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Introduction

In classical regression and autoregression models

yi = h(xi, θ) + ui,

yt = αyt−1 + ut

conditioning covariates influence only the location of the
conditional distribution of the response:

Response = Signal + IID Noise.

But can noise always be relied upon to be so well-behaved?
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A Motivating Example
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Daily Temperature in Melbourne: An AR(1) Scatterplot



Estimated Conditional Quantiles of Daily Temperature
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Daily Temperature in Melbourne: An QAR(1) Model



Conditional Density of Daily Temperature
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Location, scale and shape all change with yt−1.
When today is hot, tomorrow’s temperature is bimodal!
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Linear AR(1) and QAR(1) Models

Classical linear AR(1) model

yt = α0 + α1yt−1 + ut,

with iid errors, ut : t = 1, · · · , T , implies

E(yt|Ft−1) = α0 + α1yt−1

and conditional quantile functions are all parallel:

Qyt(τ|Ft−1) = α0(τ) + α1yt−1

with α(τ) just the quantile function of the ut distribution.
But this is rather boring; what if we let α1 depend on τ too?
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A Random Coefficient Interpretation

If the conditional quantiles of the response satisfy:

Qyt(τ|Ft−1) = α0(τ) + α1(τ)yt−1

then we can generate responses from the model by replacing τ,

yt = α0(ut) + α1(ut)yt−1 ut ∼ iidU[0, 1].

This is a very special form of random coefficient autoregressive
(RCAR) model with comonotonic coefficients.
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On Comonotonicity

Definition: Two random variables X,Y : Ω → |R are comonotonic
if there exists a third random variable Z : Ω → |R and increasing
functions f and g such that X = f(Z) and Y = g(Z).

I If X and Y are comonotonic they have rank correlation one.

I From our point of view the crucial property of comonotonic
random variables is the behavior of quantile functions of their
sums, X, Y comonotonic implies:

F−1
X+Y(τ) = F−1

X (τ) + F−1
Y (τ)

I X and Y are driven by the same random (uniform) variable.
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The QAR(p) Model

Consider a p-th order QAR process,

Qyt(τ|Ft−1) = α0(τ) + α1(τ)yt−1 + ... + αp(τ)yt−p

Equivalently, we have random coefficient model,

yt = α0(ut) + α1(ut)yt−1 + · · ·+ αp(ut)yt−p

≡ x>t α(ut).

All p + 1 random coefficients are comonotonic, functionally
dependent on the same uniform random variable.



Vector QAR(1) representation of the QAR(p) Model

Yt = µ + AtYt−1 + Vt

where

µ =

[
µ0

0p−1

]
, At =

[
at αp(ut)

Ip−1 0p−1

]
, Vt =

[
vt

0p−1

]
at = [α1(ut), . . . ,αp−1(ut)],

Yt = [yt, · · · ,yt−p+1]
>,

vt = α0(ut) − µ0.

It all looks rather nasty and multivariate, but it is really still nicely
univariate and quite tractable.



Slouching Toward Asymptopia

We maintain the following conditions:

A.1 {vt} are iid with mean 0 and variance σ2 < ∞. The
CDF of vt, F, has a continuous density f with
f(v) > 0 on V = {v : 0 < F(v) < 1}.

A.2 Eigenvalues of ΩA = E(At ⊗At) have moduli less
than unity.

A.3 Denote the conditional CDF Pr[yt < y|Ft−1] as
Ft−1(y) and its derivative as ft−1(y), ft−1 is
uniformly integrable on V.



Stationarity

Theorem 1:Under assumptions A.1 and A.2, the QAR(p) process
yt is covariance stationary and satisfies a central limit theorem

1√
n

n∑
t=1

(yt − µy) ⇒ N
(
0,ω2

y

)
,

with

µy =
µ0

1 −
∑p

j=1 µp
,

µj = E(αj(ut)), j = 1, ...,p,

ω2
y = lim

1

n
E[

n∑
t=1

(yt − µy)]2.



Example: The QAR(1) Model

For the QAR(1) model,

Qyt(τ|yt−1) = α0(τ) + α1(τ)yt−1,

or with ut iid U[0, 1].

yt = α0(ut) + α1(ut)yt−1,

if ω2 = E(α2
1(ut)) < 1, then yt is covariance stationary and

1√
n

n∑
t=1

(yt − µy) ⇒ N
(
0,ω2

y

)
,

where µ0 = Eα0(ut), µ1 = E(α1(ut), σ2 = V(α0(ut)), and

µy =
µ0

(1 − µ1)
, ω2

y =
(1 + µ1)σ

2

(1 − µ1)(1 − ω2)
,



Qualitative Behavior of QAR(p) Processes

I The model can exhibit unit-root-like tendencies, even
temporarily explosive behavior, but episodes of mean reversion
are sufficient to insure stationarity.

