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Abstract. The familiar logit and probit models provide convenient settings for
many binary response applications, but a larger class of link functions may be
occasionally desirable. Two parametric families of link functions are investigated:
the Gosset link based on the Student t latent variable model with the degrees of
freedom parameter controlling the tail behavior, and the Pregibon link based on
the (generalized) Tukey λ family with two shape parameters controlling skewness
and tail behavior. Both Bayesian and maximum likelihood methods for estimation
and inference are explored, compared and contrasted. In applications, like the
propensity score matching problem discussed in Section 4, where it is critical to have
accurate estimates of the conditional probabilities, we find that misspecification of
the link function can create serious bias. Bayesian point estimation via MCMC
performs quite competitively with MLE methods; however nominal coverage of
Bayes credible regions is somewhat more problematic.

1. Introduction

In the classical binary response model the probability, πi, of the occurrence of an
event, Yi = 1, rather than the event Yi = 0, conditional on a vector of covariates xi is
expressed as,

g(π) = x>i β.

The function g links the linear predictor to the probability and determines the shape
of the quantal response. McCullagh and Nelder (1989) discuss four possible link
functions for binary response models:

logit: g(π) = log(π/(1− π))
probit: g(π) = Φ−1(π)
cloglog: g(π) = log(− log(1− π))
loglog: g(π) = − log(− log(π)).

They note the strong similarity of logit and probit citing Chambers and Cox (1967),
and observe that the loglog link “is seldom used because its behavior is inappropriate
for π < 1/2, the region that is usually of interest.” This advice is generally in
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Figure 1. Three Dose Response Curves for Beetle Mortality.

accord with observed statistical practice where logit and probit seemed to be employed
almost interchangeably and the log-log links are a relative rarity. The close proximity
of the probit and logit link functions is frequently extrapolated to imply that all
links are essentially indistinguishable. One objective of this paper is to correct this
misapprehension. The other primary objective is to provide a case study comparing
Fisherian and Bayesian approaches to estimation and inference in a relatively simple
parametric setting.

Each link function corresponds to a latent variable model

y∗i = x>i β + ui

with ui iid, in which we observe yi = I(y∗i > 0). Maximum likelihood estimation
of the latent variable model implies a link function chosen as the quantile function
of the ui’s. A well-known empirical example, e.g. Prentice (1976), illustrating the
advantage of the cloglog link is illustrated in Figure 1. Observed mortality rates of
adult flour beetles exposed to gaseous carbon disulphide are plotted at 8 distinct
dosages, in units of CS2 mg/litre in logarithms (base 10), with about 60 beetles
tested at each dose. As is evident in the figure the observed dose-response points
are quite asymmetric. As expected the logit and probit fits are very similar, but the
cloglog fit appears much better. This is confirmed by examining the log-likelihoods;
logit and probit achieve -18.72 and -18.16 respectively, while cloglog attains -14.82.
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A more exotic entry on the menu of links is the “cauchit” link,1 given by the
standard Cauchy quantile function,

g(u) = tan(π(u− 1/2)).

The “cauchit” model is attractive when observed responses exhibit a few surprising
values, observations for which the linear predictor is large in absolute value indicating
that the outcome is almost certain, and yet the linear predictor is wrong. These binary
“outliers” may be the result of a variety of easily imagined circumstances including
data recording errors, but whatever their source both probit and logit are rather
intolerant of them, while cauchit is more forgiving.

Having estimated the probit and cauchit models in a particular application, a
natural question arises: Can we test for the suitability of one link versus the other?
This question leads directly to the family of Gosset links considered in Section 2.
Liu (2004) has previously suggested estimating such models using the EM algorithm,
and there have been several Bayesian MCMC proposals following Albert and Chib
(1993). We consider estimation and inference in the Gosset link model from both
a classical Fisherian maximum likelihood viewpoint and from a Bayesian viewpoint
and compare performance of the two approaches.

The Gosset link model enables us to account for symmetrically distributed heavy
tails in the latent variable model for binary response. What about skewness? Pregi-
bon (1980) proposed a “goodness of link” diagnostic for the logistic binary response
model based on the generalized Tukey λ family link,

g(u) =
uα−δ − 1

α− δ
− (1− u)α+δ − 1

α + δ
.

