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Abstract. We consider a simple through-the-origin linear regression example in-
troduced by Rousseeuw, van Aelst and Hubert (1999). It is shown that the conven-
tional least squares and least absolute error estimators converge in distribution with-

out normalization and consequently are inconsistent. A class of weighted median
regression estimators, including the maximum depth estimator of Rousseeuw and
Hubert (1999), are shown to converge at rate n−1. Finally, the maximum likelihood
estimator is considered, and we observe that there exist estimators that converge
at rate n

−2. The results illustrate some interesting, albeit somewhat pathological,
aspects of stable-law convergence.

1. Introduction

Rousseeuw and Hubert (1999) formulate a notion of data depth in linear regression
settings and introduce a highly robust maximal depth estimator. In discussion of
this paper, Koenker (1999) suggested that such high-breakdown bound estimators
generally sacrifice efficiency in comparison to the median regression estimator in cases
where the design observations have heavy tails. Though this is true in homoscedastic
cases, Rousseeuw, van Aelst and Hubert (1999, p. 422) present an intriguing example
of a simple heteroscedastic case for which their Monte Carlo simulations suggested
that highly robust estimators that ignore large x-values are better than traditional
estimators making stronger use of these values.

The example involves the simple, scalar-parameter, through-the-origin linear re-
gression model. Let (Z1, Z2, Z3) be iid standard normal and define,

X = (Z1/Z3)
2sgn(Z1/Z3)

Y = Xβ + (Z2/Z3)
2sgn(Z2/Z3)

It is easy to see that the conditional distribution of Y given X = x is symmetric
about xβ. Thus, a wide variety of estimation methods may be applied, even though
the Z3 term common to both X and the regression error makes the variability of Y
highly dependent on X (see (2.5) below). Note that the marginal distributions of
both X and the regression error have a symmetrized F1,1 distribution, which has no
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integer moments, so that the least squares estimator (OLS) might be expected to
perform poorly. As alternatives to the OLS estimator, we consider several median
regression estimators all of the form

β̂n = argmin
b∈ℜ

∑

wi|yi − xib|

where the weights wi are chosen to be: (i) wi ≡ 1, (ii) wi = |xi|−1 and (iii) wi =
(xi(1 + |xi|))−1/2. The unweighted median regression estimator, or least absolute
deviation (LAD) estimator may be viewed as the weighted median of the candidate
slopes yi/xi with weights |xi|. Case (ii) is Rousseeuw and Hubert’s maximal depth
estimator (MDE), which is simply the unweighted median of the yi/xi. Case (iii)
corresponds to the optimally weighted median regression estimator (WLAD).

In Table 1 we report median absolute error estimates for the four estimators based
on a small Monte-Carlo experiment with 10,000 replications. Note that the results for
the OLS and LAD estimators are reported without normalization, while results for
the two weighted median regression estimators have been normalized by n. Results
are reported for 8 different sample sizes.

Estimator n=100 n=200 n=300 n=400 n=500 n=1000 n=5000 n=10000

β̂OLS 0.437 0.428 0.428 0.421 0.417 0.421 0.428 0.425

β̂LAD 0.212 0.207 0.206 0.207 0.213 0.200 0.204 0.209

nβ̂WLAD 0.919 0.956 0.898 0.911 0.891 0.890 0.914 0.896

nβ̂MDE 1.164 1.136 1.094 1.108 1.088 1.125 1.135 1.136

Table 1. Monte-Carlo Median Absolute Errors

We show the following formal results: (1) Both the least squares and the unweighted
median regression estimators (case (i)) are inconsistent; and in fact they converge
without normalization to non-degenerate limiting distributions, and (2) the maximal
depth MDE and optimally weighted (WLAD) estimators converge in distribution at
rate 1/n , with the MDE about 80% efficient with respect to the WLAD estimator.
Finally, we note that estimators that converge at rate n−2 are also possible, as follows
from results of Ibragimov and Has’minskii (1981).

2. Some Basic Distribution Theory

Since all the estimators considered are affine invariant, take β = 0 (without loss of
generality). Thus, consider the random variables:

(2.1) X = (Z1/Z3)
2sgn(Z1/Z3) Y = (Z2/Z3)

2sgn(Z2/Z3)
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Transforming from (Z2
1 , Z

2
2 , Z

2
3) to (X, Y, Z2

3), integrating out Z2
3 , and invoking sym-

metry around the origin gives the joint distribution of (X, Y ) as

(2.2) fX,Y (x, y) =
1

8π
|xy|−1/2(|x|+ |y|+ 1)−3/2.

