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Abstract

A new algorithm for computing quantile regression estimates for problems in which the
response function is nonlinear in parameters is described. The nonlinear l 1 estimation
problem is a special (median) case. The algorithm is closely related to recent
developments on interior point methods for solving linear programs. Performance of the
algorithm on a variety of test problems including the censored linear quantile regression
problem of Powell (1986) is reported.
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1. Introduction

About a century ago Edgeworth observed that methods of estimation based upon minimiz-

ing sums of absolute residuals could be far superior to least-squares methods under non-

Gaussian error conditions. Laplace had drawn similar conclusions a century earlier. But compu-

tation of l 1-estimators, even for simple linear regression, remained a major impediment to appli-

cations until the emergence of the simplex algorithm for linear programming in the 1940’s.

Papers by Charnes, Cooper and Ferguson (1955) and Wagner (1959) provided a foundation for

modern algorithms for linear l 1-regression by Barrodale and Roberts (1973), Bartels and Conn

(1980) and others. These algorithms are readily extended to linear quantile regression, intro-

duced in Koenker and Bassett (1978), of which l 1-regression is an important (median) special

case. See Koenker and d’Orey (1987) for a description of a simplex-based, modified Barrodale-

Roberts algorithm for linear quantile regression.

The current state of algorithms for nonlinear quantile regression is far less satisfactory.

Certainly nothing comparable to the venerable Gauss-Newton algorithm for nonlinear least

squares problems has emerged. Despite a flurry of interest by prominent numerical analysts in

the 1970’s and early 1980’s, see, e.g., Osborne and Watson (1971), Murray and Overton (1981)

and Bartels and Conn (1982), occasional applications of nonlinear quantile regression have

relied on the Nelder and Mead (1965) algorithm and other generic optimization methods. An

excellent statement of the current state-of-the-art is provided in the thesis of Busovaca (1985).

In contrast, the statistical theory of nonlinear quantile regression has developed rapidly in

recent years. Powell (1986) has emphasized its value in the analysis of censored and truncated

responses. Asymptotic theory for the case of serially independent errors has been developed by

Oberhofer(1982), Dupac̀́ová(1987), Powell(1991), and Jurec̀́ková and Procházka(1993).
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Theoretical developments by Weiss (1991) and White (1991) have stressed applications to time-

series analysis. Applications of Horowitz and Neumann (1987), Chamberlain (1990), and others

have demonstrated its value in applied econometrics. Jurec̀́ková and Procházka(1993) describe

an interesting application in pharmacology

In this paper we will describe a new approach to the computation of nonlinear quantile

regression estimators based on recent interior point methods for solving linear programs. In the

next section we review interior point methods for strictly linear problems. Section 3 describes

our approach to nonlinear problems, and Section 4 describes our computational experience.

2. Interior Point Methods for Linear Programs

In this section we provide a brief discussion of interior point methods for solving strictly

linear programs including the linear quantile regression problem. Our exposition will follow

closely that of Vanderbei, Meketon, and Freedman (1986) and Meketon (1986). For linear (in

parameters) quantile regression the interior point method may be interpreted as iteratively

reweighted least squares (IRLS). However, in sharp contrast to other attempts to compute l 1

regression estimates by IRLS, the interior point approach can be shown to converge to the

correct answer. See Bassett and Koenker(1992) for a critique of some recent l 1 IRLS algorithms

which fail to possess this property. We should emphasize that in our experience interior point

algorithms for linear quantile regression do not appear to be competitive in efficiency terms with

existing simplex method algorithms. However, unlike simplex based methods they do appear to

offer a natural extension to nonlinear problems. Thus a clear understanding of the linear case is

an essential first step in our exposition.
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2.1. A Canonical LP

Consider the equality constrained linear program

(2.1)min {c′ω | ω ∈ Ω ≡ {ω ∈ R+
n , Aω =b } }

where R+
n denotes the positive orthant of Rn , A is an m × n matrix, and b is an m-vector. Given

a feasible point in the interior of the constraint set, ω ∈ int (Ω), interior point methods proceed

in two steps. First we transform coordinates to reposition ω so it is centered relative to the set

Ω. Then a (projected) gradient step is taken toward the boundary of Ω. Repeating this process

brings us arbitrarily close to a solution, and a stopping criterion is eventually invoked.