This link is logistic for α = δ = 0 and describes an attractive family of unimodal
distributions for other values of α and δ, as illustrated in Figure 2. For δ = 0 we have
symmetric densities with α controlling the heaviness of the tails, while δ controls the
skewness of the distribution. This family of link functions is considered in Section
3.2 Since probit and logit link functions are nested in the Gosset and Pregibon link
families respectively, we can use those broader models to test the validity of a model
specification. Further details of the R implementation of the proposed links are given
in Koenker (2006). And R code for all of the computations reported below is available
from the url: http://www.econ.uiuc.edu/ roger/research/links/links.html.

It is sometimes argued, e.g. Hastie and Tibshirani (1987), that more flexible links
for binary response models are unnecessary because more flexible specification of the

1The origins of the “cauchit” link are somewhat misty, but see Morgan and Smith (1992) for an
empirical example in which it appears to perform better than the probit link.

2In preparing a revised version of this paper we discovered that Prentice (1976) had proposed an
alternative two parameter family of link functions that has a convenient density function represen-
tation. Unfortunately, evaluation of the corresponding quantile and distribution functions appears
to be less tractible than is the Pregibon family.
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linear predictor can successfully imitate the misspecified link. This is formally true,
but from a more pragmatic perspective there is something quite appealing about
the simplicity of the univariate link, iid error latent variable model. With several
covariates the necessary flexibility of the linear predictor is difficult to achieve. We
should also note that there is an extensive literature on semi-parametric extimation
of more flexible binary link models, see e.g. Manski (1975), Klein and Spady (1993)
and Newton, Czado, and Chappell (1996). We regard the approach developed here as
offering a relatively simple, parsimonious compromise between the conventional logit
and probit specifications and these alternatives.

In the literature on average treatment effects, matching estimators based on the
propensity score has received considerable recent attention. Since matching estima-
tors depend crucially on the estimated probabilities of treatment given covariates, or
propensity scores, the choice of the binary response link function is critical. In section
4, we compare the logit specification which is common in literature with our proposed
alternative links.

2. The Gosset Link

The probit and cauchit link functions are naturally nested within the Student
t family and the conventional glm iteratively weighted least squares, or method of
scoring, described in McCullagh and Nelder (1989) seems to provide a simple, effective
method of estimation of the parameters of the linear predictor for fixed values of the
degrees of freedom parameter, ν. This approach yields a profile likelihood like the one
illustrated in Figure 3. Optimization of the profiled likelihood is easily carried out
with the aid of the Brent (1973) algorithm, or similar methods.3 There is an extensive
literature on the use of Student models for continuous response models where it has
obvious robustness advantages. For binary response there have been several Bayesian
MCMC investigations, but to our knowledge there has been no attempt to compare
their performance to conventional MLE methods for similar models.

Several caveats regarding the Gosset model should be mentioned:

• When ν is moderate, say ν > 6, it is difficult to distinguish Gosset models
from probit and it is common to see profiled likelihoods that are monotone
increasing over a wide range of ν. The logit model is well approximated by
the Gosset model with ν equal to 7 or 8, see e.g. Liu (2004).
• When ν is near zero, say less than 0.2, evaluation of the likelihood becomes

problematic due to the dramatically heavy tails of the distribution.

3Liu (2004) discusses several variants of the EM algorithm for estimating the Gosset model, but
we are not aware of an available implementation of any of these methods. Using Finey’s classic skin
vasoconstriction data, Liu reports a point estimate of ν̂ = 0.11, without any estimate of precision.On
the same data we obtain ν̂ = 0.527 with a confidence interval of (0.43, 2.13) based on the asymptotic
behavior of the likelihood ratio, as described below.



