118 39.73 -20.41 -15.99 2.93 4.13
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Table 8A
ADFα ADFt QKSα QCMα

Test Statistics -3.15 -1.02 14.65 67.39∗

5% Critical Values -14.1 -2.86 23.49 65.42

OLS Estimator α̂1 = 0.974

Table 8B

Quantiles α̂1(τ) tn(τ) δ̂2 Un(τ) Critical Values for Un(τ)
2.5% 5% 95% 97.5%

0.1 0.829 -5.47 0.142 -14.64 -26.89 -22.13 3.33 4.95
0.2 0.865 -4.33 0.101 -11.61 -12.12 -9.15 1.24 2.02
0.3 0.965 -2.42 0.200 -2.99 -6.00 -4.50 0.89 1.25
0.4 0.981 -1.01 0.120 -1.64 -5.24 -4.12 0.92 1.22
0.5 1.004 0.06 0.168 0.39 -5.52 -4.40 0.90 1.35
0.6 1.052 1.52 0.268 4.44 -6.88 -5.48 1.17 1.74
0.7 1.126 4.02 0.163 10.84 -9.53 -7.69 1.61 2.45
0.8 1.165 4.79 0.194 14.25 -13.32 -11.11 2.22 3.36
0.9 1.126 3.76 0.257 10.83 -17.88 -14.65 3.06 4.75

We reconsider these series using the proposed QAR methods and report the results in Tables 6, 7,
8 respectively. In particular, we applied the following four tests to the interest rate series: (1) The
Kolmogorov-Smirnov (KS) type test QKSα based on quantile autoregression with T = [0.1, 0.9],
using the bootstrapped critical values; (2) The Cramer-von-Mises (CM) type test QCMα with
T = [0.1, 0.9] and the bootstrapped critical values; (3) The t-ratio test tn(τ) based on quantile
autoregression at each decile using the critical values in Table A; (4) The coefficient based tests
Un(τ) based on quantile autoregression at each decile using the bootstrapped critical values. The
first two tests provide a general analysis of the unit root behavior based on a range of quantiles.
The third and forth tests try to provide a more detailed examination on the unit root property of
these series at each decile.

Tables 6A, 7A and 8A report the QKSα and QCMα tests for the three time series respectively.
The 5% level critical values calculated based on the resampling procedure given in Section 3 are
also reported in these tables. For both the 1 month and 3 month data, the unit root hypothesis is
rejected at 1% level by both tests. For the annual data, the unit root hypothesis is only marginally
rejected by the Cramer-von-Mises test at 5% level, but not rejected by the Kolmogorov-Smirnov
test QKSα. In summary, there is a strong evidence that the short term interest rate series (1 month
and 3 month rates) are not constant unit root process.

Tables 6B, 7B and 8B take a closer look on the interest rate dynamics by examining the unit
root behavior at various quantiles. The second columns in these tables report the estimates of
the largest autoregressive roots at each decile. The evidence based on these point estimates of the
largest autoregressive root at each quantile suggests that the interest rate series are not constant unit
root processes. From all these three tables we can see that there is asymmetry in the persistency.
The largest autoregressive coefficient estimate α̂1(τ) has different values over different quantiles,
displaying asymmetric dynamics over the business cycle. In particular, α̂1(τ) increases when we move
from lower quantiles to higher quantiles. The autoregressive coefficient values at the lower quantiles
are smaller than those at higher quantiles, indicating that the local behavior of the interest rate
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during a recession would be much more stationary than its behavior during an expansion. Interest
rates appear to exhibit asymmetric adjustment dynamics. In the presence of positive shocks to the
economy, the interest rate is more persistent. This finding of asymmetric dynamics is consistent
with the interest rate smoothing by the Federal Reserve Board. It may be more acceptable for the
Fed to lower rates more quickly and by a larger amount than to raise rates in the same way. Instead,
the Fed tends to gradually raise rates in small amounts for a longer period of time. Consequently,
interest rates are more persistent in the presence of positive shocks than to negative ones.