To flesh out this brief description, let D be a diagonal matrix with the elements ω on the

diagonal and consider the transformation

ω → D−1ω
We have D−1ω =1n , an n-vector of ones, so the transformation D has the effect of centering ω

relative to the orthant boundaries of Ω. Correspondingly, we may define Ã = AD and c̃ = Dc. In

the transformed coordinates we wish to move in the gradient direction −c̃, but to preserve feasi-

bility we should instead project c̃ onto the null space of Ã to insure that the equality constraints

are satisfied.

Let ĉ denote this projection, i.e.,

(2.2)ĉ = (In − Ã′(Ã′Ã)−1Ã)c̃

Clearly, ĉ is a direction of descent; and we now move toward the boundary of Ω in this direction.

Let

α̂ =
i =1,...,n
max {ei ′ĉ }

where ei is the i th unit basis vector for Rn . For some fixed η ∈ (0, 1), consider
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ω − (η/α)Dĉ → ω
which defines a sequence of iterations ωk +1 = T(ωk). Since at each iteration

(2.3)c′ωk +1 = c′ωk−(η/α)c′Dĉ = c′ωk−(η/α)||ĉ||2 ,

we expect to see an improvement in the objective function at each iteration as long as α > 0.

The parameter η, which, following Meketon, we take as .97 in our implementation of the algo-

rithm, insures that the updated ω is feasible. This would be true, of course, as long as η∈ (0,1).

Proposition. If ĉ ≤ 0 the problem (2.1) is unbounded, unless ĉ = 0 in which case every ω ∈ Ω is

optimal. Otherwise, the problem is bounded and the sequence {c′ωk } is strictly decreasing,

hence convergent.

Proof. Since the proof of this proposition, found in Vanderbei, Meketon and Freedman (1986), is

both elementary and revealing we repeat it here for the sake of completeness. If ĉ = 0, there

exists a vector z such that c̃ = Ã′z, hence Dc̃ = DÃ′z and since ω ∈ int (Ω) it follows that c = Az.

But then for any ω ∈ Ω ,

c ′ω = z ′Aω = z ′b

which is independent of ω, establishing that c′ω is constant on all of Ω. Next consider ĉ ≤ 0.

Note that

(2.4)c′ω1 ≡ c′ω − γ(ω)c̃′ĉ = c′ω − γ(ω) || ĉ ||2

where γ(ω) = η/α, The dependence on ω is obviously through α. Since ĉ ≤ 0,

ωρ = ω − ρDĉ

is feasible for any ρ > 0 and

c′ωρ= c′ω − ρ ||ĉ ||2

implies that c′ωρ → −∞ as ρ → ∞. Finally, if ĉ ≥ 0, then γ(ω) > 0, so c′ω1 < c′ω follows from

(2.4), establishing that the step is a direction of descent. a
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2.2. Linear l 1-regression

In the linear model

yi = xi ′β + ui i = 1, . . . , n,

as noted in the introduction, the l 1-estimator of β which minimizes

R(b) =
i =1
Σ
n

|yi − xi ′b | .

may be formulated as a linear program. The primal form of the l 1 linear program may be writ-

ten as

min{1n ′u+ + 1n ′u− | (b, u+, u−) ∈ Rp × R+
2n , Xb + u+ − u− = y , }

where y is the n-vector of responses, X is the n × p design matrix and 1n is an n-vector of 1’s.

Having distinguished the positive and negative parts of the residual vector, we are simply

minimizing a linear function subject to linear constraints. The dual problem may be written as

max {y′d |d ∈ Ω = { d ∈ [−1, 1]n , X ′d = 0 } }.

The dual variables, d, may be viewed as Lagrange multipliers on the constraints, i.e., marginal

costs of relaxing the constraints. If ui is nonzero, then di = sgn (ui); otherwise, when ui=0,

di ∈ (−1, 1). By complementary slackness there will be, barring degeneracy in the primal prob-

lem, exactly p of the ui’s equal zero at an optimum and consequently p of the di not equal to ± 1.

