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Summary The classical problem of the monopolist faced with an unknown demand
curve is considered in a simple stochastic setting. Sequential pricing strategies designed
to maximize discounted profits are shown to converge sufficiently rapidly that they
leave the monopolist ignorant about all but the most local features of demand. The
failure of the monopolist to “learn” his demand curve would seem to call into question
some standard assumptions about agents’ grasp of their economic environment.
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1. INTRODUCTION

Clower (1959) describes the dilemma of the monopolist facing an unknown, but non-
stochastic, demand function. By a sequence of Newton-like steps he gradually finds his
way to a profit maximizing output/pricing policy, and yet is left ignorant of the global
features of his economic environment, learning only about its local appearance near the
profit maximizing price. Since Clower there have been many investigations that intro-
duced stochastic features into this monopoly predicament. The monopolist is always torn
between the desire to maximize his (presumably discounted) stream of profits and his
wish to learn more about his economic environment. Learning is presumably helpful in
the relentless quest for better profits, but too much experimentation leads to sacrifices
in valuable early profits.

Following Grossman et al. (1977) most of the literature has posed such problems in
the context of a dynamic programming formulation with Bayesian updating of the mo-
nopolist’s beliefs about demand and cost. See, e.g. Easley and Kiefer (1988) and Nyarko
(1991). Even in very simple environments with known parametric forms for demand
and cost, this approach yields computationally challenging problems. In this brief note
I would like to consider a much simpler class of sequential design strategies employing
the stochastic approximation methods introduced by Kiefer and Wolfowitz (1952). I will
show that although these methods can achieve a certain optimality from a profitability
perspective, they fail miserably in the secondary objective of quenching the monopolist’s
curiosity about the precise form of his demand curve.

2. THE MODEL

Suppose that our monopolist faces the log-quadratic demand function,

D(p, u) = exp{α0 + α1 log(p) + α2(log(p))2 + u}.

For added simplicity we will take the random demand shocks, u, to be iid Gaussian with
mean zero, and constant variance, σ2. Cost will be assumed to be non-stochastic and
again log-quadratic,

C(x) = exp{β0 + β1 log(x) + β2(log(x))2},
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The monopolist’s objective is to choose a sequence of prices, {pt, t = 1, 2, · · · }, to maxi-
mize discounted profit,

R(p) =

∞∑
t=1

δtπ(pt) ≡
∞∑
t=1

δt(ptXt − C(Xt)),

where Xt = D(pt, ut). Since cost is nonstochastic it is easy to learn its parameters, so we
will treat them as known from the outset and focus on the unknown demand parameters
and the choice of a profit maximizing pricing sequence.

3. STOCHASTIC APPROXIMATION

Robbins and Monro (1951) introduced a recursive strategy for finding a zero crossing of
the expected value of a random function; Kiefer and Wolfowitz (1952) noted that similar
methods could be employed to find the argmax of an unknown regression function. The
recursion may be viewed as an adaptive variant of the classical Newton method. Given
an initial guess p0 of p∗ = argmax Eπ(p) we let

pt+1 = pt + at(π(pt + ct)− π(pt − ct))/(2ct).

The sequences {at} and {ct}, as shown by Fabian (1971), are optimally taken to be
at = a0t

−1 and ct = c0t
−1/6 respectively. Assuming that expected profit,

π0(p) = Eπ(p)

is sufficiently smooth in a neighborhood of a unique maximizing value, p∗, Fabian estab-
lishes that, with his choices,

n1/3(pn − p∗) ; N (µ(p∗), σ2(p∗)),

where

µ(p) =
−a0c20π

′′′

0 (p)

3(2π
′′
0 (p)− 2/3)

and

σ2(p) =
a20σ

2(p)

2c20(2a0π
′′
0 (p)− 2/3)

.

Optimal choices of the constants, a0 and c0 are shown by Abdelhamid (1973) to be,
a0 = (π

′′

0 (p∗))−1 and c0 = (3σ2(p∗))/π
′′′

0 (p∗))1/6, where σ2(p) denotes the conditional
variance of profits at p∗.

