QUANTILE REGRESSION FOR LONGITUDINAL DATA
ROGER KOENKER

ABSTRACT. The penalized least squares interpretation of the classical random ef-
fects estimator suggests a possible way forward for quantile regression models with
a large number of fixed effects. Sparse linear algebra and interior point methods for
solving large linear programs are essential practical tools.

1. INTRODUCTION

The almost exclusive focus on least squares estimators under Gaussian conditions
for longitudinal data analysis can be taken as a challenge. Can a more flexible, more
robust approach to longitudinal data analysis be forged outside the Gaussian random
effects framework? I will argue that quantile regression might play a constructive role
in such a development.

Recent contributions to the literature on linear and nonlinear mixed models have
emphasized the strong link with penalty methods for nonparametric function estima-
tion. Shrinkage of highly overparameterized models toward simpler, plausible models
suggested by prior smoothness considerations or exchangability of nominal effects
share many common features. The construction of infant and adolescent growth
charts provides a motivating application in which both ordinal and nominal factors
appear. Both Cox and Jones have recently suggested in the discussion of Cole (1988)
that quantile regression methods may offer advantages over conventional parametric
approaches to the analysis of growth charts. Computational methods that exploit
the inherently sparse nature of the linear algebra for interior point solution of the
resulting linear programming problems play an essential role.

2. MODELS AND METHODS
Consider the classical linear random effects model,
(2.1) yij::ciTjﬁ—i-ai—i-uij j=1,..m;, i=1,..,n,
which we will write in matrix form as,

y=XB+ Za+ u.
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Suppose u and « are independent Gaussian vectors with v ~ N(0,R) and o ~
N(0,Q). Observing that v = Za + u has covariance matrix

Ew'=R+2ZQZ",
we can immediately deduce that the minimum variance unbiased estimator of S is,
B=X"(R+2Qz")'X)"'X"(R+2QZ")y.
This estimator is certainly not very appe@ling from a robustness standpoint, but the

optimization problem that gives rise to f is suggestive of a larger class of possible
candidate estimators.

Proposition. § solves min,g) ||y — X8 — Za|[%_1 + laly)-1, where [|z[|% = 27 Az.

Proof: Differentiating we obtain the normal equations,
X"R'XB+X"R'Za=X"Ry
Z'R'XB+(Z'R'Z+Q YHYa=Z"R Yy

Solving, we have § = (X TQ1X) 1 XTQ !y where
Q'=R'-R'Z(Z'TR'Z+Q Y 'Z'TR .

But Q = R+ ZQZ", see e.g. Rao(1973, p 33.). n

This result has a long history. Robinson (1991) attributes the normal equations
above to Henderson (1950). Goldberger (1962) introduced the terminology “best
linear unbiased predictor”, subsequently rendered as BLUP, to describe the estimator
[ and its associated “estimator” & of the random effects. The implicit estimation of
the random effects may appear strange, but viewing the random effects estimator as
a penalized leat squares estimator opens the door to the consideration of alternative
penalties. In the Bayesian paradigm the penalty formulation is natural, as emphasized
by Lindley and Smith (1972), and alternatives to the Gaussian penalty ||a||2Q_1, simply
reflects differences in prior beliefs about the a’s. By shrinking the unconstrained &’s

toward a common value we achieve not only improved performance of the individual
fixed-effect estimates, but also for the estimate of f3.

2.1. Quantile Regression with Fixed Effects. Contemplating the extension of
the model (2.1) to models for conditional quantile functions we must first confront
the question: What role should the o’s play? If the number of observations m; were
large for each cross-sectional unit then we might hope to estimate a distributional shift
a;(7) for each individual. However, in most applications the m; are relatively modest
and then it is quite unrealistic to attempt to estimate a 7-dependent individual effect.
At best we may be able to estimate an individual specific location-shift effect, and
even this may strain credulity.