To solve the dual problem we proceed as before, except that the centering is slightly altered to

accommodate the altered form of Ω. For any initial feasible point d, e.g., d = 0, following

Meketon (1986), set

D = diag (min {1+di , 1−di } ).

In the transformed coordinates D−1d the projected gradient is

Dû = (In − DX(X′D2X)−1X′D)Dy = D(y − Xb)

where b = (X′D2X)−1X′D2y. Note that, as in the former case, the transformation has the effect
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of centering the point d in the feasible set Ω. Now let

α =
i=1, ...,n
max {max {

1 + di

ei ′D2ûhhhhhhh ,
1 − di

−ei ′D2 ûhhhhhhhh } }

and again for η ∈ (0, 1) to assure dual feasibility we take the step

d ← d + (η/α)D2û.

Note the change in sign since we are now maximizing. The iteration sequence dk +1 = T(dk) in

the dual vector implicitly defines a corresponding primal sequence with

bk = (X′Dk
2X)−1X′Dk

2y.

As Meketon notes, the duality theory yields a natural stopping criterion. Since

y′dk ≤ Σ |yi − xi ′bk |

with optimality if and only if equality holds, it is reasonable to stop iterating when the differ-

ence between the dual and primal values is less than a specified tolerance. It is well known that

the l 1 solution need not be unique, so it is worthwhile to recall that degeneracy of the dual solu-

tion implies multiple optimal solutions to the primal and vice versa. Both problems are most

easily resolved by small random perturbations of the design matrix and response vector.

2.3 Linear Quantile Regression

If we replace the (symmetric) l 1-criterion with an asymmetric linear criterion so we minim-

ize

R θ(b) =
i =1
Σ
n

ρθ(yi − xib)

ρθ(u) = u(θ − I(u < 0)), we obtain the regression quantiles of Koenker and Bassett (1978). The

dual problem is now,

max {y′d |d ∈ Ω = {d ∈ [θ−1, θ]n , X′d = 0 } }

This leads to an algorithm identical to the l 1 special case except that now
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D = diag (min(θ−di , 1−θ+di))

and

α =
i =1, . . . ,n

max (max
I
J
L θ − di

ei ′D2ûhhhhhhh ,
1 − θ + di

−ei ′D2ûhhhhhhhhh
M
J
O
).

The dual vector, d, plays an important statistical role in the theory of linear quantile regres-

sion. Gutenbrunner and Jurec̀́ková (1992), generalizing the rank score process of Hájek and

S̀́idák (1967), introduce the regression rank score process

â(θ) =
a ∈ [0, 1]n
argmax {y′a |X′a = (1 − θ)1n}

which is obviously just a translation of the dual vector d introduced above,

â(θ) = d̂(θ) + (θ − 1)1n . Hájek and S̀́idák’s rank score process for the location model, X ≡ 1n ,

takes the simple form,

âi(θ) =

I
J
K
J
L0

Ri − θn

1

if θ > Ri/n

otherwise

if θ ≤ (Ri − 1)/n

where Ri is the rank of yi among y 1 , . . . , yn .

Gutenbrunner and Jurec̀́ková (1992) suggest an elegant new approach to estimation in the

linear model based on the regression rank score process. They construct weights

wi = ∫0
1
âi(θ)dφ(θ)

for appropriately chosen score function φ and consider weighted least squares estimators of the

form

β̂ = (X′WX)−1X′Wy

where W = diag (wi). For the simple "trimming-φ." φα (θ) ≡ (1 − 2α)−1I(α ≤ θ ≤ 1 − α) we

have, integrating by parts, wi = âi(1 − α) − âi(α) which takes the value 1 if observation yi is

above the αth regression quantile plane and below the (1 − α)th plane, and takes the value 0 if yi
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is

above both, or below both. If yi lies on either the αth or (1 − α)th regression quantile plane, wi

takes a value strictly between 0 and 1 . This resolves the ambiguity implicit in early proposals

by Koenker and Bassett (1978) and Ruppert and Carroll (1980) for similar trimmed least squares

estimators. The regression rank score process also provides a natural means of generalizing

linear rank tests to the linear regression model. See Gutenbrunner, Jurec̀́ková, Koenker and Port-

noy (1993) for details.

