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Abstract

Parametric copulae are shown to be an attractive device for specify-
ing quantile autoregressive models for nonlinear time-series. Estimation of
local, quantile-specific models offers some salient advantages over classical
global parametric approaches. Consistency and asymptotic normality of
the proposed estimators are established, leading to a general framework for
inference and model specification testing.

1. Introduction

Estimation of models for conditional quantiles constitutes an essential ingredient

in modern risk assessment. And yet, often, such quantile estimation and predic-

tion relies heavily on unrealistic global distributional assumptions. In this paper

we consider new estimation methods for conditional quantile functions that are

motivated by parametric models, but retain some semi-parametric flexibility and

thus, should deliver more robust and more accurate estimates, while also being

well-suited to the evaluation of misspecification.
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We employ parametric copula models to generate nonlinear-in-parameters quan-

tile autoregression (QAR) models. Such models have several advantages over the

linear QAR models previously considered in Koenker and Xiao (2006) since by con-

struction they are globally plausible with monotone conditional quantile functions

over the entire support of the conditioning variables. Rather than imposing this

global structure, however, we choose instead to estimate the implied conditional

quantile function independently, thereby facilitating an analysis of misspecifica-

tion.

Copula models provide a rich source of potential nonlinear dynamics describing

temporal dependence, and also permit us to carefully distinguish this dependence

from the specification of the marginal (stationary) distribution of the response.

Stationarity of the processes considered implies that only one marginal distribu-

tion is required for the specification in addition to the choice of the copula.

Choice of the parametric specification of the copula, C, and the marginal, dis-

tribution F , is a challenging problem. In this paper we restrict attention in our

asymptotic analysis to settings in which the choices of C and F yield correctly

specified conditional quantile functions. This is obviously a weaker condition than

the direct assertion that we have correctly specified C and F themselves, since

each of the conditional quantile functions we consider are permitted to have their

own vector of parameters. Indeed, this distinction between global parametric

models and local, quantile-specific, ones is essential throughout the quantile re-

gression literature and facilitates inference for misspecification that arises from

discrepancies in the quantile specific estimates of the model parameters.

The plan of the paper is as follows: We introduce the copula-based QAR model

in Section 2. Assumptions and asymptotic properties of the proposed estimator
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are developed in Section 3. Section 4 briefly describes statistical inference and

Section 5 concludes. For simplicity of illustration and without loss of generality,

we focus our analysis on first order QAR processes in our analysis.

2. Copula-Based Quantile Autoregression Models

2.1. First-order strictly stationary Markov models

To motivate copula-based quantile autoregression models, we start with a strictly

stationary Markov process of order 1, {Yt}nt=1, whose probabilistic properties are

determined by the true joint distribution of Yt−1 and Yt, say, G∗(yt−1, yt). Suppose

that G∗(yt−1, yt) has continuous marginal distribution function F ∗(·), then by

Sklar’s Theorem, there exists an unique copula function C∗(·, ·) such that

G∗(yt−1, yt) = C∗(F ∗(yt−1), F ∗(yt)).

Differentiating C∗(u, v) with respect to u, and evaluate at u = F ∗(yt−1), v =

F ∗(yt), we obtain the conditional distribution of Yt given Yt−1 = x :

Pr [Yt < y|Yt−1 = x] =
∂C∗(u, v)

∂u

∣∣∣∣
u=F ∗(x),v=F ∗(y)

≡ C∗1(F ∗(x), F ∗(y)).

For any τ ∈ (0, 1), solving τ = C∗1(F ∗(x), F ∗(y)) for y, in terms of τ , we obtain

the τ -th conditional quantile function of Yt given Yt−1 = x :

QYt(τ |x) = F ∗−1(C∗−1
1 (τ ;F ∗(x))),

where F ∗−1(·) signifies the inverse of F ∗(·) and C∗−1
1 (·;u) is the partial inverse of

C∗1(u, v) with respect to v. If we denote C∗−1
1 (·;u) as h∗(·), i.e.

C∗−1
1 (τ ;u)

∣∣
u=F ∗(x)

= h∗(x),
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we may write the τ -th conditional quantile function of Yt as

QYt(τ |x) = F ∗−1(h∗(τ ;x)) = H∗(x).

In this paper, we will work with the class of copula-based first-order strictly

stationary Markov models.

Assumption 1: {Yt : t = 1, ..., n} is a sample of a stationary first-order Markov

process generated from (F ∗(·), C∗(·, ·)), where F ∗(·) is the true invariant distribu-

tion which is absolutely continuous with respect to Lebesgue measure on the real

line; C∗(·, ·) is the true copula for (Yt−1, Yt), is absolutely continuous with respect

to Lebesgue measure on [0, 1]2, and is neither the Fréchet-Hoeffding upper nor

lower bound.

Assumption 1 is equivalent to assume that {Yt : t = 1, ..., n} is a sample of a

stationary first-order Markov process generated from (f ∗(·), g(·|·)), where

g∗(yt|yt−1) ≡ f ∗(yt)c
∗(F ∗(yt−1), F ∗(yt)), (2.1)

where g∗(·|yt−1) is the true conditional density function of Yt given Yt−1 = yt−1,

c∗(·, ·) is the copula density of C∗(·, ·), and f ∗(·) is the density of the marginal

distribution F ∗(·), which is unspecified.