I Under certain conditions,the QAR(p) process is a semi-strong
ARCH(p) process in the sense of Drost and Nijman (1993):

I The impulse response of yt to a shock ut−s is stochastic but
converges (to zero) in mean square as s → ∞.
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Estimated QAR(1) Model of U.S. Interest Rates
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Data: Seasonally adjusted monthly: April, 1971 to June, 2002.
Do 3-month T-bills really have a unit root?



Estimation of the QAR model

Estimation of the QAR models involves solving,

α̂(τ) = argminα

n∑
t=1

ρτ(yt − x>t α),

where ρτ(u) = u(τ − I(u < 0)).
Fitted conditional quantile functions of yt, are given by,

Q̂t(τ|xt) = x>t α̂(τ),

and conditional densities by the difference quotients,

f̂t(τ|xt−1) =
2h

Q̂t(τ + h|xt−1) − Q̂t(τ − h|xt−1)
,



Estimation of the QAR model

Estimation of the QAR models involves solving,

α̂(τ) = argminα

n∑
t=1

ρτ(yt − x>t α),

where ρτ(u) = u(τ − I(u < 0)).
Fitted conditional quantile functions of yt, are given by,

Q̂t(τ|xt) = x>t α̂(τ),

and conditional densities by the difference quotients,

f̂t(τ|xt−1) =
2h

Q̂t(τ + h|xt−1) − Q̂t(τ − h|xt−1)
,



The QAR Process

Theorem 2: Under our regularity conditions,

√
nΩ−1/2(α̂(τ) − α(τ)) ⇒ Bp+1(τ),

a (p + 1)-dimensional standard Brownian Bridge, with

Ω = Ω−1
1 Ω0Ω

−1
1 .

Ω0 = E(xtx
>
t ) = lim n−1

n∑
t=1

xtx
>
t ,

Ω1 = lim n−1
n∑

t=1

ft−1(F
−1
t−1(τ))xtx

>
t .



Inference for QAR models

For fixed τ = τ0 we can test the hypothesis:

H0 : Rα(τ) = r

using the Wald statistic,

Wn(τ) =
n(Rα̂(τ) − r)>[RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>]−1(Rα̂(τ) − r)

τ(1 − τ)

and this approach can be extended to testing on general index sets
τ ∈ T with the corresponding Wald process.
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Asymptotic Inference

Theorem: Under H0, Wn(τ) ⇒ Q2
m(τ), where Qm(τ) is a Bessel

process of order m = rank(R). For fixed τ, Q2
m(τ) ∼ χ2

m.
Remarks:

I Kolmogorov-Smirov and Cramer-von-Mises statistics based on
Wn(τ) can be used to implement the tests.

I For known R and r this leads to a very nice theory – estimated
R and/or r testing raises new questions.

I The situation is quite analogous to goodness-of-fit testing
with estimated parameters.
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Example: Unit Root Testing

Consider the augmented Dickey-Fuller model

yt = δ0 + δ1yt−1 +

p∑
j=2

δj∆yt−j + ut.

We would like to test this constant coefficients version of the
model against the more general QAR(p) version:

Qyt(τ|xt) = δ0(τ) + δ1(τ)yt−1 +

p∑
j=2

δj(τ)∆yt−j

Consider the hypothesis:

I H0 : δ1(τ) = δ̄1 < 1, for τ ∈ T = [τ0, 1 − τ0],
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Example: Two Tests

I When δ̄1 is known we have the natural candidate process,

Vn(τ) =
√

n(δ̂1(τ) − δ̄1)/ω̂11.

where ω2
11 is the appropriate element from Ω̂−1

1 Ω̂0Ω̂
−1
1 .

Fluctuations in Vn(τ) can be evaluated with the
Kolmogorov-Smirnov statistic,

sup
τ∈T

‖Vn(τ)‖ ⇒ sup
τ∈T

‖B(τ)‖.

I When δ̄1 is unknown we may replace it with an estimate, but
this disrupts the convenient asymptotic behavior. Now,

V̂n(τ) =
√

n((δ̂1(τ) − δ̄1) − (δ̂1 − δ̄1))/ω̂22
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Martingale Transformation of V̂n(τ)

Khmaladze (1981) suggested a general approach to the
transformation of parametric empirical processes like V̂n(τ) :

Ṽn(τ) = V̂n(τ) −

∫τ

0

[
ġn(s)>C−1

n (s)

∫1

s
ġn(r)dV̂n(r)

]
ds

where ġn(s) and Cn(s) are estimators of

ġ(r) = (1, (ḟ/f)(F−1(r)))>; C(s) =

∫1

s
ġ(r)ġ(r)>dr.

This is a generalization of the Doob-Meyer decomposition.
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Restoration of the ADF property

Theorem Under H0, Ṽn(τ) ⇒ W(τ) and therefore

sup
τ∈T

‖Ṽn(τ)‖ ⇒ sup
τ∈T

‖W(τ)‖,

with W(r) a standard Brownian motion.