We will consider the model

(2.2) Qy, (T|zij) = s +2B(r) j=1,.my, i=1,..,n.
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In this formulation the o’s have a pure location shift effect on the conditional quantiles
of the response. The effects of the covariates, x;; are permitted to depend upon the
quantile, 7, of interest, but the a’s do not. To estimate the model (2.2) for several
quantiles we propose solving,

q n m;
(2.3) &llﬂ% Z Z Z wipr, (Yi5 — 0 — 258(71))
k=1 j=1 i=1

where p;, (u) = u(r — I(u < 0)), as in Koenker and Bassett (1978). The weights
wy, control the relative influence of the ¢ quantiles on the estimation of the «a; pa-
rameters. Koenker (1984) considered a reversed situation in which only an intercept
parameter was permitted to depend upon 7 and the slope parameters associated with
the included covariates were constrained to be identical for several 7’s. The weighted
sum of the quantile regression objective functions acts somewhat like an L-estimator
with discrete weights.

Solving the problem (2.3) may appear somewhat quixotic when the dimensions
n, m and ¢ are large. In least squares applications the usual strategy would be to
transform y and X to deviations from individual means, and then compute 3 from
the transformed data. For quantile regression this composition of projections isn’t
available and we are required to deal directly with the full problem. Fortunately, in
typical applications the problem is quite sparse, that is the design matrix of the full
problem is mostly zeros. Storing the dense version of this matrix with all the zeros
treated as double precision floats may well be infeasible, but standard sparse matrix
storage schemes that store only the non-zero elements and their indexing locations are
quite feasible. Interior point methods for solving (2.3) proceed iteratively by solving
a sequence of diagonally weighted least squares steps using a Cholesky factorization.
The sparsity of the design is typically preserved quite well in this factorization, as
noted by Saunders (1994), and the computational effort is roughly proportional to the
number of non-zero elements. Implementations of this approach for the public domain
dialect R, Thaka and Gentleman (1996), of Chambers (1998) S language are discussed
in Koenker and Ng (2003) and are available on CRAN at www.r-project.org.

2.2. Penalized Quantile Regression with Fixed Effects. We have seen that the
optimal estimator for the Gaussian prototype model (2.1) involves shrinking the &’s
toward a common value. When the z;; contain an intercept, as we will henceforth
assume, this common value can be taken to the the conditional mean of the response at
a point determined by the centering of the other covariates. In the quantile regression
version of the model (2.2) this would be some corresponding conditional quantile of
the response, although this would require further conditions including symmetry of
the 73,’s and the wy’s to be specified.

Particularly when n is large relative to » | m; shrinkage is advantageous in controling
the variability introduced by the large number of estimated a parameters. For the
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quantile loss function, p, it is convenient to use the ¢; penalty,

P(a) =3 lai

in place of the conventional Gaussian penalty. This choice maintains the linear pro-
gramming form of the problem and also preserves the sparsity of the resulting design
matrix. Several authors, notably Tibshirani (1996) and Donoho, Chen, and Saun-
ders (1998), have pointed out that ¢; shrinkage offers some advantages over more
conventional Gaussian ¢y penalties.

We will consider estimators solving,

q no mg n
(2.4) {giﬂgzzzwwm (i — s — 2 B(7)) + A D |-
’ i=1

For A — 0 we obtain the fixed effects estimator described above, while for A\ — oo
the &; — 0 for all 2 = 1, 2, ...,n and we obtain an estimate of the model purged of the
fixed effects. Note that since z;; is assumed to contain an intercept, in either case we
will also have ¢ T-specific estimates of the intercept. If you consider the special case
that m; = m for all 7, we can write the design matrix for a single quantile as,

(X, ® en]

where X = (z;;) is nm by p, and e,,, denotes an m-vector of ones. The design matrix
for ¢ > 1 may be written as,

WeXwe (I, ®en)
Appending the the penalty term we have the augmented design matrix,

WX we(l,ep)
0 M,

which has dimension gnm + n by ¢p + n. The corresponding response vector is
7= ((w®y)'0])". These dimensions may seem even more daunting than before,
but again the sparsity of the design matrix comes to the rescue, and we will see
that quite large problems of this type can be handled successfully on rather modest
machines.