2.1.1. Transformation model

As demonstrated in Chen and Fan (2006), all the copula-based first order Markov

models can be expressed in terms of an autoregression transformation model.

Let Ut = F ∗(Yt), then under assumption 1, {Ut} is strictly stationary first-order

Markov with the joint distribution of Ut and Ut−1 is given by the copula C∗(·, ·)
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(with corresponding density denoted as c∗(·, ·)). Let H1() be any increasing trans-

formation, then

H1(F ∗(Yt)) = H2(F ∗(Yt−1)) + σ(F ∗(Yt−1))εt

or equivalently,

Ut = F ∗(Yt) = H−1
1 (H2(Ut−1) + σ(Ut−1)εt) ,

where the conditional density of εt given Ut−1 = F ∗(Yt−1) = ut−1 is

f ∗ε|F ∗(Yt−1)=ut−1
(ε) = c∗(ut−1, H

−1
1 (H2(ut−1) + σ(ut−1)ε))/D(ut−1)

= c∗(F ∗(Yt−1), H−1
1 (H2(F ∗(Yt−1)) + σ(F ∗(Yt−1))ε))/D(F ∗(Yt−1))

where

D(u) =
dH1(H2(u)) + σ(u)ε))

dε
,

and satisfies the condition that

H2(ut−1) = E [H1(Ut)|Ut−1 = ut−1] =

∫ 1

0

H1(u)× c∗(ut−1, u)du.

In the special case that H1(u) = u, we obtain

Ut = H2(Ut−1) + σ(Ut−1)εt,

i.e.

F ∗(Yt) = H2(F ∗(Yt−1)) + σ(F ∗(Yt−1))εt.

Letting
∂C∗(ut−1, u)

∂ut−1

= C∗1(ut−1, u)
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then

H2(ut−1) = E [H1(Ut)|Ut−1 = ut−1] =

∫ 1

0

uc∗(ut−1, u)du

=

∫ 1

0

udC∗1(ut−1, u) = 1−
∫ 1

0

C∗1(ut−1, u)du.

2.2. Copula-based parametric quantile autoregression models

In practice, neither the true copula function C∗(·, ·) nor the true marginal distribu-

tion function F ∗(·) of Y is known. If we model both parametrically, say C(·, ·;α)

and F (y; β), depending on unknown parameters α, β, the τ -th conditional quan-

tile function of Yt, QYt(τ |x), becomes a function of unknown parameters α and β,

i.e.

QYt(τ |x) = F−1(C−1
1 (τ ;F (x, β), α), β).

Denoting θ = (α′, β′)′, we will write,

QYt(τ |x) = F−1(C−1
1 (τ ;F (x, β), α), β) = H(x; θ). (2.2)

This copula formulation of the conditional quantile functions provides a rich source

of potential nonlinear dynamics. By varying the choice of the copula specification

we can induce a wide variety of nonlinear QAR(1) dependence, and the choice of

the marginal, F enables us to consider a wide range of possible tail behavior as

well.

Copula-based models have been widely used in finance, especially in estimating

conditional quantiles as required for Value-at-Risk (VaR) assessment, motivated

by possible nonlinearity in financial time series dynamics. However, in many fi-

nancial time series applications, correlation structure may vary over the quantiles
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of the conditional distribution. We would like to stress that although the con-

ditional quantile function specification in the above representation assumes the

parameters to be identical across quantiles, our estimation methods do not im-

pose this restriction. Thus, we permit the estimated parameters to vary with τ

and this provides an important diagnostic feature of the methodology.

The proposed QAR model is based on (2.2) but we permit different parameter

values over τ , and write the vector of unknown parameters as θ(τ) = (α(τ)′, β(τ)′)′.

We obtain the following nonlinear QAR model:

QYt(τ |Yt−1) = H(Yt−1, θ(τ)) = F−1(C−1
1 (τ ;F (Yt−1, β(τ)), α(τ)), β(τ)). (2.3)

This nonlinear form of the QAR model can capture a wide range of system-

atic influences of conditioning variables on the conditional distribution of the re-

sponse. Koenker and Xiao (2006) considered linear-in-parameter QAR processes

in studying similar specifications. Maintaining a linear specification in the QAR

model, requires rather strong regularity assumptions on the domain of the associ-

ated random variables imposed to ensure quantile monotonicity. Relaxing those

assumptions implies that the conditional quantile functions are no longer linear.

From this point of view, copula-based models provide an important way of extend-

ing constant coefficient linear QAR models to nonlinear quantile autoregression

specifications that – under the parametric model – are ensured to be globally

coherent.

Remark. The above analysis may be extended to k-th order nonlinear QAR

models, but we will resist the temptation to tax the readers patience with the

notation required for this.
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2.3. Examples

Example 1: Gaussian Copula

Let Φα(·, ·) be the distribution function of bivariate normal distribution with

mean zeros, variances 1, and correlation coefficient α, and Φ be the CDF of a

univariate standard normal, the bivariate Gaussian copula is given by

C(u, v;α) = Φα(Φ−1(u),Φ−1(v))

=
1

2π
√

1− α2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

{
−(s2 − 2αst+ t2)

2(1− α2)

}
dsdt.