As noted above, the marginal distribution of X is a symmetrized F1,1 with density,

(2.3) fX(x) =
1

2π

1
√

|x|
1

1 + |x|
so the conditional density is

(2.4) fY |X(y|x) =
1

4
√

|y|
(1 + |x|)(1 + |x|+ |y|)−3/2

Thus, Y is clearly not independent of X , but integrating we find that the conditional
distribution function is,

FY |X(y|x) =
1

2
+

1

2

sgn(y)
√

|y|
√

1 + |x|+ |y|
.

The conditional quantile functions are

(2.5) QY |X(τ | x) =
(2τ − 1)2

1− (2τ − 1)2
(1 + |x|)

so the conditional median function is QY |X(
1
2
| x) = 0, though all the other conditional

quantile functions are proportional to 1 + |x|, and thus have a piecewise linear scale
effects.

3. Convergence in distribution for the LAD estimator.

Our first result establishes the inconsistency of the usual median (LAD) regression
estimator.

Theorem 3.1. Let β̂n be the LAD estimator of β. Then without normalization,

Bn ≡
(

β̂n − β
)

→D B

where B is symmetric about zero, and |B| has a density

(3.1) f|B|(b) =
b−1/2

2(1 + b)3/2
g(

(

b

1 + b

)1/2

) for b > 0 .

Here, g(u) is the function

(3.2) g(u) ≡ 2

π
E(S(u))−1/2

3



where S(u) is a stable random variable that may be expressed as follows:

(3.3) S(u) ∼ 2

π
(R(.5, u) + u) ∼ λ2(u)

(

2u/(1 + u2) + sin(P )

2W cos2(P )

)

.

In the first representation R(.5, u) denotes a stable random variable with index α = .5
and skewness parameter, u, as computed by the Splus function rstab (see Chambers,
et al., 1976). In the second representation, λ2(u) = (2/π)(1 + u2) arises from the
scale parameter of the stable domain of attraction for the sum in (3.6); and P ∼
Unif(−π/2, π/2) while W has an independent negative exponential distribution with
mean 1.

Equivalently, transforming the asymptotic distribution using u = (b/(1 + b))1/2 ,
the density of |U | is just g(u) as given by (3.2). (This follows since the Jacobian of
the transformation is just the first factor in (3.1).)

Proof. Begin by using the finite sample density for the LAD estimator as given in
Koenker and Bassett (1978). This result assumes the design is fixed; so conditioning
on X ≡ {X1, X2, · · · , Xn}, and assuming β = 0, without loss of generality, we let
Zi ≡ |Yi/Xi| and

(3.4) f|Bn|(b |x) =
n

∑

i=1

fZi
(b | xi)Pxi

{|Si,n(b)| ≤ |xi|}

for b > 0, where (using (2.4)) the conditional density of Zi given Xi = x is

(3.5) fZi
(b | x) = b−1/2 (1 + 1

x
)

2 (1 + b+ 1
x
)3/2

and Si,n(b) is the sum in the gradient condition:

(3.6) Si,n(b) =
∑

j 6=i

Xi sgn(Yi − bXi) .

Using the i.i.d. sampling, and taking expectations with respect to the distribution
of X ,

f|Bn|(b) = nE fz(b |X)Px{|S̃n(b)| ≤ |X|} ,

where

S̃n(b) =

n−1
∑

i=1

Xi sgn(Yi − bXi)

as in (3.6). Now, break the expectation into the pieces |X| < n1/2 and |X| ≥ n1/2.
First consider the expectation when |X| < n1/2. It is straightforward to show that

the density of the summands S̃n(b) have the form: c|x|−3/2 (1 +O(1/x)). Thus,
{S̃n(b)/n

2} has a stable limit law. In fact, the density of the summands is can be
expanded as |x| times an expansion in powers of 1/|x| as |x| → ∞. Therefore, the
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densities of {S̃n(b)/n
2} converge uniformly to the (bounded) limit stable density (by

Theorem 7.21 of Christoph and Wolf, 1992). As a consequence,

P
{

|S̃n(b)| < n1/2
}

= P
{

|S̃n(b)/n
2| < n−3/2

}

= O
(

n−3/2
)

.