3. Nonlinear Quantile Regression

To extend these ideas to the case of nonlinear response functions we begin by considering

the nonlinear l 1 problem

(3.1)
t ∈ Rp
min Σ | fi(t) |

where, for example,

fi(t) = yi − f 0(xi , t).

As noted by El Attar, et al (1979) a necessary condition for t * to solve (3.1) is that there exists a

vector d ∈ [−1, 1]n such that

(3.2)J(t*)′d = 0

(3.3)f(t*)′d = Σ | fi(t
*) |

where f(t) = ( fi(t)) and J(t) = (∂ fi(t)/∂t j)

Thus, as proposed by Osborne and Watson (1971), one approach to solving (3.1) is to solve

a succession of linearized l 1 problems minimizing

Σ | fi(t) − Ji(t)′δ | ,

choosing a step length, λ, at each iteration, by line search in the resulting directions δ. The

difficulty, as we see it, with this approach is twofold. First, it requires us to fully solve an l 1
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problem at each iteration. Secondly, and perhaps more significantly, the resulting search direc-

tions may actually be inferior to directions determined by incomplete solutions to the sequence

of linearized problems. Indeed the information contained in the initial steps of the dual iteration

seems better suited to solving the nonlinear problem since they embody the relevant local infor-

mation at the current value of t. Further iteration is only effective when the problem "nearly

linear."

Let t be the value of the parameter at the current iteration, and consider the dual problem

(3.4)max {f′d |d ∈ [−1, 1]n , J′d = 0}.

If the model were linear so

f(s) = f(t) − K(s−−t)

for some fixed matrix K, then a solution could be found by applying Meketon’s algorithm to find

d* to solve (3.4), computing

δ* = (K ′D2K)−1K ′D2f.

where D = diag (min {1−di
* , 1+di

* }) and setting t* = t + δ* . When f is nonlinear there is no

longer a compelling argument for fully solving (3.4) at each iteration, indeed, in our experience

only a few iterations to refine the dual vector is preferable. In the version of the algorithm we

have implemented to conduct the tests reported in the next section we typically take two dual

steps between successive updates of f and J. A detailed description of the algorithm is now pro-

vided.

3.1. Dual Step

For any feasible d in the interior of the constraint set of (3.4) we refine d, following Meke-

ton, as follows. Let
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D = diag (min {1−di , 1+di })

s = D2(I − J(J′D2J)−1J′D2)f.

d ← d + (η/α)s

where

α = max { max {si/(1 − di), −si/(1 + di) } }

and η ∈ (0, 1) is the constant chosen to insure feasibility. Following Meketon, we use η = .97.

Updating D, s, and the new d continues the iteration. To this point the algorithm is exactly as in

Section 2.2, but now f and J depend upon the current value of t so the process is embedded in a

sequence of primal iterations in which we update f and J as follows.

3.2. Primal Step

The dual step yields the primal direction

δ = (J′D2J)−1J′D2f

which we explore by line search. Our current implementation uses the S implementation of

Gay(1984) in the S function nlminb. Updating we have

t ← t + λ*δ
where λ* =

λ
argmin Σ | fi(t + λδ) | , and we then update f and J. However before returning to the

dual step we must adjust the current d to ensure that it is feasible for the new value of J. This is

accomplished, somewhat naively, by projecting the current d onto the null space of the new J,

i.e. d̂ = (In − J(J′J)−1J′)d and then shrinking it to insure that it lies in [−1, 1]n , so

d ← d̂/(
i

max { | d̂i | } + ε)

for some tolerance parameter ε > 0. Obviously, when the problem is linear, so J is fixed, this

"adjustment" is nugatory since d is already in the null space of J, and the algorithm is essentially

like Meketon’s.
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3.3. Stopping

The algorithm currently terminates when the new iterate fails to improve the objective

function by a specified tolerance. In the implementation we use 10−7 . Exploration of alternative

stopping rules is a topic for future research. Obviously, the tolerance here must exceed the smal-

lest safely detectable value of | (x − y)/x | as in R1MACH(4) of the PORT3 library, Fox

(1984).