Let {Yt} be a stationary Markov process of order 1 and with true marginal

distribution F ∗(·), in addition, denote that Ut = F ∗(Yt), and Zt = Φ−1(Ut) =

Φ−1(F ∗(Yt)), if the correlation between Ut and Ut−1 is characterized by a Gaussian

copula, i.e. the joint CDF of Ut and Ut−1 is

C(ut−1, ut;α) = Φα(Φ−1(ut−1),Φ−1(ut)).

Differentiating C(u, v;α) with respect to u, we obtain the conditional distribution

of Ut given Ut−1 :

C1(ut−1, ut;α) = Φ

(
Φ−1(ut)− αΦ−1(ut−1)√

1− α2

)
For any τ ∈ [0, 1], solving

τ = C1(ut−1, ut;α) = Φ

(
Φ−1(ut)− αΦ−1(ut−1)√

1− α2

)
for ut, we obtain the τ -th conditional quantile function of Ut given ut−1 :

QUt(τ |ut−1) = Φ
(
αΦ−1(ut−1) +

√
1− α2Φ−1(τ)

)
= Φ

(
αΦ−1(F ∗(yt−1)) +

√
1− α2Φ−1(τ)

)
= h∗(F ∗(yt−1), τ ;α).
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Also, Zt = Φ−1(Ut) is a Gaussian AR(1) process that can be represented by

Zt = αZt−1 + εt

where εt ∼ N(0, (1− α2)) and is independent of Zt−1. We obtain the τ -th condi-

tional quantile function of Zt given Zt−1 :

Q(τ |Zt−1) = b(τ) + αZt−1, with b(τ) =
√

1− α2Φ−1(τ),

a formulation that leaves us with the familiar linear AR(1) specification that

induces the simplest linear QAR model.

Example 2: Student-t copula

Let tν,ρ(·, ·) be the distribution function of bivariate student-t distribution with

mean zeros, variances 1, correlation coefficient ρ, and degrees of freedom ν. And

let tν(·) be the CDF of a univariate student-t distribution with mean zero, variance

1, and degrees of freedom ν. The bivariate t− copula is given by, with α = (ν, ρ)

C(u, v;α) = tν,ρ(t
−1
ν (u), t−1

ν (v))

=
1

2π
√

1− ρ2

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

{
1 +

(s2 − 2ρst+ t2)

ν(1− ρ2)

}−(ν+2)/2

dsdt.

If {Yt} is a stationary Markov process of order 1 characterized by a standard

bivariate tν-copula function C∗ = C(·, ·;α) and marginal distribution function

F ∗(·), then let tν be the CDF of a tν random variable, let Ut = F ∗(Yt), then the

τ -th conditional quantile function of Ut is given by

QUt(τ |Ft−1) = tν
(
ρt−1
ν (F ∗(Yt−1)) + σ(F ∗(Yt−1))t−1

ν+1(τ)
)

= h∗(F ∗(Yt−1), τ ; ρ, ν),

where

σ(F ∗(Yt−1)) =

√
ν + [t−1

ν (F ∗(Yt−1))]2

ν + 1
(1− ρ2).
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Moreover, the transformed variable {Zt = t−1
ν (F ∗(Yt))} is a student-t process

that can be represented by

Zt = ρZt−1 + σ(Zt−1)et,

where et ∼ tν+1, and is independent of Yt−1,

σ(Zt−1) =

√
ν + Z2

t−1

ν + 1
(1− ρ2)

is a known function of Zt−1 = t−1
ν (F ∗(Yt−1)). (If the true marginal distribution

F ∗ is also tν then t−1
ν (F ∗(Yt)) = Yt). The τ -th conditional quantile function of Zt,

given Zt−1, is then given by

QZt(τ |Ft−1) = ρZt−1 + σ(Zt−1)t−1
ν+1(τ).

Let θ(τ) = (ρ, α(τ), β(τ)), where

α(τ) =
ν(1− ρ2)t−1

ν+1(τ)2

1 + ν
, β(τ) =

(1− ρ2)t−1
ν+1(τ)2

1 + ν

we can rewrite the conditional quantile function as

QZt(τ |Ft−1) = ρZt−1 +
√
α(τ) + β(τ)Z2

t−1 = h∗(Zt−1; θ(τ)).

The above example applies to any elliptical copula, that is any copula gener-

ated from an elliptically symmetric bivariate distribution, where the conditional

mean is linear and conditional variance is homoskedestic if and only if the copula

is Normal copula; otherwise the conditional variance is heteroskedastic.

Example 3: Joe-Clayton copula

The Joe-Clayton copula is given by:

C(u, v;α) = 1− {1− [(1− ūk)−γ + (1− vk)−γ − 1]−1/γ}1/k, (2.4)
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where ū = 1 − u, α = (k, γ)′ and k ≥ 1, γ0. It is known that the lower tail

dependence parameter for this family is λL = 2−1/γ and the upper tail dependence

parameter is λU = 2− 21/k. When k = 1, the Joe-Clayton copula reduces to the

Clayton copula:

C(u, v;α) = [u−α + v−α − 1]−1/α, where α = γ > 0. (2.5)

When γ → 0, the Joe-Clayton copula approaches the Joe copula whose con-

cordance ordering and upper tail dependence increase as k increases. For other

properties of the Joe-Clayton copula, see Joe (1997). When coupled with fat-

tailed marginal distributions such as the Student’s t distribution, this family of

copulas can generate time series with clusters of extreme values and hence pro-

vide alternative models for economic and financial time series that exhibit such

clusters.