The third columns in Tables 6B, 7B, 8B report the calculated coefficient statistic Un(τ) for the
three time series. Given the possibility of both locally stationary and locally explosive behavior
at different quantiles, we consider both the one-sided and the two-sided alternative hypotheses.
Columns 6 to 7 of these tables reports 2.5%, 5%, 95% and 97.5% quantiles (and thus the gener-
ated critical values) of the null distribution of Un(τ) calculated under the unit root null using the
resampling procedure described in Section 3.

We also consider tests for the unit root hypothesis based the autoregression estimates α̂1(τ) at
selected quantiles. The third and fifth columns in Tables 6B, 7B and 8B report the calculated t-
statistic tn(τ) and coefficient statistic Un(τ) for the three time series. The estimated δ2 are reported
in the forth columns of these tables. The majority of results reject the unit root null hypothesis. In
order to test the unit root hypothesis against different alternatives: H1A : α1 < 1; H1B : α1 > 1;
and H1C : α1 6= 1, using the coefficient-based statistic Un(τ) at each specified quantiles, we report,
from columns 6 to 9 in Tables 6B, 7B and 8B, quantiles (and thus the critical values) of the null
distribution of Un(τ) calculated under the unit root null and based on the resampling procedure in
Section 3.

If we test the unit root hypothesis at these specified quantiles, we can see that only at quantiles
that are around median can the unit root hypothesis not be rejected. At both low quantiles and
high quantiles the unit root hypothesis is rejected. At low quantiles, the autoregressive roots are
usually smaller than unity. At high quantiles, the estimate become larger than one, displaying
mildly explosive behavior. Combining this evidence with the results of tables 6A, 7A, and 8A, we
find significant support for asymmetry in the business cycle dynamics of short term interest rates.

We believe that the quantile regression based inference procedures have some advantages over
the least squared based tests in analyzing dynamics and persistency in time series with heavy-tailed
distributions. Quantile regression methods offer a mechanism for estimating models for the condi-
tional median function and the full range of other conditional quantile functions. By supplementing
the estimation of conditional mean functions with techniques for estimating an entire family of con-
ditional quantile functions, quantile regression provides a relatively complete statistical analysis of
the stochastic relationships among random variables. In addition, it also provide a more robust and
efficient approach than the least square method when the data is non-Gaussian or is contaminated
by outliers.
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6. Appendix: Tables and Proofs

6.1. Table 1: Asymptotic Critical Values of The t-Statistic tn(τ) Given By (10).

δ2 1% 5% 10%
0.9 -3.39 -2.81 -2.50
0.8 -3.36 -2.75 -2.46
0.7 -3.30 -2.72 -2.41
0.6 -3.24 -2.64 -2.32
0.5 -3.19 -2.58 -2.25
0.4 -3.14 -2.51 -2.17
0.3 -3.06 -2.40 -2.06
0.2 -2.91 -2.28 -1.92
0.1 -2.78 -2.12 -1.75

6.2. Proof of Theorem 2.1 and Theorem 2.2. We follow the approach of Knight (1989) (also see
Pollard (1991)) which is based on a convexity lemma that the quantile regression objective function
satisfies. We use the following identity: if we denote ψτ (u) = τ − I(u < 0), for u 6= 0,

ρτ (u− v) − ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v) − I(0 < u < v)}

= −vψτ (u) +

∫ v

0

{I(u ≤ s) − I(u < 0)}ds. (18)

Let

utτ = yt − x′tα(τ) = ut − F−1
u (τ), (19)

then utτ satisfies the quantile restriction that

Qutτ
(τ |Ft−1) = 0. (20)

If we denote v = Dn(α−α(τ)), whereDn = diag(
√
n, n,

√
n··,√n), the minimization (3) is equivalent

to

min
v

n∑

t=1

[
ρτ (utτ − v′D−1

n xt) − ρτ (utτ )
]
.

Using identity (18), we have

n∑

t=1

[
ρτ (utτ − v′D−1

n xt) − ρτ (utτ )
]

= −
n∑

t=1

v′D−1
n xtψτ (utτ ) +

n∑

t=1

(utτ − v′D−1
n xt){I(0 > utτ > v′D−1

n xt) − I(0 < utτ < v′D−1
n xt)}.