3.4 Related Literature

Gill, Murray, Saunders, Tomlin, and Wright (1986) and Bayer and Lagarias (1991) have

recently pointed out the close relationship of "projected Newton barrier" methods (see Fiacco

and McCormick (1965)) and interior point methods. Algorithms closely related to the one

described above could presumably be formulated employing logarithmic barrier functions in the

dual vector d.

3.5. Quantile Regression

As in the case of the linear problem the generalization of the l 1 problem to other quantiles

is straightforward involving only a modification of the constraint set [−1, 1]n to [θ−1, θ]n for

some θ ∈ (0, 1). θ appears only in the recentering of the d vector and the computation of α in the

dual step described in Section 2.3 above. Obviously, the shrinkage of the dual vector to ensure

dual feasibility described in Section 3.2 must also be appropriately modified.

4. Numerical Experience

In this section we describe our computational experience with a variety of test problems.

To facilitate comparison with existing results in the literature we have chosen problems from
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Busovaca(1985) and Wormersley(1986). We focus exclusively on the l 1 case since there are no

comparable results in the literature for other quantiles. The problems used are described in

detail in Appendix A. We have attempted to investigate all of the test problems reported in the

published literature, however in a few cases we were unable find a complete description of the

problem. The problem taken from Wormersley is included to explore the important special case

of piecewise linear response functions which arise in Powell’s(1986) formulation of the quantile

regression problem for censored data.

All of the reported tests were carried out in S on a DEC station 5000. To implement a sim-

ple version of the Osborne and Watson(1971) algorithm in S we employed the S function

l1fit which does l 1 regression using the Barrodale and Roberts(1973) algorithm. The S func-

tion lsfit carries out the corresponding weighted least squares computations for the interior

point algorithm. The algorithm and the test problems are available on the internet; sending the

email message send index for S to statlib@stat.cmu.edu will generate a reply

which explains how to use this valuable resource.

A summary of our experience on the test problems appears in Tables 5.1 and 5.2.. For

Wormersley’s(1986) censored regression problem (Problem 1) our version of the interior point

algorithm converges to Wormersley’s reported solution. However, it should be noted that the

solution to this problem is notoriously nonunique. Busovaca’s algorithm, which requires second

derivitives cannot be employed on Problem 1 due to the fact that the Hessian of the response

function is identically zero almost everywhere. The remaining problems are all taken from

Busovaca, and generally our interior point solutions correspond closely to his. In Problems 7

and 13 there are small discrepancies favoring Busovaca; in Problem 9 there is a larger

discrepancy favoring the interior point method. Results for our implementation of the Osborne
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and Watson algorithm are somewhat less satisfactory. It fails completely on Problems 11 and

12, performs poorly in Problems 1, 4b, and 13, but does slightly better than the interior point

method on Problem 5. All three algorithms fail for Problem 4a which is highly degenerate at the

specified initial point. At an alternative starting point, labeled Problem 4b, the interior point

algorithm performs well. Finally, we observe that two Meketon steps per iteration generally per-

form well, however in the Watson problem two steps leads to an unsatisfactory solution, while

one step per iteration performs nicely. Unfortunately, we do not have a good explanation for

this.

While our primary objective at this (early) stage of research is getting the correct answer, a

few remarks might be made on efficiency. In Table 5.1 we report the number of iterations

required for each algorithm for all 14 test problems. Explicit timings are not meaningful since

the three algorithms were not coded comparably. We may observe that the computational effort

per iteration is approximately the same for our interior point algorithm and the Busovaca algo-

rithm, while the Osborne and Watson algorithm requires the full solution to a linear l 1 problem

at each iteration and therefore requires substantially more effort per iteration. Comparing itera-

tion counts for our interior point method versus Busovaca we see that of the 11 problems for

which both have solutions 4 favor the interior point methods, 6 favor Busovaca with one tie. In

one case, Problem 7, the interior point algorithm stops due to exceeding the maximal iteration

count.