For the Joe-Clayton copula, one can easily verify that

C1(ut−1, ut;α) = (1− ut−1)k−1(1− ūkt−1)−(γ+1)

× [(1− ūkt−1)−γ + (1− ūkt )−γ − 1]−(γ−1+1)

× [1− {(1− ūkt−1)−γ + (1− ūkt )−γ − 1}−1/γ]k
−1−1.

For any τ ∈ [0, 1], solving τ = C1(ut−1, ut;α) for ut, we obtain the τ -th conditional

quantile function of Ut given ut−1 based on the Clayton copula:

QUt(τ |ut−1) = [(τ−α/(1+α) − 1)u−αt−1 + 1]−1/α

Note that this expression and the similar expressions in the foregoing examples

provide a convenient mechanism with which to simulate observations from the

respective models.
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3. Asymptotic Analysis

In this section, we study estimation of the copula-based QAR model (2.3). The

vector of parameters θ(τ) and thus the conditional quantile of Yt can be estimated

by the following nonlinear quantile autoregression:

min
θ∈<k

∑
t

ρτ (Yt −H(Yt−1, θ)), (3.1)

where ρτ (u) = u(τ − I(u < 0)) is the usual check function (Koenker and Bassett

(1978)). We denote the solution as θ̂(τ). Given θ̂(τ), the τ -th conditional quantile

of Yt, conditional on the past information Yt−1, can be estimated by

Q̂Yt(τ |Yt−1 = x) = H(x, θ̂(τ)).

3.1. Assumptions

We derive the asymptotic properties of the QAR estimator θ̂(τ) based on (3.1).

To facilitate our asymptotic analysis, we introduce the following regularity as-

sumptions.

A1. The parameter space Θ is compact.

A2. Let F (y) = F (y; β) and C(u, v) = C(u, v;α) be the CDF and copula func-

tions corresponding to the quantile function H(x, θ), the associated quantile

function F−1(τ) = F−1(τ ; β) is twice continuously differentiable in β, and

the copula function C(u, v;α) is second order differentiable with respect to

u and v, and has copula density c(u, v;α). C1(u, v;α) = ∂C(u, v;α)/∂u

is invertible in its second argument and the corresponding inverse function

12



(C−1
1 (F (x), τ ;α)) is continuously differentiable in α and measurable in x for

each α.

A3. The true τ -th conditional quantile of Yt given Yt−1 = x, takes the form

of a QAR model (2.3). The true unknown conditional density of Yt given

Yt−1 = x, g∗(·|x), is continuously differentiable and bounded away from 0

and ∞.

A4. The smallest eigenvalue of matrix V (τ) is strictly positive, where V (τ) is

defined by (3.2).

A5. (1) There exists a a0t such that supθ∈Θ |H(xt, θ)| ≤ a0t and E(|a0t|) < ∞.

(2) {Yt} is stationary, ergodic and satisfies assumption 1.

A6. Ω(τ) is finite, where Ω(τ) is defined by (3.2).

The above assumptions are similar to those usually imposed in nonlinear time-

series models. These assumptions are given for the convenience of asymptotic

analysis; we do not seek to achieve the weakest possible regularity conditions.

The differentiability assumptions in A2 and A3 guarantee Taylor expansions of

the regression function to appropriate order. Assumption A5(2) is a very mild

assumption on weak dependence property of {Yt}. Although we do not assume

the correct specification of the parametric functional forms of the copula C and the

marginal distribution F , our model is nevertheless a parametric one; hence we do

not need to assume beta-mixing as that imposed in Chen and Fan (2006). Beare

(2008) studied dependence in copula models based on the notion of Doukhan and

Louhichi (1999).
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3.2. Large Sample Properties of the QAR Estimators

To facilitate our analysis, we introduce the following notation:

C1(u, v;α) =
∂C(u, v;α)

∂u
; Cα(u, v;α) =

∂C(u, v;α)

∂α
;

C1α(u, v;α) =
∂C(u, v;α)

∂u∂α
; c(u, v;α) =

∂2C(u, v;α)

∂u∂v
.

Let f(·) be the density functions corresponding to F (·) and C−1
1 (u, τ ;α) denote

the inverse function of C1(u, v;α) with respect to the argument v, and

h(x, α) = C−1
1 (τ ;u, α)

∣∣
u=F (x)

H(x, θ) = F−1(h(x, α); β), Ḣθ(x, θ) =
∂H(xt; θ)

∂θ

and finally,

ḣα(x, α) =
∂h(x, α)

∂α
, ḣαα(x, α) =

∂2h(x, α)

∂α∂α′
,
∂F−1(C, β)

∂β
= F−1

β (C, β).

Consistency and asymptotic normality of the copula-based QAR estimator are

summarized in the following theorem.