Therefore the contribution for |X| < n1/2 vanishes at rate O(n−1/2) (since the condi-
tional density (3.5) in (3.4) is uniformly bounded in x). Now consider the expectation
for |X| ≥ n1/2. Here, the conditional density satisfies

fz(b | x) =
b1/2

2(1 + b)3/2
(

1 +O(n−1/2)
)

for b > 0 .

uniformly in b. Therefore, since the probability term is positive,

(3.7) f|Bn|(b) =
b1/2

2(1 + b)3/2
(

1 +O(n−1/2)
)

nP{|S̃n(b)| ≤ |X|}

where the probability is now unconditional.
Now make the transformation u = (|b|/(1 + |b|))1/2. Since the first term in (3.7)

is just du/db (apart from a factor of 2 introduced by the absolute value in the trans-
formation), it remains only to consider the limit of n times the probability in (3.7).
But, the c.d.f. for |x| satisfies 1−F (x) = (1/π) tan−1(x1/2), which has a leading term

1/(π x1/2). It follows with some calculation that we may write S∗
n(u) for S̃n(b) and

obtain for some constant c and for u > 0 (taking expectations over X),

nP{|S∗
n(u)| ≤ |X|} =

1

π
E

{

|S∗
n(u)/n

2|−1/2 + cmax{1, n−2|S∗
n(u)/n

2|−3/2}
}

.

But, as noted above, for fixed u, the densities for {S∗
n(u)/n

2} converge uniformly to a
stable density. Thus, using the dominated convergence theorem for |S∗

n(u)/n
2| < 1,

the expectations converge and

(3.8) fU(u) →D 1

π
E |S∗(u)|−1/2 for u > 0 ,

where S∗(u) is a stable random variable with index α = .5 and skewness parameter
depending appropriately on u.

It remains to compute the appropriate skewness parameter and describe the expec-
tation in (3.8). This requires the limiting values for |v|1/2F (v) and |v|1/2(1− F (v))
where F (v) is the c.d.f. for the summands, V ≡ X sgn(Y − bX) . A trite calculation
using first the conditional distribution for Y given X yields (for b > 0):

F (v) =
1

2
E

{

1 +

(

b|X|
(1 + b)|X|+ 1

)1/2
}

I(|X| > v)

≈ π−1/2

{

1 +

(

b

(1 + b)

)1/2
}
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for large b; and similarly,

(1− F (v)) ≈ π−1/2

{

1−
(

b

(1 + b)

)1/2
}

.

As above, letting u = (b/(1 + b))1/2 and using equation (1.19) of Christoph and
Wolf, the stable skewness and scale parameters (β ′ and λ in their notation) satisfy

λ sin((1 + β ′)π/4) = (1− u)/π1/2

λ sin((1− β ′)π/4) = (1 + u)/π1/2

Solving in terms of the more conventional skewness parameter, β = 4 tan−1(β ′)/π

with β = u yields: λ = (2(1 + u2)/π)
1/2

. Tradition demands the use of β for stable
skewness parameters despite the statistical use of β for regression parameters.

The first representation for the limiting stable distribution given in (3.3) follows
from Chambers, et al. (1976) (see also, Nolan (1998)); while the second uses Zolotarev’s
representation (see Zolotarev, 1983, or Weron, 1996), where the trigonometric identity

sin(x) + sin(y) = 2 sin

(

1

2
(x+ y)

)

× cos

(

1

2
(x− y)

)

is applied. ✷

In Figure 1 we compare the finite sample behavior of the LAD and OLS estimators

based on estimated densities for the transformed υ̂ =

√

|β̂|/(1 + |β̂|). The dotted line

indicating the theoretical density of the LAD estimator gives a quite accurate account
of the empirical estimate for each of the sample sizes considered. The transformed
OLS density given by the dashed line in each plot is clearly less concentrated around
zero than the LAD fit. Like the LAD estimator the OLS estimator converges in
distribution without normalization as we will show in the next section.

4. Convergence in Distribution for the Least Squares Estimator.

It is also rather easy to show that the least squares estimator converges in distribu-
tion without normalization. Unfortunately, this seems to require using convergence to
a bivariate stable distribution, and the general bivariate stable has a characterization
that involves a (nontrivial) integration over the circle and as far as we are aware does
not admit a known method for simulation.

Theorem 4.1. Let β̂∗
n be the least squares estimator of β. Then without normaliza-

tion, (β̂∗
n−β) converges in distribution to a functional of a bivariate stable distribution.
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Figure 1. This figure illustrates the finite sample density of the LAD
and OLS estimators after transformation. The dotted line indicates
the theoretical density of the LAD estimator described in Theorem
1. The solid line is the fitted (transformed) LAD density based on
10,000 Monte-Carlo replications using the Stone and Kooperberg (1991)
logspline method. The dashed line is the corresponding estimate of the
OLS density.
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Proof. The least squares estimator is

(4.1) β̂∗
n =

∑n
i=1Xi Yi

∑n
i=1X

2
i

.