5. Some Concluding Remarks

We have described a simple approach to computing quantile regression estimates for prob-

lems with nonlinear response functions. The approach is based on recent developments on inte-
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rior point methods for linear programming, but may be viewed as a variant of well-known itera-

tively reweighted least squares. While the algorithm seems to perform well on a variety of test

problems, there is considerable room for improvement. Handling rank deficiency in the model

Jacobian is critical. Alternative stopping criteria also should be explored.
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Table 5.1
Algorithmic Performance on Several Test Problems

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Interior Point Algorithm Osborne-Watson Algorithm Busovaca Algorithm

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Example Starting Optimal Number of Optimal Number of Optimal Number of
Point Objective Iterations Objective Iterations Objective Iterations

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1.Wormersley (0,0) 3.032542 3 5.234825 3 NA

2.Bard (1,1,1) 0.1243383 7 0.1243383 5 0.1243406 13

3.Beale (1,0.1) 0.0 6 0.1547611e-06 6 0.3695488e-05 8

4.a.Biggs (1,1,1,1,1,1) F F F

b.Biggs (1,8,2,2,2,2) 0.0 10 0.7289559 45 NA

5.Brown&Dennis (25,5,-5,-1) 905.528 30 903.2406 113 903.2343 2

6.El-Attar 5.1 (1,2) 0.4704242 8 0.4704267 6 0.4704247 8

7.El-Attar 5.2 (1,1,1) 7.914516 100 7.904731 22 7.894227 5

8.Madsen (3,1) 1.0 14 1.000010 11 1.000002 13

9.Osborne 1 (0.5,1.5,-1,0.01,0.02) 0.0293912 11 0.0293914 10 0.8203727 55

10.Osborne 2 (1.3,0.65,0.65,0.7,0.6, 2.570152 3 F F
3,5,7,2,4.5,5.5)

11.Powell (3,-1,0,1) 0.25423e-07 14 F 0.29039e-08 3

12.Rosenbrock (-1.2,1) 0.0 13 F 0.506642e-06 51

13.Watson (1,1,1,1) 0.623611 12 1.278432 5 0.6018584 24

14.Wood (0,0,0,0) 0.0 7 0.000003 10 0.0 25
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See Appendix A for a detailed description of the test problems. F indicates the algorithm failed to meet convergence criteria for
the problem. NA indicates results are not available for this entry. All interior point results are based on two Meketon iterations
per step with the exception of Problem 13 (Watson) where we use one.



Table 5.2
Optimal Points for Several Test Problems

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Example Interior Point Algorithm Osborne-Watson Algorithm Busovaca Algorithm

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1.Wormersley -6.7268, 4.58618 -7.29804, 4.74178 NA

2.Bard 0.10094, 1.52516, 1.97211 0.10094, 1.52516, 1.97211 0.10094, 1.52513, 1.97214

3.Beale 3, 0.5 3, 0.5 2.99999, 0.49999

4a.Biggs F F F

b.Biggs 1, 10, 1, 5, 4, 3 1.82143, 81.94978, 2.27882 NA

5.Brown&Dennis -9.77778, 11.67668, -0.48447 -10.0227, 11.91354, -0.44026 -10.2236, 11.90843, -0.45804
0.30207 0.55823 0.58032

6.El-Attar 5.1 2.84250, 1.92018 2.84250, 1.92018 2.84250, 1.92018

7.El-Attar 5.2 0.52829, -0.00212, 0.02391 0.53148, -0.00004, 0.02751 0.53606, 0.0, 0.00319

8.Madsen 0.0, 0.00035 0.0, 0.0022 0.0, -0.00205

9.Osborne 1 0.37706, 2.19246, -1.72552 0.37706, 2.19246, -1.72552 1.06716, 1.80257, -1.80731
0.01332, 0.02129 0.01332, 0.02129 0.00345, 0.00109

10.Osborne 2 1.108554 0.1561289 0.4774578 F F
0.5395307 0.3549851 2.91116
1.749787 4.85514 2.344482

4.570197 5.635008

11.Powell 1.453e-05, -1.4532e-05 F 0.5588e-08, -0.3725e-09
2.3251e-05, 2.3251e-05 0.1250e-08, 0.1716e-08