3. ASYMPTOPIA

To explore the asymptotic behavior of the penalized quantile regression estimator
solving (2.3) we will consider a balanced design for which (2.2) holds with m; = m
for all i = 1,...,n. Then since Z = I, ® e,,, we have Z'Z = mlI,. We will consider
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settings in which both n and m tend to infinity. For convenience of exposition we will
also assume that «; # 0 for ¢ = 1,...,n. Let

q m

Vi (0) = ZZZ“J’“[M (yij — &i(Th) — 24500/ /m0 — 361 /\/mn)

pr Wi — & (M) + A Y lo — 60i/v/m| — e,
i=1

where &;(7) = i + .T;;ﬁ(’rk). Note that

% Vm(a - o)
5 || vamBm) - )

Sy
Il
I

A

5, (B(rg) — B(r)

minimizes the function V,,,,. We will impose the following regularity conditions:

A1l. The conditional distribution function of y;; given z;;, Fj;, has continuous density,
0<L fij < oo at §ij(Tk) fork=1,...,q, 7=1,...m, i =1,...,n.

A2. Let € denote the ¢ by ¢ matrix with typical element 7, A 77 — 7,7; and &, =
diag(fi;(&;(7x))). The limiting forms of the following matrices are positive definite:

D= Lim m1< w'QwZ'Z wTQW®XTZ/\/ﬁ>
0 — 3

m—00 WQwe Z'X/\/n WOW® X"X/n
Z ’U)kZT(DkZ ’(UlXT(I)1Z/\/ﬁ Tt quT(I)qZ/\/ﬁ
-1

wlZT(le/\/ﬁ leT(IhX/mn e 0
weZ ' ®,X/\/n 0 v w X T®,X/mn
A3. maxi<i<n ||2i]|/v/mn — 0.
1Zj3m
Theorem 1. Under conditions A1-3, provided that A\, /\/m — o,
6 ~» argminVy(0)
where
1
Vo(8) = —6" B+ 55TD1<5 + Aol s

where B is a zero mean Gaussian vector with covariance matriz Dy, and s = (s| ();q)T
and sy = (sgn(;)).
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Proof: The function V,,, can be decomposed into three parts using the identity of
Knight (1998),

pr(u —v) — pr(u) = —vih, + /OU(I(u <s)—I(u<0))ds

where 9, (u) = 7 — I(u < 0) denotes the quantile influence function. We will write,

Vi (8) = VEN(8) + V2 (8) + VB (5),

where vy, = ;00 + 2;0r/+/n and,

6) = —m72)° Z Z W, (Yi5 — &ij (Tk) Vi
® = =SS [ (Bl + /) - Pl
) = )\mz |0 = doi/v/m| — |asl.

The first term is asymptotically Gaussian. Let ¥, = diag(¢-, (vij — &;(7x))) and
note that Wpenne, U, = (1, A7 — 747) Lnn. Conditions A2-3 imply a Lindeberg
condition and we have,

Vo) = —m™2Y wp(Z7 b + X T 5)

mn
k

~ —DB).

The second term is asymptotically quadratic in ¢,

Vi (9)

=YY | VitEstm) + 1 vim) = Byt

= m! ; ZJ: Z wy, /Ojk fi5(&ij(3))tdt + o(1)

= o D22 Sl o+ i Vi) + o)

= % ; w]k((sg ZT®Z60+26) ZT 0k X6k /v/n + 6 X ®pXk/n) + o(1)

1
— §6TD15.
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Finally,
A n
Vé‘??(é) = —mz50isgn(a’i)
vm S

— )\053—8.

Convexity of the objective function, V/,,, and the uniqueness of the minimum of Vj
yields uniformity in § completing the argument as described by Knight and Fu (2000).
[ |

Corollary 1. Under the conditions of the preceding theorem,
6~ N'(\oDi's, D' DyD7Y).

The corollary gives an explicit expression of the bias-variance tradeoff at least for
the case that both m and n are large. It would be clearly desirable to explore what
happens when m is fixed and only n tends to infinity. The assumption that the a;’s
are non-zero can be relaxed as in Knight and Fu (2000) and simply produces another
term in V().