Notice again that ut are uncorrelated with yt−1, under Assumption A1 (or A1′), we have

n−1
n∑

t=1

yt−1ψτ (utτ ) ⇒
∫ 1

0

BwdB
τ
ψ .
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We also need to consider the limiting distribution of




1√
n

∑
t ∆yt−1ψτ (utτ )

...
1√
n

∑
t ∆yt−qψτ (utτ )


 . (21)

If we denote that E[wtwt−j ] = νj , it can be shown that (21) converges to a q-dimensional normal
variate Φ = [Φ1, · · ·,Φq]> with covariance matrix τ(1 − τ)ΩΦ where

ΩΦ =



ν0 · · · νq−1

...
. . .

...
νq−1 · · · ν0


 ,

and Φ is independent with
∫ 1

0
BwdB

τ
ψ. Thus,

D−1
n

n∑

t=1

xtψτ (utτ ) =




1√
n

∑
t ψτ (utτ )

1
n

∑
t yt−1ψτ (utτ )

1√
n

∑
t ∆yt−1ψτ (utτ )

...
1√
n

∑
t ∆yt−qψτ (utτ )



⇒




∫ 1

0
dBτψ∫ 1

0 BwdB
τ
ψ

Φ1

...
Φq




=

[ ∫ 1

0 BwdB
τ
ψ

Φ

]
:= Φ∗

where Φ is a q-dimensional normal variate with covariance matrix τ(1 − τ)ΩΦ, and is independent

with
∫ 1

0
BwdB

τ
ψ.

We now consider the limit of

n∑

t=1

(utτ − v′D−1
n xt)I(0 < utτ < v′D−1

n xt).

For convenience of asymptotic analysis, we denote

Un(v) =
n∑

t=1

zt(v), where zt(v) = (v′D−1
n xt − utτ )I(0 < utτ < v′D−1

n xt).

To avoid technical problems in taking conditional expectations, following Knight (1989), we consider
truncation of v2n

−1/2yt−1 at some finite number m > 0 and denote

Unm(v) =
n∑

t=1

ztm(v),

ztm(v) = (v′D−1
n xt − utτ )I(0 < utτ < v′D−1

n xt)Mt

Mt = I(0 ≤ v2n
−1/2yt−1 ≤ m).

We further define

ztm(v) = E{(v′D−1
n xt − utτ )I(0 < utτ < v′D−1

n xt)Mt|Ft−1},

and

Unm(v) =

n∑

t=1

ztm(v),
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then {ztm(v) − ztm(v)} is a martingale difference sequence. Notice that

Unm(v)

=

n∑

t=1

E{(v′D−1
n xt − utτ )I(0 < utτ < v′D−1

n xt)Mt|Ft−1}

=

n∑

t=1

∫ [v′D−1

n
xt+F

−1

u
(τ)]Mt

F−1

u (τ)

[(v′D−1
n xt + F−1

u (τ))Mt − r]fu(r)dr

=

n∑

t=1

∫ [v′D−1

n
xt+F

−1

u
(τ)]Mt

F−1

u (τ)

[

∫ [v′D−1

n
xt+F

−1

u
(τ)]Mt

r

ds]fu(r)dr

=

n∑

t=1

∫

F−1

u (τ)≤r≤[v′D−1

n xt+F
−1

u (τ)]Mt)

∫

r≤s≤[v′D−1

n xt+F
−1

u (τ)]Mt

fu(r)dsdr

=

n∑

t=1

∫

F−1

u (τ)≤s≤[v′D−1

n xt+F
−1

u (τ)]Mt

∫

F−1

u (τ)≤r≤s
fu(r)drds

=
n∑

t=1

∫ [v′D−1

n
xt+F

−1

u
(τ)]Mt

F−1

u (τ)

[∫ s

F−1

u (τ)

fu(r)dr

]
ds

=

n∑

t=1

∫ [v′D−1

n
xt+F

−1

u
(τ)]Mt

F−1

u (τ)

[s− F−1
u (τ)]

[
Fu(s) − Fu(F

−1
u (τ))

s− F−1
u (τ)

]
ds.