Without loss of generality, take β = 0. Then, it suffices to consider the joint distri-
bution of U = Xi Yi and V = X2

i and to show that the distribution of (U, V ) lies in
the domain of attraction of a bivariate stable distribution.

First, taking the joint distribution of (Xi, Yi) in (2.2) and changing variables to
(U, V ) gives with some calculation,

(4.2) fU,V (u, v) =
u−1/2v−1/4

16π (v + u+ v1/2)
3/2

for u > 0, v > 0 .

Note that the density on the remainder of the domain is defined by symmetry.
Now, changing to polar coordinates: U = R cos θ and V = R sin θ,
(4.3)

fR,θ(r, t) =
r−5/4 cos(t)−1/2 sin(t)−1/4

16π (sin(t) + cos(t) + sin(t)1/2/r1/2)
3/2

for r > 0, 0 < t < π/2 .

As r → ∞, this can be expanded in a series in terms of powers of r−1/2. Thus,
asymptotically, R and θ are independent; and the condition for a distribution to lie in
a stable domain of attraction is trivial (see Rvačeva, 1962, p. 196). This means that
the bivariate sums (

∑n
i=1Xi Yi,

∑n
i=1X

2
i ) converge in distribution (in the plane) to

a bivariate stable distribution. The convergence of the least squares estimator then
follows immediately. ✷

5. Convergence of the Maximal Depth and weighted LAD Estimators

Although the LAD estimator is inconsistent, it will now be shown that weighting
may improve the situation considerably. Specifically, let β̌n be the weighted LAD
estimator defined by

β̌n = argmin
b∈ℜ

∑

w(Xi)|Yi −Xib|

where w is a smooth weighting function.

Theorem 5.1. Let X be a random variable with the distribuion of |Xi| (2.3), and
let w(x) be a measurable weighting function for which

V (w) ≡ E
(

X2w2(X)
)

< +∞ .

Then, as n → ∞,

n(β̌n − β) →D vS
8



where S is a symmetric random variable with |S| ∼ χ2
1 , and v is a scale factor,

v ≡ M(w)√
V (w)

with

(5.1) M(w) ≡ E

[

(

X

1 +X

)1/2

X w(X)

]

.

Proof. The gradient for the weighted problem is

gn(b) = −
∑

sgn(Yi −Xib)xi w(Xi)

and by the convexity of the objective function, hence the monotonicity of the gradient,

P (β̂n < δ) = P (gn(δ) > 0).

For any sequence λn → ∞,

P (λnβ̂n < δ) = P (gn(δ/λn) > 0) = P
(

(gn −Mn(w))/
√

Vn(w) > −Mn(w)/
√

Vn(w))
)

,

where

Mn(w) =
∑

(1− 2Fi(Xiδ/λn))Xiw(Xi) and Vn(w) =
∑

X2
i w

2(Xi).

It is easily checked that the weighted Bernoulli random variables, {(gn−Mn(w))/
√

Vn(w)}
converge to a standard normal. Since n−1V gn converges to V (w), we have, letting
λn = n,

Mn(w)
√

Vn(w)
= (Vn(w))

−1/2 1√
n

n
∑

i=1

√

Xiδ/λn
√

1 +Xi +Xiδ/λn

Xi w(Xi) → M(w)
√
δ√

V (w)

Thus,

P
(

n|β̂n| < δ
)

→ P
(

|Z| > −
√
δ v

)

= P
(

Z2 > δ v2
)

where Z is a standard normal random variable. So β̂n converges at rate 1/n to the
symmetrically reflected, rescaled χ2

1 distribution. ✷

The improvement in the rate of convergence arises from the unboundedness of
the conditional density at the median. To compare with the Monte-Carlo results of
Rousseeuw, et al. (1999) and Table 1 above, we may compute the asymptotic ap-

proximation to the median absolute deviation of the estimator. That is, if P (n|β̂n| <
δ0) → .5, then δ0 = χ2

1,.5/v
2.

The optimal value for v follows from a straightforward application of Cauchy-
Schwarz. Using the density for |xi| given by (2.3),

M(w) =
1

π

∫ ∞

0

xw(x)

(1 + x)3/2
dx and V (w) =

1

π

∫ ∞

0

x3/2w2(x)

(1 + x)
dx .

