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ABSTRACT. Correcting for heteroscedasticity in GMM estimation of the linear model
can improve upon the Gauss-Markov estimator even when there is no heteroscedas-
ticity to correct.

1. INTRODUCTION

We will show that a heteroscedasticity corrected GMM estimator can improve upon
the performance of the least squares estimator in certain, iid error, classical linear
regression models, even though there is no heteroscedasticity to correct. Consider the
classical linear regression model

yizzwijﬁj‘l'ui izl,...,n.
j=1
Throughout, we will assume that the error sequence {u;} is independent and identi-
cally distributed with common distribution function F. Under plausible conditions
on F we find an unbiased estimator, 3,, of 3 with strictly smaller covariance ma-
trix than the classical Gauss-Markov estimator Bn = (X’X)"'X'y. Our estimator,
which we call the Falstaff estimator for reasons which will become gradually appar-
ent, is a variant on generalized method of moments estimators which have attracted
considerable recent interest in the literature.

2. THE FALSTAFF ESTIMATOR

Stein’s (1956) celebrated shrinkage results imply that one can improve upon Bn
in Gaussian regression problems with parametric dimension p > 3 by shrinking Bn
toward some fixed point, thereby trading bias for variance reduction. Judge and
Bock (1978) treat this subject in some detail from an econometric standpoint. One
might characterize this as statistical stoicism — through restraint, self-discipline and
temperance we achieve the noble purpose of reduced mean square error. For others,
it may be interpreted as a form of Bayesian parsimony.

We have no quarrel with such philosophies. They are fine for those who, like
La Fontaine’s ant, prefer to toil all summer to prepare for the hardships of winter.

9JEL Classification: C13, C20

Date: May 22, 1998.

Key words and phrases. GMM, heteroscedasticity, moment expansion, robustness.
1



2 ROGER KOENKER AND JOSE A. F. MACHADO

But who speaks out for the profligacy of the grasshopper, for gluttony and reckless
abandon? Can such ideas have a place in the dismal annals of econometrics? We beg
the gentle reader’s momentary indulgence to consider the following foolishly profligate
estimator:
Augment the p-columns of the initial design matrix X, by ¢ randomly gen-
erated columns, D. Let Z = [X D], and consider estimating the augmented
model by ordinary least squares,

b = (2'2)" 2"y
and denote the familiar Eicker-White covariance matrix estimator for &, by
V, = (Z'2) Z'RZ(Z' 7))
where R = diag(r?) and r = y — Z8. Finally, let G = [1,0]', so 6 =GB,
and define the GMM estimator of 3, by solving
min(S — Gﬁ)’f/n_l(g - Gp),
yielding,
B, = (GV @GV S,.
This may appear to be the recipe of some demented sack-guzzler, but there is

method in the madness. Our first result shows that we are not trading bias for
variance reduction as in Stein estimation.

Proposition 1. If F' is symmelric aboul zero, then B, is symmelrically distributed
about 3, and if it exists, K3, = 3.

Proof: The argument is essentially that of Kakwani(1967); see also the treatment
in Schmidt(1976). Fix Z and write

Bn= B+ (GVIG)T'GV .
Observe that V,, is an even function of u, that is v and —u yield the same V,,. Since by

assumption v and —u have the same distribution, it follows that 3, — 3 and —(Bn —5)
have the same distribution. And the result then follows by unconditioning on Z. =

We can conclude from this result that any improvement in mean squared error
acheived by 3, must be purely a matter of variance reduction. Since for Gaussian
F it is well known that Bn is minimum variance unbiased we obviously must narrow
the class of F’s to exclude this case. Our next result which is an immediate corollary

of Theorem 2.2 of Koenker, Machado, Skeels, and Welsh(1994), henceforth KMSW,

specifies the class of distributions for which we may expect an improvement.

Proposition 2. Under the conditions of Theorem 2.2 of KMSW(1994) with {u;} iid

and k(F) = Eui/c*, we have the variance expansion,

VarG/n(B, — 8) = 00, + 07 0*(5 — k(F)) Q. + o(n™),
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where Q, = (G'H,G)™' = (X'X/n)™', H, = Z'Z/n, Q3, = Q.GM,GQ,, and
M, =n"1> z2[H, — G(G'H,G) ' (')zz!

The first term in this variance expansion is familiar, it is the variance that would
result had we used the true V = o?[. The second term which is of order O(n™!)
may be attributed to the “heteroscedasticity correction” of the GMM estimator and
is probably less so. It is easy to see that the matrix €, is positive definite and
consequently for distributions with kurtosis greater than 5, the Falstaff estimator, 8.,
has strictly smaller asymptotic covariance matrix, to order O(r~") than the Gauss-
Markov estimator Bn

Of course, for Gaussian F' and other distributions with modest kurtosis the sec-
ond term contributes a positive component and consequently the 3, “correction for
heteroscedasticity” is counter-productive. This degradation in performance at the
Gaussian model is hardly surprising since classical sufficiency arguments as in Rothen-
berg(1984) imply such a loss is inevitable.