Under Assumption A2,

Unm(v) =

n∑

t=1

∫ [v′D−1

n
xt+F

−1

u
(τ)]Mt

F−1

u (τ)

[s− F−1
u (τ)]fu[F

−1
u (τ)]ds + op(1)

=

n∑

t=1

fu[F
−1
u (τ)]

{
[s− F−1

u (τ)]2

2
|[v

′D−1

n
xt+F

−1(τ)]Mt

F−1(τ)

}
+ op(1)

=
1

2

n∑

t=1

fu[F
−1(τ)]v′[D−1

n xtx
′
tD

−1
n ]vMt + op(1).

Thus

Unm(v) ⇒ ηm =
1

2
fu[F

−1
u (τ)]v′Ψ1mv,

where

Ψ1m =

[ ∫ 1

0
BwB

′
wI(0 ≤ v′2Bw(s) ≤ m) 0′q

0′q ΩΦ

]
.

We now follow the arguments of Pollard (1984, p171), notice that (v′D−1
n xt)I(0 ≤ v2n

−1/2yt−1 ≤
m)

P→ 0 uniformly in t,

n∑

t=1

E[ztm(v)2|Ft−1] ≤ max{(v′D−1
n xt)I(0 ≤ v2n

−1/2yt−1 ≤ m)}
∑

ztm(v)
P→ 0.

Thus the following summation of martingale difference sequence
∑

t

{ztm(v) − ztm(v)}
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converges to zero in probability. Thus the limiting distribution of
∑

t ztm(v) is the same as that of∑
t ztm(v), i.e.,

Unm(v) ⇒ ηm.

Let m→ ∞, we have

ηm ⇒ η =
1

2
f(F−1(τ))v′Ψ1vI(v2Bw(s) > 0),

and

Ψ1 =

[ ∫ 1

0
BwB

′
wI(0 ≤ v′2Bw(s)) 0′q

0′q ΩΦ

]
.

Now, by a similar argument as Herce(1996), we show that

lim
m→∞

lim sup
n→∞

Pr[|Un(v) − Unm(v)| ≥ ε] = 0.

Similarly, we can show that
∑n

t=1(utτ − (D−1
n v)′xt){I(0 > utτ > (D−1

n v)′xt) converges to

1

2
f(F−1(τ))v′Ψ2vI(v2Bw(s) ≤ 0),

with

Ψ2 =

[ ∫ 1

0
BwB

′
wI(v

′
2Bw(s) ≤ 0) 0′q

0′q ΩΦ

]
.

Thus,
n∑

t=1

(utτ − (D−1
n v)′xt){I(0 > utτ > (D−1

n v)′xt) − I(0 < utτ < (D−1
n v)′xt)} ⇒ f(F−1(τ))v′Ψv,

where

Ψ =

[ ∫ 1

0
BwB

′
w 0′q

0′q ΩΦ

]
.

As a result,

Zn(v) =

n∑

t=1

[
ρτ (utτ − (D−1

n v)′zt) − ρτ (utτ )
]

= −
n∑

t=1

(D−1
n v)′ztψτ (utτ )

+

n∑

t=1

(utτ−(D
−1
n v)

′
zt){I(0 > utτ> (D

−1
n v)

′
zt) − I(0 < utτ< (D

−1
n v)

′
zt)}

⇒ −v′Φ∗ + f(F−1(τ))v′Ψv

:= Z(v)

By the convexity Lemma of Pollard (1991) and arguments of Knight (1989), notice that Zn(v) and
Z(v) are minimized at v̂ = Dn(α̂(τ) − α(τ)) and

1

f(F−1(τ))

[ ∫ 1

0
BwB

>
w 02×q

0q×2 ΩΦ

]−1 [ ∫ 1

0
BwdB

τ
ψ

Φ

]
,

respectively, by Lemma A of Knight (1989) we have,

Dn(α̂(τ) − α(τ)) ⇒ 1

f(F−1(τ))

[ ∫ 1

0 BwB
>
w 02×q

0q×2 ΩΦ

]−1 [ ∫ 1

0 BwdB
τ
ψ

Φ

]
.
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Portnoy (1984) shows that the quantile regression process is tight. Using the argument of Portnoy
(1984), we obtain that the limiting variate Bτψ(r), as a random function of τ , is a Brownian bridge
over τ ∈ T .
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