Theorem: (1) Under Assumptions A1 - A5, θ̂(τ) → θ(τ), as n → ∞. (2)

Under Assumptions A1 - A6,

√
n
(
θ̂(τ)− θ(τ)

)
⇒ N(0, τ(1− τ)V (τ)−1Ω(τ)V (τ)−1),

where

V (τ) =

[
Vαα(τ) Vαβ(τ)
Vβα(τ) Vββ(τ)

]
, Ω(τ) =

[
Ωαα(τ) Ωαβ(τ)
Ωβα(τ) Ωββ(τ)

]
(3.2)
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and

Vαα(τ) = E

[
g∗(QYt(τ |Yt−1)|Yt−1)

{f(QYt(τ |Yt−1))}2
ḣα(Yt−1;α(τ))ḣα(Yt−1;α(τ))>

]

Vαβ(τ) = E

[
g∗(QYt(τ |Yt−1)|Yt−1)

f(QYt(τ |Yt−1))
ḣα(Yt−1;α(τ))F−1

β (h(Yt−1;α(τ)), β(τ))>
]

Vββ(τ) = E
[
g∗(QYt(τ |Yt−1)|Yt−1)F−1

β (h(Yt−1;α(τ)), β(τ))F−1
β (h(Yt−1;α(τ)), β(τ))>

]

Vβα(τ) = Vαβ(τ)>

Ωαα(τ) = E

[
1

{f(QYt(τ |Yt−1))}2
ḣα(Yt−1;α(τ))ḣα(Yt−1;α(τ))>

]

Ωαβ(τ) = E

[
1

f(QYt(τ |Yt−1))
ḣα(Yt−1;α(τ))F−1

β (h(Yt−1;α(τ)), β(τ))>
]

Ωββ(τ) = E
[
F−1
β (h(Yt−1;α(τ)), β(τ))F−1

β (h(Yt−1;α(τ)), β(τ))>
]

Ωβα(τ) = Ωαβ(τ)>.

Remark 1. In the simple case where the marginal distribution function of Y is

known F (y, β) = F

V (τ) = E

{
g∗(QYt(τ |Yt−1)|Yt−1)

[f(QYt(τ |Yt−1))]2
ḣα(Yt−1;α(τ))ḣα(Yt−1;α(τ))>

}
,

Ω(τ) = E

[
1

[f(QYt(τ |Yt−1))]2
ḣα(Yt−1;α(τ))ḣα(Yt−1;α(τ))>

]
.
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Remark 2. When both the copula function C∗(u, v) = C(u, v;α) and the marginal

distribution F ∗(y) = F (y; β) are correctly specified, the parameters θ(τ) = (α(τ)′, β(τ)′)′

become constants over all τ ∈ [0, 1], and the covariance matrix in the above The-

orem reduces to the following simplified form,

V (τ) =

[
Vαα(τ) Vαβ(τ)
Vβα(τ) Vββ(τ)

]
,

with

Vαα(τ) = E

[
c(F (Yt−1), F (QYt(τ |Yt−1));α)

f(QYt(τ |Yt−1))
ḣα(Yt−1;α)ḣα(Yt−1;α)>

]
Vαβ(τ) = E

[
c(F (Yt−1), F (QYt(τ |Yt−1));α)ḣα(Yt−1;α)F−1

β (h(Yt−1;α), β)>
]

Vββ(τ) = E [f(QYt(τ |Yt−1))c(F (Yt−1), F (QYt(τ |Yt−1));α)

× F−1
β (h(yt−1;α), β)F−1

β (h(yt−1;α), β)>
]

Vβα(τ) = Vαβ(τ)>.

4. Inference Based on Asymptotic Normality

The asymptotic normality of the QAR estimate also facilitates inference. In or-

der to standardize the QAR estimator and remove nuisance parameters from the

limiting distribution, we need to estimate the asymptotic covariance Matrix. In

particular, we need to estimate Ω(τ) and V (τ). Let

Q̂Yt(τ |Yt−1) ≡ H(Yt−1, θ̂(τ)),

and let f̂ , F̂ , Ĉ, F̂β be the marginal density function, distribution function, copula

function and etc. evaluated at the estimated parameters θ̂(τ). Then Ω(τ) can be

estimated by

Ω̂n(τ) =

[
Ω̂n,αα(τ) Ω̂n,αβ(τ)

Ω̂n,βα(τ) Ω̂n,ββ(τ)

]
,
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with

Ω̂n,αα(τ) =
1

n

n∑
t=1

1

{f̂(Q̂Yt(τ |Yt−1))}2
ḣα(Yt−1; α̂(τ))ḣα(Yt−1; α̂(τ))>

Ω̂n,αβ(τ) =
1

n

n∑
t=1

1

f̂(Q̂Yt(τ |Yt−1))
ḣα(Yt−1; α̂(τ))F̂−1

β (h(Yt−1; α̂(τ)), β̂(τ))>

Ω̂n,ββ(τ) =
1

n

n∑
t=1

F̂−1
β (h(Yt−1; α̂(τ)), β̂(τ))F̂−1

β (h(Yt−1; α̂(τ)), β̂(τ))>

Ω̂n,βα(τ) = Ω̂n,αβ(τ)>.