12.Rosenbrock 1.0, 1.0 F 0.99999, 0.99999

13.Watson -0.4225, 1.1747 -0.23584, 1.03241 -0.44271, 1.19321
-0.4564, 0.38409 -0.22747, 0.41384 -0.47676, 0.38449
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"nlrq"<-
function(model, t, k = 2, theta = .5, big=1e+20, nit.max = 100, 

eps = 1e-07, beta = 0.97)
{
#function to compute nonlinear rq estimate
# t is the initial value of the unknown parameter
# model is a user-provided function which returns components
# f=(f_i (x_i , t)
# J=(grad f_i )
# theta is the desired quantile
# k is the number of Meketon steps per iteration
# eps and eta are tolerance parameters
#
#function returns
# coef is the value of the parameter at the solution
# obj is the value of the objective function at the solution
# nit is the number of "Meketon steps" taken

m <- model(t)
n <- length(m$f)
w <- rep(0, n)
snew <- sum(rho.rq(m$f,theta))
sold <- big
nit <- 0
while(sold - snew > eps & nit < nit.max) {

z <- mek.rq(m$J, m$f, k, w, theta=theta, int = F, 
eps = eps, beta = beta)

step <- z$coef
t0 <- t
l <- nlminb(start = 1, objective = model.step.rq, lower = 0, 

upper = 1, model = model, t0 = t, theta=theta,
step = step)$parameters

t <- t0 + l * step
m <- model(t)
sold <- snew
snew <- sum(rho.rq(m$f,theta))
w <- lsfit(m$J, z$w, int = F)$resid
w1 <- max(pmax(w,0))
if(w1>theta)

w <- w*theta/(w1 + eps)
w0 <- max(pmax(-w,0))
if(w0>1-theta)

w <- w*(1-theta)/(w0 + eps)
print(c(t, l, sum(rho.rq(m$f,theta))))
nit <- nit+1

}
return(coef=t,obj=snew,nit=nit)

}
"rho.rq"<-
function(u,theta){theta*pmax(u,0)+(theta - 1)*pmin(u,0)}
"mek.rq"<-
function(x, y, kmax = 1000, w, theta=.5, int = T, big=1e+20,

eps = 1e-06, beta = 0.97)
{

if(int == T)
x <- cbind(1, x)

yw <- big
k <- 1
while(k <= kmax & yw - crossprod(y, w) > eps) {

d <- pmin(theta  - w, 1 - theta + w)
z <- lsfit(x, y, d^2, int = F)
yw <- sum(rho.rq(z$resid,theta))
k <- k + 1
s <- z$resid * d^2
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alpha <- max(eps, pmax(s/(theta  - w), -s/(1 - theta + w)))
w <- w + (beta/alpha) * s

}
coef <- z$coef
return(coef, w)

}
"model.step.rq"<-
function(lambda, t0, step, model, theta)
{

sum(rho.rq(model(t0 + lambda * step)$f, theta))
}



Appendix ATest problem 1 (Wormersley, 1986)The results of temperature accelerated life tests on electrical insulation in 40 mo-torettes are recorded in Table A.1. This data is originally from Schmee and Hahn (1979).Ten motorettes were tested at each of four temperatures. Testing was terminated at dif-ferent times at each temperature. The model used to �t the data islog10H = x1 + 1000x2(T + 273:2) + �;where H is the failure time and T is the temperature.Table A.1 : Data for motorettes exampleTest temperature T oC150 170 190 200Failure times H in hours 1764 408 4082772� 408 4083444 1344 5043542 1344 5043780 1440 50448605196Termination time �H 8064 5448 1680 52810 units 3 units 5 units 5 units� Wormersley gives the second failure time at 170o as 2722, but his results are consistentwith the value recorded here from Schmee and Hahn.



At each temperature there is an upper bound �H (the time at which testing wasstopped) on the observed failure times, so the logarithms of the observed failure times aregiven by min�log10 �H; x1 + 1000x2(T + 273:2) + �� :Test problem 2 (Bard, 1970)fi(x) = yi ��x1 + uivix2 + wix3�where i = 1; 2; � � � ; 15, ui = i, vi = 16� i, wi = min(ui; vi), andi yi i yi i yi1 0.14 6 0.32 11 0.732 0.18 7 0.35 12 0.963 0.22 8 0.39 13 1.344 0.25 9 0.37 14 2.105 0.29 10 0.58 15 4.39Test problem 3 (Beale, 1958) fi(x) = yi � x1(1� xi2);where i = 1; 2; 3, y1 = 1:5, y2 = 2:25 and y3 = 2:625.Test problem 4 (Biggs, 1971)