The cube root convergence of the pricing sequence is obviously unfortunate from a
profit maximizing perspective; the stereotypic greedy monopolist may feel entitled to the
parametric rate O(1/

√
n). Fabian’s results reveal that even after adopting the optimal

choices of the {at} and {ct} sequences, we obtain a biased limiting distribution, after nor-
malization, for the {pt} sequence. This is an inevitable consequence of the non-parametric
nature of problem of finding a root of π′0(p) = 0; in the original Robbins-Monro setting
one has

√
n convergence to a normal limit without the possible asymptotic bias effect

induced when π
′′′

0 (p∗) 6= 0. For our monopolist both bias and variance of the pricing se-
quence decline like n−1/3 as p∗ is approached. Stochastic approximation must, however,
be gauged a huge success for profit maximization compared to its ability to reveal the
precise form of the demand curve.
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4. LEARNING ABOUT DEMAND

Even the limited success we can achieve in finding p∗ poses some serious problems for
the curious monopolist who would like to learn more about his demand function. After
n steps of the stochastic approximation iteration, our monopolist has 3n observations on
the demand curve, but the experimental design of these observations makes them less
than ideal for learning about demand.

Before considering the quadratic specification, suppose that the demand were known
to be linear in price. In this case the precision of the slope parameter in a demand
regression is proportional to the sum of squares of the centered design observations. Let
zt = log(pt/p

∗), since zt is converging to zero at the rate, n−1/3, we have

n∑
t=1

z2t ≈ K
n∑
t=1

t−2/3 ≈ Kn1/3,

and consequently our estimated slope parameter of the demand function converges at
the phlegmatic rate of Op(n

−1/6).
The quadratic case is even more troubling since the quadratic coefficient of the demand

curve is estimated with precision proportional to the fourth moment of log p, and thus,

n∑
t=1

z4t ≈ K
n∑
t=1

t−4/3 ≈ 3.60K <∞,

and consequently the quadratic coefficient cannot be consistently estimated, as explained
in further detail in the Appendix. Despite the conscientious efforts of the monopolist to
profit maximize, or indeed because of these efforts, he is doomed to ignorance about his
own demand environment. For those imagining a more ambitious nonparametric demand
environment the situation is even more bleak.

4.1. A Numerical Example

To illustrate the foregoing situation we consider the following explicit version of the
model:

D(p, u) = exp{5− 0.5 log(p)− 0.35(log(p))2 + u},
where u is iid Gaussian with mean zero, and constant variance, σ2 = 0.0025. Cost is

C(x) = exp{2 + 0.3 log(x) + 0.1(log(x))2},

In Figure 1 we see a scatter plot of 1000 realizations of profit evaluated at uniformly
distributed pt over the interval [3, 60]. Superimposed is an estimate of the expected profit
function, µ0(p). Of course, any self-respecting monopolist would be crazy to spread his
pricing strategy so thinly over such a wide range of prices far from the optimum, but we
not are so constrained.

In Figure 2 we illustrate a more realistic sequence of prices and their corresponding
demand realizations; these prices arise from 100 iterations of the basic Kiefer-Wolfowitz
procedure. As described above, every third pt is a “real” iterate and the intermediate
evaluations of demand are used to compute the estimated derivative. In the figure we
have connected the former points to illustrate the Kiefer-Wolfowitz trajectory. Clearly
there is a rapid ascent to the profit maximizing value, and the isolated points on either
side of this value illustrate the continued effort to refine this estimate with very gradually
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Figure 1. Realized profit for 1000 uniformly distributed pt on the interval [3, 60]. An
estimate of the expected profit function is superimposed on the scatterplot.

declining bandwidths for the derivative estimates. The starting value for this example
was p0 = 15, so we are able to see reasonably well what demand looks like for p ∈ [8, 15],
but this is not sufficient to allow us to estimate well the demand curve. Least squares on
the full sample of 300 observations yields:

log xt = 4.58
(0.48)

− 0.16
(0.41)

log pt − 0.25
(0.09)

(log pt)
2.