Next, the true (unknown) conditional density of Yt given Yt−1, g∗(QYt(τ |Yt−1)|Yt−1),

can be estimated by the difference quotients,

ĝt(Q̂Yt(τ |Yt−1)) = (τi − τi−1)/(Q̂Yt(τi|Yt−1)− Q̂Yt(τi−1|Yt−1)),

for some appropriately chosen sequence of {τi}’s. Then the matrix V (τ) can be

estimated by

V̂n(τ) =

[
V̂n,αα(τ) V̂n,αβ(τ)

V̂n,βα(τ) V̂n,ββ(τ)

]
with

V̂n,αα(τ) =
1

n

n∑
t=1

ĝt(Q̂Yt(τ |Yt−1))

{f̂(Q̂Yt(τ |Yt−1))}2
ḣα(Yt−1; α̂(τ))ḣα(Yt−1; α̂(τ))>

V̂n,αβ(τ) =
1

n

n∑
t=1

ĝt(Q̂Yt(τ |Yt−1))

f̂(Q̂Yt(τ |Yt−1))
ḣα(Yt−1; α̂(τ))F̂−1

β (h(Yt−1; α̂(τ)), β̂(τ))>

V̂n,ββ(τ) =
1

n

n∑
t=1

ĝt(Q̂Yt(τ |Yt−1))F̂−1
β (h(Yt−1; α̂(τ)), β̂(τ))F̂−1

β (h(Yt−1; α̂(τ)), β̂(τ))>

V̂n,βα(τ) = V̂n,αβ(τ)>.

Wald type tests can then be constructed immediately based on the standard-

ized QAR estimators using Ω̂n(τ) and V̂n(τ). The copula-based QAR models and
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related quantile regression estimation also provide important information about

specification. Specification of, say, the copula function may be investigated based

on parameter constancy over quantiles, along the lines of Koenker and Xiao (2006).

In addition, specification of conditional quantile models can be studied based on

the quantile autoregression residuals. For example, if we want to test the hypoth-

esis of a general form:

H0: R(θ(τ)) = 0

where R(θ) is an q-dimensional vector of smooth functions of θ, with derivatives

to the second order, the asymptotic normality derived from the previous section

facilitates the construction of a Wald statistic. Let

Ṙ(θ(τ)) =

[
∂R1(θ)

∂θ
, · · ·, ∂Rq(θ)

∂θ

]∣∣∣∣
θ=θ(τ)

,

denote a p × q matrix of derivatives of R(θ), we can construct the following re-

gression Wald statistic

Wn,τ ≡ nR(θ̂(τ))>
[
τ(1− τ)Ṙ(θ̂(τ))>V̂n(τ)−1Ω̂n(τ)V̂n(τ)−1Ṙ(θ̂(τ))

]−1

R(θ̂(τ)).

Under the hypothesis and our regularity conditions, we have

Wn,τ ⇒ χ2
q

where χ2
q has a central chi-square distribution with q degrees of freedom.

5. Conclusion

There are many competing approaches to broadening the scope of nonlinear time-

series modeling. We have argued that parametric copulas offer an attractive frame-

work for specifying nonlinear quantile autoregression models. In contrast to fully
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parametric methods like maximum likelihood that impose a global parametric

structure, estimation of distinct QAR models retains considerable semiparamet-

ric flexibility by permitting local, quantile-specific parameters.

There are many possible directions for future development. Inference and

specification diagnostics is clearly a priority. Extensions to methods based on

nonparametric estimation of the invariant marginal are possible. Finally, semi-

parametric modeling of the copula itself as a sieve appears to be feasible strategy

for expanding the menu of existing parametric copulas currently available.
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6. Appendix: Proof of The Theorem

Consistency. We denote Yt−1 as xt. Notice that minimization of the objective

function is equivalent to minimizing

Qn(θ) =
1

n

∑
t

ρτ (Yt −H(xt, θ))−
1

n

∑
t

ρτ (εtτ )

where

εtτ ≡ Yt −QYt(τ |xt) ≡ Yt −H(xt, θ(τ)),

QYt(τ |x) = H(x, θ(τ)), H(x, θ) ≡ F−1(C−1
1 (τ ;F (x, β), α), β),

and thus

Qεt(τ |xt) = 0.

Denote

H t = H(xt, θ)−H(xt, θ(τ)), and qτ (Yt, xt, θ) = ρτ (εtτ −H t)− ρτ (εtτ ),

we may rewrite the objective function as

Qn(θ) =
1

n

∑
t

qτ (Yt, xt, θ).

In order to establish consistency, we verify uniform convergence of Qn(θ) and the

identification condition of E [Qn(θ)] (i.e. E [Qn(θ)] is uniquely minimized at θ(τ).)

Under Assumption A5, we have pointwise weak law of large numbers for Qn(θ),

i.e.

Qn(θ)− E [Qn(θ)]
P→ 0, for any θ ∈ Θ.
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In addition, Θ is compact by Assumption A1. We next verify stochastic equicon-

tinuity. Let B(θ, η) be a η-neighbourhood around θ, we need to show that for any

given ε > 0,

Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,η)

|Qn(θ)−Qn(θ′)− E (Qn(θ)−Qn(θ′))| > ε

)
→ 0, as η → 0.