The conditions A1 and A3 are now quite standard in the quantile regression liter-
ature. Condition A2 is not, but if one supposes for the moment that the model is of
the pure location shift form (2.1), then D; simplifies somewhat and A2 reduces to a
condition on the matrices X " X/(mn) and Z'Z/m. We have seen that the latter is
equal to I,,, and the former condition is again familiar. If ZTX = 0 so that there is
no “between” variability in the x’s, then the expressions simplify considerably, but
this case is quite atypical, and generally we would expect that there would be some
potential improvement in the estimation of 3’s due to the shrinkage of the o’s. These
expectations are investigated further in the next section through a small simulation
experiment.

4. MONTE-CARLO

In this section a very brief glimpse into the finite sample behavior of the penalized
quantile regresion estimator is offered. I begin by contrasting the shrinkage effect of
{1 and /5 penalty methods. Consider a simple example with n = 50 and m = 5 and
response generated by the model,

Yij = Qi + Ugj
with a;’s iid from the 3 distribution, and u; iid also from x3. In the left panel of
Figure 1 we illustrate the estimated, &;’s as a function of the regularization parameter
A. Here we have used the estimator (2.3) with weights w = (.25, .50, .25) on the three
quartiles. The z;;’s were generated as Gaussian according to (4.3) below. In the right
panel we illustrate the corresponding shrinkage effects for the ¢, Gaussian penalty

method. The ¢; shrinkage method is more tolerant of large discrepancies; note that
the gradient condition condition involves only the signs of the estimated effects, not
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FiGURE 4.1. Shrinkage of the fixed effect parameter estimates, &;. The
left panel illustrates an example of the ¢; shrinkage effect. The right
panel illustrates an example of the ¢, shrinkage effect.

their magnitudes, so highly unusual o;’s can be substantially shrunken toward zero
without the extreme prejudice implied by the /5 criterion.

Two simple versions of our basic model are considered in the simulation exper-
iments. In the first, reported in Table 1, the scalar covariate, x;;, exerts a pure
location shift effect. In the second, reported in Table 2, z;; has a both a location and
scale shift effect. In the former case the response, y;;, is generated by the model,

(4.1) Yij = i + 28 + uij
while in the latter case,
(4.2) Yij = i + Tij 8+ (1 + @477)uij-

Without loss of generality we will take 8 = 0. Interest will focus on the effect of the
covariate, x;;, at the median. Sample sizes are fixed, with n = 50, and m = 5 for both
versions of the model. In the first version of the model the covariate effect is clearly
zero, in the second version of the model it depends on the choice of the quantile of
interest and the form of the error distribution. In all cases the reported entries are
based on 400 replications of the simulations.

A critical aspect governing the performance of penalty methods in these settings
is the “between” versus “within” variability of the covariate. A convenient way to
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summarize this is the interclass correlation coefficient. If we generate z;;’s as
(4.3) Tij = Vi + Vij

with ; and v;; independent and identically distributed over ¢ and i, j respectively,
then the interclass correlation coefficient,

pe = 05/(05 + 03),
see e.g. Scheffé (1959, p. 223) is just the ordinary correlation coefficient between any
two x;; and x;; observations with j # k. We will take p, = .75 in our simulations.

We consider three variants of model 1. In all three variants the z;;’s are generated
from (4.3) with both +;’s and v;;’s as Gaussian with respective variances, 3 and 1.
The response y is then generated from (4.1). In the first variant both the a;’s and
u;;’s are standard Gaussian, in the second variant both are Student ¢ on three degrees
of freedom, and in the third variant both are central x3. So the interclass correlation
coefficient of the response is 0.50 for all three variants.

Six estimators are considered: three from the least squares family, three from the
quantile regression family. The ordinary least squares estimator (LS) simply ignores
the q; effects entirely, maximally shrinking all of these estimates to zero. The penal-
ized least squares estimator (PLS) is the classical random effects estimator for the
model (2.1) using the (known) optimal variance ratio. The least squares fixed effects,
or “within” estimator (LSFE) simply implements the unpenalized least squares esti-
mator of the model (2.1). Correspondingly, the ordinary quantile regression estimator
(QR) fully shrinks the &;’s to zero, the fixed effects estimator (QRFE) shrinks them
not at all, and the penalized quantile regression estimator (PQR) shrinks them with
A chosen to be the ratio of scale parameters o, /0,.