Intuitively, we would expect that ignoring the fact that our observations are ho-
moscedastic couldn’t help us. We should be punished for ignoring relevant informa-
tion. Shouldn’t we? How then do we gain from the profligate behavior of the Falstaff
estimator? How can estimating an artificially expanded model and then correcting
for heteroscedasticity in an wid error model conceivably increase the precision of our
estimates? To explore these questions we begin by considering the particularly simple
special case of estimating a scalar location parameter. Since in this case X = 1 an
n-vector of ones, the form of €1y, is especially simple: G = e;, Gz; = 1, and therefore
s, = ¢, the number of augmented columns in D. Thus our expansion reduces in
this case to

Varl/(B, — B) = 0?1 + (5 — k(F))q/n] + o(n™").

In the next section we report on a small monte-carlo experiment designed to evaluate
the accuracy of this expansion for moderate sample sizes. What is the Falstaff esti-
mator doing in this simple location context? The Falstaff estimator of location may
be expressed as

B = 61 15/61

ObVlOHSly, if V, is proportional to the identity matrix and D is orthogonal to X then
B, = ,B = y. However, generally, all the coordinates of § contribute to B,. If v,
converges in probability to a nonstochastic matrix, the iid error assumption ensures
that the limit is proportional to the identity. This simply restates the obvious fact
that if V, is consistent as it would be in the present circumstances if ¢ were fixed, then
the Falstaff improvement vanishes as n — oc. Whether there may be some scope for
asymptotic improvement if the sequence of D, matrices could be chosen to preserve
a stochastic contribution from V, remains an open question.
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3. MonNTE CARLO

In this Section we report on a brief Monte Carlo experiment designed to evaluate
the performance of the Falstaff estimator of location. We limit the choice of error
densities to the Student t family in order to exploit a simple normal/independent
variance reduction technique. Instead of simply simply generating t-variates and
directly computing mean squared errors of the estimators we generate observations
from the model y; = z;/v; for z; ~ N(0,1) and v; ~ /x2/v. This enables us to
compute the optimal (weighted least squares) estimator conditional of the v;’s. Since
this estimator as a known distribution we can remove this source of variability from
the Monte Carlo and focus on the departure of our estimators from this idealized, but
obviously unattainable estimator. This is most easily accomplished by replacing the
realized n-vector y by the standardized vector § = (y — fi)/& where i = (v'v)~'v'z
and 6% = 2/(I — v(v'v)™'")z/(n — 1). See, e.g. Simon (1976) for further details.

We consider three choices of the degrees of freedom parameter of the t-distribution:
v € {1,3,5} and six choices of the sample size {10,15,25,50,75,100}. The coeflicient
of kurtosis is unbounded for the t(1) and t(3) distributions, and equals 9 for the t(5).
For each configuration we consider 9 versions of the the Falstaff estimator with the ¢-
dimension of the augmentation matrix varying from 0 to 8. Obviously, ¢ = 0 provides
the benchmark, ordinary least squares estimator against which we will compare the
performance of the other estimators. For each configuration the augmentation matrix,
D, is generated as iid from the standard normal distribution. And 10,000 replications
are done for each configuration.

Figure 1 presents the results of the simulation. Columns of the array of figures cor-
respond to the three t distributions, and rows to the six sample sizes. The horizontal
line in each figure represents performance of the sample mean, corresponding to the
Falstaff estimator with ¢ = 0. The curve plotted in each panel represents the per-
formance, measured by mean squared error, of the other Falstaff estimators relative
to the sample mean for each configuration. The vertical bars represent 95 percent
confidence intervals for the point estimates represented by the curve. When the line
drops below the horizontal line it indicates improvement in performance over that of
the sample mean. Thus, for the Cauchy, v = 1, cases there is dramatic improvement
over the entire range of ¢ simulated in the experiment. For the Student on 3 degrees
of freedom configurations, there is improvement for modest ¢ when the sample size
is small, and improvement over the entire range when the sample size is larger. In
the last column of the array, corresponding to the Student on 5 degrees of freedom,
the results show no improvement from the Falstaff estimator for the smallest sample
sizes, 10 and 15, slight improvement at n = 25 for ¢ = 2, and significant improvement
for the larger sample sizes, for moderate q. These results confirm the theoretical
conclusions of the second-order asymptotics, and also indicate that the choice of an
optimal ¢ is rather delicately tied to the degree of non-normality of the error density



THE FALSTAFF ESTIMATOR 5

and the sample size. See Koenker and Machado (1996) for a more serious theoretical
consideration of this aspect of the GMM problem.

4. MORALS

What have we learned from this pathological parable? Our first moral is that we
should be wary of reliance on conventional first-order asymptotics. It is tempting
to adopt the view that our ability to consistently estimate V' implies that we can
safely ignore the consequences of this estimation. This is true when n is sufficiently
large relative to ¢, but it may seriously misrepresent the situation commonly faced
for moderate n. Our second moral is that it is possible to substantially improve upon
the performance of the ordinary least squares estimator of the linear model when
the error distribution is non-Gaussian. The Falstaff estimator is only one of many
nonlinear estimators which stand ready to challenge the putative superiority of the
Gauss-Markov estimator. If pressed, we would not choose Falstaff to lead us into
battle, but like Jack Falstaff this portly estimator contains a little wisdom.

Finally, we must confess that the Falstaff estimator is really only a variant of
the estimator proposed by Cragg (1983) designed to deal with heteroscedasticity of
unknown form. While Cragg’s estimator was intended to deal with real heteroscedas-
ticity and exploited the existence of overidentifying restrictions based on measurable
functions of the regressors already appearing in the model, Falstaff makes something
similar out of thin air.
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