Notice that under Assumption A5,

sup
θ∈Θ
|qτ (Yt, xt, θ)| = sup

θ∈Θ

∣∣ρτ (εtτ −H t)− ρτ (εtτ )
∣∣

≤ sup
θ∈Θ
|H(xt, θ)−H(xt, θ(τ))| ≤ 2a0t

thus E (supθ∈Θ |qτ (Yt, xt, θ)|) <∞. Let

∆tη = sup
θ∈Θ

sup
θ′∈B(θ,η)

|qτ (Yt, xt, θ)− qτ (Yt, xt, θ′)| ,

then

Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,η)

|Qn(θ)−Qn(θ′)− E (Qn(θ)−Qn(θ′))| > ε

)

≤ Pr

(
1

n

∑
t

[∆tη + E∆tη] > ε

)

≤
E
(

1
n

∑
t [∆tη + E∆tη]

)
ε

=
2

ε
E∆tη

which converges to zero by dominated convergence Theorem, noticing that (a)

∆tη → 0, a.s., as η → 0 because qτ (Yt, xt, θ) is continuous in θ under assumptions

A2 and A3; (b) ∆tη ≤ 2 supθ∈Θ |qτ (Yt, xt, θ)| and (c) E (supθ∈Θ |qτ (Yt, xt, θ)|) <∞.

Thus, we have

lim ‖Qn(θ)− E [Qn(θ)]‖ = 0, a.s. uniformly in θ ∈ Θ.
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Next we verify that Q(θ) = E [Qn(θ)] is uniquely minimized at θ(τ). Recall

that the true but unknown conditional density and distribution function of Yt

given xt are g∗(·|xt) and G∗(·|xt) respectively, and use the following identity

ρτ (u− v)− ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v)− I(0 < u < v)}

= −vψτ (u) +

∫ v

0

{I(u ≤ s)− I(u < 0)}ds, (6.1)

where

ψτ (u) ≡ τ − I(u < 0),

we have

ρτ (εtτ −H t)− ρτ (εtτ ) = −H tψτ (εtτ ) +

∫ Ht

0

{I(εtτ ≤ s)− I(εtτ < 0)}ds.

thus

Qn(θ) =
1

n

∑
t

E
{
ρτ (εtτ −H t)− ρτ (εtτ )

∣∣xt}
=

1

n

n∑
t=1

E

{∫ Ht

0

{I(εtτ ≤ s)− I(εtτ < 0)}ds

∣∣∣∣∣xt
}

=
1

n

n∑
t=1

1
(
H t > 0

)
E

{∫ Ht

0

I(0 ≤ εtτ ≤ s)ds

∣∣∣∣∣xt
}

+
1

n

n∑
t=1

1
(
H t < 0

)
E

{∫ 0

Ht

I(s ≤ εtτ ≤ 0)ds

∣∣∣∣xt}
where the second equality is obtained by the fact that E[ψτ (εtτ )|xt] = 0.
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Under Assumptions A2 and A3,

1

n

n∑
t=1

1
(
H t > 0

)
E

{∫ Ht

0

I(0 ≤ εtτ ≤ s)ds

∣∣∣∣∣xt
}

=
1

n

n∑
t=1

1
(
H t > 0

)
E{
∫ Ht

0

I(H(xt, θ(τ)) ≤ Yt ≤ s+H(xt, θ(τ)))|xt}ds

=
1

n

n∑
t=1

1
(
H t > 0

) ∫ Ht

0

[∫ s+QYt (τ |xt)

QYt (τ |xt)
g∗(y|xt)dy

]
ds

=
1

2n

[
n∑
t=1

1
(
H t > 0

)
g∗(QYt(τ |xt)|xt)H

′
tH t

]
+ op(

∥∥H t

∥∥2
),

and similar result can be obtained for the case H t < 0. Thus,

Qn(θ) =
1

n

∑
t

E
{
ρτ (εtτ −H t)− ρτ (εtτ )

∣∣xt}
=

1

2n

[
n∑
t=1

g∗(QYt(τ |xt)|xt)H
′
tH t

]
+ op(

∥∥H t

∥∥2
).

Recall that θ = (α, β) and

H t = H(xt, θ)−H(xt, θ(τ)), and H(xt, θ) = F−1(C−1
1 (τ ;F (xt, β), α), β),

under Assumptions A2 and A3, by a Taylor expansion of H(xt, θ) around θ(τ),

and notice that

∂F−1(u, β)

∂u
=

1

f (F−1(u, β))
,
∂H(x; θ)

∂α
=

1

f(H(x, θ))

∂h(x;α)

∂α

and

Ḣθ(xt, θ) =
∂H(xt; θ)

∂θ
=

[
∂H(xt;θ)

∂α
∂H(xt;θ)

∂β

]
=

[
f(H(x, θ))−1∂h(x;α)/∂α,

F−1
β (h(x, α), β)

]
,

we obtain

Qn(θ) =
1

2
(θ − θ(τ))> Vn(τ) (θ − θ(τ)) + op(‖θ − θ(τ)‖2)
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where

Vn(τ) =
n∑
t=1

vt(τ),

with

vt(τ) = g∗(QYt(τ |xt)|xt)Ḣθ(xt, θ(τ))Ḣθ(xt, θ(τ))>

=

[
vt,αα(τ) vt,αβ(τ)
vt,βα(τ) vt,ββ(τ)

]
where

vt,αα(τ) =
g∗(QYt(τ |xt)|xt)
[f(QYt(τ |xt))]2

ḣα(xt;α(τ))ḣα(xt;α(τ))>

vt,ββ(τ) = g∗(QYt(τ |xt)|xt)F−1
β (h(xt;α(τ)), β(τ))F−1

β (h(xt;α(τ)), β(τ))>

vt,αβ(τ) =
g∗(QYt(τ |xt)|xt)
f(QYt(τ |xt))

ḣα(xt;α(τ))F−1
β (h(xt;α(τ)), β(τ))>

vt,βα(τ) = vt,αβ(τ)>.