Thus, by the Cauchy-Schwarz inequality,

(5.2) M2(w) ≤ V (w) × 1

π

∫ ∞

0

√
x

(1 + x)2
dx =

1

2
V (w) .
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This inequality becomes an equality when the integrands for M(w) and V (w) are
equal; that is, for xw(x)/(1+x)3/2 = x3/2w2(x)/(1+x). Solving for w∗(x) yields the
following result.

Proposition 5.1. Among all weight functions satisfying Theorem 5.1, the optimal
weights and optimal scale factor are given by

w∗(x) = (x(1 + x))−1/2 ; v∗ = 1/
√
2 .

For this optimal weighting, the asymptotic mean absolute deviation is δ0 = 2χ2
1,.5 =

.9099.

We may contrast this optimally weighted median regression estimator with the even
simpler weighting scheme wi = |xi|−1, which yields the ordinary sample median, β̌n, of
the yi/xi’s as an estimator of β. This estimator is also the maximum depth estimator
of Rousseeuw, et al. (1999). Here the vi = yi/xi are iid from the symmetrized F1,1

distribution with distribution function,

F (v) =
1

2
+

1

π
sgn(v) arctan(

√

|v|/n)) .

Since
√
n arctan

√

|x|/n →
√

|v|, for δ > 0, P (nβ̌n < δ) → P (Z > −
√
δ2/π) ; we

have
P
(

|nβ̌n| < δ
)

→ P
(

Z2 < 4 δ/π2
)

where Z is N (0, 1). Again finding the asymptotic approximation for the median
absolute deviation, we obtain,

δ0 = χ2
1,.5π

2/4 = 1.123.

The asymptotic relative efficiency of the two estimators is

ARE = .9099/1.123 = .81,

thus using the simpler weighting sacrifices almost 20% of the sample observations.
Note that we have adopted the (Pitman) convention to measure ARE in this case as
the ratio of scale parameters rather than variances since the convergence is at rate
1/n rather than the conventional 1/

√
n. Thus, the ARE still reflects the limiting

ratio of sample sizes required to achieve the same precision with the two procedures.

6. Maximum Likelihood Estimation

Having gone this far, it would be negligent to omit consideration of the maximum
likelihood estimator. The log likelihood, obtained from (1.4), may be written as,

ℓ(b) = K − 1

2

n
∑

i=1

[log(|yi − bxi|/σ(xi))− 3 log(1 + |yi − bxi|/σ(xi))]

where σ(xi) = 1 + |xi|. But there is an immediate problem: ℓ(β) is unbounded
at each of the sample points bi = yi/xi. In the terminology of Ibragimov and
Has’minskii(1981) the likelihood has a singularity of order α = −1/2 at each of these
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Figure 2. This figure illustrates the log likelihood function evaluated
on a grid of 200 equally spaced points and based on a sample of size
21.

points. A typical log likelihood function is represented in Figure 2, where we have
obviously avoided evaluation of the likelihood at any of the bi’s, evaluating instead on
a fairly fine grid. The MLE, which apparently expects an answer to the nonsensical
question: “which infinity is largest?” can be sensibly defined as the bi that maximizes
ℓ(bi+ εn) over i = 1, ..., n for a suitably chosen sequence εn → 0. Equivalently, we can
simply define the leave-one-out likelihood at each bi as

ℓ̃(bi) = K − 1

2

∑

j 6=i

[log(|yj − bixj |/σ(xj))− 3 log(1 + |yj − bxj |/σ(xj))]

and maximize over i = 1, ..., n. The value b∗ at which ℓ̃(bi) achieves its maximum will
be called the jackknifed MLE (JMLE). For n large it is computationally helpful to
observe that we can restrict attention to only the central order statistics of the bi’s.

From Ibragimov and Has’minskii (1981, §VI.6) we know that there exist Bayes es-
timators that achieve convergence rate n−2 in this case. Thus, although the weighted
median regression estimators seem to perform quite well, they all have asymptotic ef-
ficiency zero relative to the estimators of Ibragimov and Has’minskii (1981). However,
it seems to be quite difficult to compute the Bayes estimators for the large sample
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Estimator n=20 n=50 n=100 n=200 n=500

nβ̂MDE 1.31 1.19 1.17 1.18 1.11

n2β̂JMLE 7.01 9.08 10.56 10.94 11.10

Table 2. Monte-Carlo Median Absolute Errors

sizes we have been using. In Table 2 we compare the performance of the JMLE with
the MDE considered above based on 10,000 Monte-Carlo replications. We find that
the performance of the JMLE is quite consistent with the convergence rate n−2 over
the range of sample sizes employed in the experiment. Thus, the weighted median
regression estimators all appear to have asymptotic efficiency zero relative to the
JMLE.
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