Inference based on these estimates is fine, the true parameters are covered by their
respective confidence intervals, but even after extensive continued iteration, because of
the concentration of the design points around p∗, we fail to get convergent estimates of
the demand parameters.

Results in this section can be reproduced by downloading the R package monopoly

from http://www.econ.uiuc.edu/~roger/research/monopoly/mono.html. In partic-
ular, Figures 1 and 2 can be reproduced by running demo(fig1) and demo(fig2).

5. RAMIFICATIONS

Fabian (1967) has proposed a more elaborate variant of the Kiefer-Wolfowitz proce-
dure whose convergence rate approaches the parametric, Op(1/

√
n) ideal provided that

the underlying µ0(p) function is sufficiently smooth near p∗. This can be regarded as a
stochastic approximation variant of the more familiar use of higher order kernels to do
bias removal for non-parametric density estimation. Ruppert (1991) notes that there is
little practical (simulation) experience regarding this procedure. It may be noted that
any “improved” performance of the sequence {pt} from the profitability perspective,
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Figure 2. Realized price and demand for 100 iterations of the Kiefer-Wolfowitz process.
The trajectory of the central iterates is depicted in black and the isolated points are those
required to compute the difference quotients. A least squares estimate of the demand
curve is over plotted in blue, and the final estimate of the profit maximizing price is
depicted by the vertical red line.

accentuates the difficulties from a demand analysis perspective. In this case we have,

n∑
t=1

z2t = K

n∑
t=1

t−1 ≈ K log n,

and even the slope coefficient for demand is barely estimable, converging at the rate
Op(1/

√
log n).

Of course knowledge of the parametric form of cost and demand, iid error for the
random component of demand, stationarity of the demand process and a variety of other
simplifying assumptions can be easily called into question. But relaxing such conditions
only leaves the ignorant monopolist deeper in the dark.

Since stochastic approximation purports to achieve optimal rates of convergence for
the profit maximizing sequence of prices in problems of the foregoing type, it would be
of interest to see whether Bayesian updating could improve upon the simple methods
described above, and if so by how much. To the extent that improvements in the monop-
olist’s pricing policies are made, they only further deepen his ignorance about demand.
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A. DESIGN CONDITIONS FOR CONVERGENCE OF THE LEAST SQUARES
REGRESSION ESTIMATOR

Consider the bivariate linear regression model,

yi = α+ βxi + ui i = 1, · · · , n,

with iid {ui} and Eu1 = 0 and Eu21 log(1+ |ui|r) <∞ for some r > 1. A necessary as well

as sufficient condition for the least squares estimator β̂n to be consistent for β is that,

lim
n→∞

An ≡ lim
n→∞

∑
(xi − x̄)2 =∞.

When this condition holds, Lai and Robbins (1977) prove that for every δ > 0,

lim
n→∞

√
An(β̂ − β)

(logAn)(1+δ)/2
= 0,

with probability one, so β̂ converges to β essentially at rate Op(1/
√
An). This can be

strengthened to limiting normality for
√
An(β̂ − β) provided that max |xi|/

√
An → 0,

which assures the Lindeberg condition.
For the quadratic model,

yi = α+ βxi + γx2i + ui i = 1, · · · , n,

we can project z = (x2i ) onto the orthogonal complement of X = (1, xi), say z̃ = MXz,
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thus reducing the question of consistency of the least squares γ̂ to the requirement that
‖z̃‖2 →∞. But

‖z̃‖2 ≤ ‖z‖2 ≡
n∑
i=1

x4i ,

so, for example, when xi = x0 + ξi with ξi = Op(i
−1/3), as in the monopoly problem

described above, ‖z̃‖2 fails to diverge, and consequently γ̂ is inconsistent.