I The martingale transformation annihilates the contribution of
the estimated parameters to the asymptotic behavior of the
V̂n(τ) process, thereby restoring the asymptotically
distribution free (ADF) character of the test.



Three Month T-Bills Again
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A test of the “location-shift” hypothesis yields a test statistic of
2.76 which has a p-value of roughly 0.01, contradicting the
conclusion of the conventional Dickey-Fuller test.



QAR Models for Longitudinal Data

I In estimating growth curves it is often valuable to condition
not only on age, but also on prior growth and possibly on
other covariates.

I Autoregressive models are natural, but complicated due to the
irregular spacing of typical longitudinal measurements.

I Finnish Height Data: {Yi(ti,j) : j = 1, . . . , Ji, i = 1, . . . ,n.}

I Partially Linear Model [Pere, Wei, Koenker, and He (2006)]:

QYi(ti,j)(τ | ti,j,Yi(ti,j−1), xi) = gτ(ti,j)

+ [α(τ) + β(τ)(ti,j − ti,j−1)]Yi(ti,j−1) + x>i γ(τ).
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Parametric Components of the Conditional Growth Model

τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)

0.03 0.845
(0.020)

0.147
(0.011)

0.024
(0.011)

0.809
(0.024)

0.135
(0.011)

0.042
(0.010)

0.1 0.787
(0.020)

0.159
(0.007)

0.036
(0.007)

0.757
(0.022)

0.153
(0.007)

0.054
(0.009)

0.25 0.725
(0.019)

0.170
(0.006)

0.051
(0.009)

0.685
(0.021)

0.163
(0.006)

0.061
(0.008)

0.5 0.635
(0.025)

0.173
(0.009)

0.060
(0.013)

0.612
(0.027)

0.175
(0.008)

0.070
(0.009)

0.75 0.483
(0.029)

0.187
(0.009)

0.063
(0.017)

0.457
(0.027)

0.183
(0.012)

0.094
(0.015)

0.9 0.422
(0.024)

0.213
(0.016)

0.070
(0.017)

0.411
(0.030)

0.201
(0.015)

0.100
(0.018)

0.97 0.383
(0.024)

0.214
(0.016)

0.077
(0.018)

0.400
(0.038)

0.232
(0.024)

0.086
(0.027)

Table: Estimates of the QAR(1) parameters, α(τ) and β(τ) and the
mid-parental height effect, γ(τ), for Finnish children ages 0 to 2 years.



Forecasting with QAR Models

Given an estimated QAR model,

Q̂yt(τ|Ft−1) = x>t α̂(τ)

based on data: yt : t = 1, 2, · · · , T , we can forecast

ŷT+s = x̃>T+sα̂(Us), s = 1, · · · ,S,

where x̃T+s = [1, ỹT+s−1, · · · , ỹT+s−p]>, Us ∼ U[0, 1], and

ỹt =

{
yt if t 6 T ,
ŷt if t > T .

Conditional density forecasts can be made based on an ensemble of
such forecast paths.



Linear QAR Models May Pose Statistical Health Risks

I Lines with distinct slopes eventually intersect. [Euclid: P5]

I Quantile functions, QY(τ|x) should be monotone in τ for all
x, intersections imply point masses – or even worse.

I What is to be done?
I Constrained QAR: Quantiles can be estimated simultaneously

subject to linear inequality restrictions.
I Nonlinear QAR: Abandon linearity as in the Melbourne

temperature example, both parametric and nonparametric
options are available.
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Nonlinear QAR Models via Copulas
An interesting class of stationary, Markovian models can be
expressed in terms of their copula functions:

G(yt,yt−1, · · · ,yy−p) = C(F(yt), F(yt−1), · · · , F(yy−p))

where G is the joint df and F the common marginal df.

I Differentiating, C(u, v), with respect to u, gives the
conditional df,

H(yt|yt−1) =
∂

∂u
C(u, v)|(u=F(yt),v=F(yt−1))

I Inverting we have the quantile functions,

Qyt(τ|yt−1) = h(yt−1, θ(τ))

I Or, equivalently, for Ut ∼ U[0, 1],

Yt = h(yt−1, θ(Ut))
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Conclusions

I QAR models constitute an attempt to expand the scope of
classical linear time-series models permitting lagged covariates
to influence scale and shape as well as location of conditional
densities.

I Efficient estimation via familiar linear programming methods.

I Inference nests many conventional models including ARCH.

I Forecasting conditional densities is potentially valuable.

I Lots of challenging open problems. . . .
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Example 1 (Fan and Fan)
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Model: Qyt(τ|yt−1) = −(1.7 − 1.8τ)yt−1 + Φ−1(τ).



Example 2 (Near Unit Root)
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