fi(x) = x3exp(�tix1)� x4exp(�tix2) + x6exp(�tix5)� yi;where i = 1; � � � ; 13, ti = i=10 andyi = exp(�ti)� 5exp(�10ti) + 3exp(�4ti):Test problem 5 (Brown and Dennis, 1971)fi(x) = (x1 + tix2 � exp(ti))2 + (x3 + x4sin(ti) � cos(ti))2;where i = 1; � � � ; 20, and ti = i=5:Test problem 6 (El-Attar 5.1, 1979)f1(x) = x21 + x2 � 10f2(x) = x1 + x22 � 7f3(x) = x21 � x32 � 1Test problem 7 (El-Attar 5.2)f1(x) = x21 + x22 + x23 � 1f2(x) = x21 + x22 + (x3 � 2)2f3(x) = x1 + x2 + x3 � 1f4(x) = x1 + x2 � x3 + 1f5(x) = 2x31 + 6x22 + 2(5x3 � x1 + 1)2f6(x) = x21 � 9x3Test problem 8 (Madsen, see Overton and Murray, 1981)



f1(x) = x21 + x22 + x1x2f2(x) = sin(x1)f3(x) = cos(x2)Test problem 9 (Osborne 1, 1972)fi(x) = yi � (x1 + x2exp(�tix4) + x3exp(�tix5))where i = 1; 2; � � � ; 33, ti = 10(i� 1), andi yi i yi i yi1 0.844 12 0.718 23 0.4782 0.908 13 0.685 24 0.4673 0.932 14 0.658 25 0.4574 0.936 15 0.628 26 0.4485 0.925 16 0.603 27 0.4386 0.908 17 0.580 28 0.4317 0.881 18 0.558 29 0.4248 0.850 19 0.538 30 0.4209 0.818 20 0.522 31 0.41410 0.784 21 0.506 32 0.41111 0.751 22 0.490 33 0.406Test problem 10 (Osborne 2)fi(x) =yi � �x1exp(�tix5) + x2exp(�(ti � x9)2x6)+x3exp(�(ti � x10)2x7) + x4exp(�(ti � x11)2x8)�



where i = 1; 2; � � � ; 65, ti = (i� 1)=10, andi yi i yi i yi1 1.366 23 0.694 45 0.6722 1.191 24 0.644 46 0.7083 1.112 25 0.624 47 0.6334 1.013 26 0.661 48 0.6685 0.991 27 0.612 49 0.6456 0.885 28 0.558 50 0.6327 0.831 29 0.533 51 0.5918 0.847 30 0.495 52 0.5599 0.786 31 0.500 53 0.59710 0.725 32 0.423 54 0.62511 0.746 33 0.395 55 0.73912 0.679 34 0.375 56 0.71013 0.608 35 0.372 57 0.72914 0.655 36 0.391 58 0.72015 0.616 37 0.396 59 0.63616 0.606 38 0.405 60 0.58117 0.602 39 0.428 61 0.42818 0.626 40 0.429 62 0.29219 0.651 41 0.523 63 0.16220 0.724 42 0.562 64 0.09821 0.649 43 0.607 65 0.05422 0.649 44 0.653Test problem 11 (Powell, 1962)



f1(x) = x1 + 10x2f2(x) = 51=2(x3 � x4)f3(x) = (x2 � 2x3)2f4(x) = 101=2(x1 � x4)2Test problem 12 (Rosenbrock, 1960)f1(x) = 10(x2 � x21)f2(x) = 1� x1Test problem 13 (Watson, see Kowalik and Osborne, 1968)fi(x) = nXj=2(j � 1)xj tj�2i �0@ nXj=1 xjtj�1i 1A2 � 1;where i = 1; � � � ; 29, ti = i=29, f30(x) = x1 and f31(x) = x2 � x21 � 1.Test problem 14 (Wood, see Colville, 1968)f1(x) = 10(x2 � x21)f2(x) = 1� x1f3(x) = 901=2(x4 � x23)f4(x) = 1� x3f5(x) = 101=2(x2 + x4 � 2)f6(x) = 10�1=2(x2 � x4)
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