Thus,

E
[
Qn(θ)

]
=

1

2
(θ − θ(τ))> V (τ) (θ − θ(τ)) + op(‖θ − θ(τ)‖2)

≥ 1

2
λmin ‖(θ − θ(τ))‖2 + op(‖θ − θ(τ)‖2)

where λmin is the smallest eigenvalue of V (τ) which, under Assumption A4, is

strictly positive. Thus for any ε > 0, Qn(θ) is bounded away from zero, uniformly

in θ for ‖θ − θ(τ)‖ ≥ ε.

Limiting Distribution. Let
√
n (θ − θ(τ)) = v, we may reparameterize the

objective function Qn(θ) as a function of v:

Q∗n(v) =
∑
t

[
ρτ (Yt −H(xt, θ(τ) + n−1/2v))− ρτ (εtτ )

]
= −

∑
t

H t(v)ψτ (εtτ ) +
∑
t

∫ Ht(v)

0

{I(εtτ ≤ s)− I(εtτ < 0)}ds
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We first consider the term,
∑

tH t(v)ψτ (εtτ ). Under Assumptions A2 and A3,

H(xt, θ) is twice continuously differentiable with respect to θ at θ(τ). By a Taylor

expansion of H(xt, θ) around θ(τ), and notice that E[ψτ (εtτ )|xt] = 0, we have∑
t

H t(v)ψτ (εtτ ) = n−1/2
∑
t

Ḣθ(xt, θ(τ))ψτ (εtτ )v + op(1).

By stationary ergodic martingale difference CLT, under Assumption A6, we have:∑
t

H t(v)ψτ (εtτ ) = n−1/2
∑
t

Ḣθ(xt, θ(τ))ψτ (εtτ )v+op(1)⇒ v×N(0, τ(1−τ)Ω(τ)).

For the second term, if we define

ξt(v) =

∫ Ht(v)

0

{I(εtτ ≤ s)− I(εtτ < 0)}ds, and ξt(v) = E{ξt(v)|xt},

Then ∑
t

∫ Ht(v)

0

{I(εtτ ≤ s)− I(εtτ < 0)}ds

=
n∑
t=1

ξt(v) +
n∑
t=1

[
ξt(v)− ξt(v)

]
=

n∑
t=1

ξt(v) + op(1)

where the second equality holds following Pollard (1984, p171). For the leading

term, under Assumptions A2 and A3, by a Taylor expansion of H(xt, θ) around

θ(τ) as in the previous discussion, we obtain

n∑
t=1

ξt(v) =
1

2
v>

[
1

n

n∑
t=1

g∗(QYt(τ |xt)|xt)Ḣθ(xt, θ(τ))Ḣθ(xt, θ(τ))>

]
v + op(1)

Thus, we have

Q∗n(v) =
∑
t

[
ρτ (Yt −H(xt, θ(τ) + n−1/2v))− ρτ (εtτ )

]
= − 1√

n

∑
t

ψτ (εtτ )Ḣθ(xt, θ(τ))v +
1

2
v>Vn(τ)v + op(1)

⇒ −v ×N(0, τ(1− τ)Ω(τ)) +
1

2
v>V (τ)v = Q∗(v).
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Following Knight (1989) and Pollard (1991), note that Q∗n(v) and Q∗(v) are min-

imized at v̂ =
√
n
(
θ̂(τ)− θ(τ)

)
and V = N(0, τ(1 − τ)V (τ)−1Ω(τ)V (τ)−1) re-

spectively, Lemma A of Knight (1989) ensures

√
n
(
θ̂(τ)− θ(τ)

)
⇒ V (τ)−1 ×N(0, τ(1− τ)Ω(τ)).

26



References

[1] Beare, B., 2008, Copula-based mixing conditions for Markov chains,

Manuscript, University of California, San Diego.

[2] Bouye, E., Salmon, M., 2002, Dynamic copula quantile regression and tail

area dynamic dependence in forex markets, Manuscript, Financial Economet-

rics Research Center.

[3] Chen, X. and Y. Fan, 2006, Estimation of Copula-Based Semiparametric

Time Series Models, Journal of Econometrics, V.130, 307-335.

[4] Doukhan, P. and S. Louhichi, 1999, A New Weak Dependence Condition

and Applications to Moment Inequalities, Stochastic Processes and Their

Applications, 84, 313-342.

[5] Ibragimov, R. and G. Lentzas, 2008, Copulas and Long Memory. Manuscript,

Harvard University.

[6] Knight, K., 1989, Limit Theory for Autoregressive-parameter estimates in

an infinite-variance random walk, The Canadian Journal of Statistics, V. 17,

261-278.

[7] Koenker, R. and G. Bassett, 1978, Regression Quantiles, Econometrica, V46,

33-49.

[8] Koenker, R. and Zhijie Xiao, 2006, Quantile Autoregression, Journal of the

American Statistical Association, 2006, Vol. 101, 980-990.

27



[9] Pollard, D., 1984, Convergence of Stochastic Processes, New York: Springer-

Verlag.

[10] Pollard, D., 1991, Asymptotics for Least Absolute Deviation Regression Es-

timators, Econometric Theory, 7, 186-199.

28