LS PLS | LSFE QR PQR | QRFE

N
Bias -0.0025 | -0.0009 | 0.0005 | -0.0023 | -0.0022 | 0.0008
RMSE || 0.0733 | 0.0529 | 0.0662 | 0.0813 | 0.0619 | 0.0716

Bias -0.0006 | 0.0037 | 0.0076| 0.0057 | 0.0099 | 0.0077
RMSE || 0.1648 | 0.1024 | 0.1168 | 0.1009 | 0.0715| 0.0738
X3
Bias 0.0016 | 0.0074 | 0.0125| 0.0086 | 0.0001 | 0.0013
RMSE || 0.1768 | 0.1426 | 0.1650 | 0.1853 | 0.1438 | 0.1410

TABLE 4.1.

Table 1 reports the results of the location shift simulations. Bias is small in all
cases. In the Gaussian setting we see roughly the anticipated efficiency loss due to
estimating the median rather than the mean. The gain from penalization, while
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not overwhelming, is certainly worthwhile. In the ¢3 setting the penalized quantile
regression estimators do considerably better than their least squares competitors. The
X2 case is somewhat anomolous, since the penalized quantile regression esimator does
slightly worse than the unpenalized fixed effects procedure, but both are competitive
with the least squares results.

LS PLS | LSFE QR PQR | QRFE

N
Bias -0.0049 | -0.0032 | -0.0009 | -0.0039 | -0.0024 | 0.0025
RMSE || 0.0444 | 0.0477 | 0.0775| 0.0439 | 0.0451 | 0.0656

Bias 0.0009 | 0.0007 | 0.0006 | 0.0059 | 0.0066 | 0.0050
RMSE || 0.0718 | 0.0767| 0.1231 | 0.0536 | 0.0586 | 0.0777
X3
Bias 0.0781 | 0.0805| 0.0836 | 0.0136| 0.0117 | 0.0001
RMSE || 0.1394 | 0.1606 | 0.2257 | 0.0985| 0.1063 | 0.1325

TABLE 4.2.

In the location-scale version of the model we adopt the same three distributions
for generating the «;’s and the u;;’s. In the location-scale model it is important that
the resulting linear quantile functions do not cross, an eventuality we avoid by now
taking the z;;’s as x3 instead of Gaussian. In the Gaussian and ¢3 cases, since we
are focusing on the estimation of the median effect, by symmetry the effect of the
covariate z;; on median response is still zero. However, in the x3 case the median
effect is,

B(1/2) = B+ 7Qu(1/2),

which in our case with 8 =0 and v = 1/10, is .236.

In Table 2 we report the results of the location-scale model simulations. Again, we
see that the quantile regression estimators perform quite well in the t5 case, but they
now are also competitive even in the Gaussian case, a finding that may be attributed
to the effect of the heteroscedasticity in this formulation of the model. It is also
apparent that the imposing more agressive shrinkage is helpful in these cases. The
comparison in the x3 case is somewhat difficult, since the procedures are inherently
estimating different functions. The quantile regression methods are all intended to
estimate the conditional median function and do reasonably well in the sense that the
bias is still very modest. The least squares estimators are targeting the conditional
mean function, which is now nonlinear in z;;, so we have evaluated both bias and root
mean square error as if the least squares methods were also estimating the conditional
median function. This obviously puts the least squares methods at some disadvantage.
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5. EXTENSIONS

Almost everything remains to be investigated. As in all problems of regularization
there are serious issues about the choice of the regularization parameter, \. There are
many variants of the model that would extend the oneway layout structure, including
the incorporation of ordinal factors and nonparametric smoothing components. The
analysis of the performance of the methods for fixed m; sample sizes is also a critical
direction for future research. Applications to reference growth curves would appear
to be a natural laboratory for further development of quantile regression models for
longitudinal data.
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