Roger Koenker and Jungmo Yoon 5

0 20 40 60

0.
00

0.
10

0.
20

αα,,  δδ == ((−0.25,,  −0.25))

−10 0 10

0.
00

0.
10

0.
20

αα,,  δδ == ((−0.25,,  0))

−60 −40 −20 0

0.
00

0.
10

0.
20

αα,,  δδ == ((−0.25,,  0.25))

0 5 10 15 20

0.
00

0.
10

0.
20

αα,,  δδ == ((0,,  −0.25))

−5 0 5

0.
00

0.
10

0.
20

αα,,  δδ == ((0,,  0))

−20 −10 −5 0

0.
00

0.
10

0.
20

αα,,  δδ == ((0,,  0.25))

−2 0 2 4 6 8

0.
00

0.
10

0.
20

αα,,  δδ == ((0.25,,  −0.25))

−4 −2 0 2 4

0.
00

0.
10

0.
20

αα,,  δδ == ((0.25,,  0))

−8 −6 −4 −2 0 2

0.
00

0.
10

0.
20

αα,,  δδ == ((0.25,,  0.25))

Figure 2. Some examples of the Pregibon (Tukey λ) densities.

• Any realistic hope of distinguishing Gosset models from binary data requires
at least moderately large sample sizes. As a rough rule of thumb, we suggest
that n ≥ 500 seems reasonable.

Inference regarding ν can be based on the profiled likelihood and its classical χ2

asymptotic approximation. A (1− α)-confidence interval for ν is thus,

(2.1) I = {ν | 2(`(ν̂)− `(ν)) ≤ χ2
1,1−α}

as illustrated in Figure 3. Inference about the parameters of the linear predictor
conditional on a particular ν, is easily carried out, but unconditional inference is
more of a challenge and perhaps better suited to Bayesian methods, which properly
account for uncertainty about ν.
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Figure 3. Profile likelihood for the Gosset link parameter ν for a
model of quit behavior for a large U.S. manufacturing firm. The vertical
lines indicate a 95% confidence interval for ν.

2.1. An Application. The profiled likelihood appearing in Figure 3 is based on a
model of quit behavior for a sample of Western Electric workers,

gν(πi) = β0 + β1SEXi + β2DEXi + β3LEXi + β4LEX
2
i

where gν is the quantile function of the Student t distribution with ν degrees of
freedom, πi is the probability of quitting within 6 months of being hired; SEXi is
the gender of the employee, males coded 1; DEXi is the score on a preemployment
dexterity exam, and LEXi is years of education. The explanatory variables in this
example are taken from the study of Klein, Spady, and Weiss (1991), but the response
variable was altered long ago to improve the didactic impact of the model as a class
exercise. To this end, quit dates for each individual were generated according to a
log Weibull proportional hazard model. In Table 1 we report estimates of the model
using several link functions. The maximum likelihood estimate of ν is 0.432 for this
example with a 95% confidence interval of (0.27, 0.93) based on the asymptotic χ2

1

theory of log-likelihood as illustrated in Figure 3.
As an indication of the difference between the fitted models, Figure 4 plots the

fitted probabilities of the sample observations for the probit and optimal Gosset model
against one another. This PP plot shows that the two models deliver dramatically
different estimates of the quit probabilities, even though there is extremely high linear
correlation between the estimates of the linear predictor in the two models.
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Estimator β0 β1 β2 β3 β4 AIC
Probit 3.549 0.268 -0.053 -0.313 0.012 748.711
Logit 6.220 0.479 -0.094 -0.539 0.021 746.663
Cauchit 8.234 0.677 -0.125 -0.694 0.028 736.881
Gosset 20.353 1.675 -0.297 -1.728 0.069 732.409

Table 1. Estimation of the WECO model with several link functions
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Figure 4. PP Plot of Fitted Probabilities of the Probit and Gosset
Models for the WECO data: The solid line is the 45 degree line.

2.2. Bayesian Methods for the Gosset Link. The binary response model with
Gosset link function attracted early attention in the Bayesian MCMC literature. The
latent variable formulation of the model lends itself to Gibbs sampling methods.
Thus, Albert and Chib (1993) consider the latent variables {Y ∗i } which are assumed
to be independent and normally distributed with means, {x>i β}, and variances {λ−1

i }.
Observed responses are given by,

Yi = I(Y ∗i > 0).

If the λi’s are independent Gamma(ν/2, 2/ν) random variables with density function

f(λ) = (λν/2−1e−νλ/2)/(Γ(ν/2)(ν/2)−ν/2)

then the Y ∗i are independent Student t random variables with location x>i β, scale 1,
and degrees of freedom parameter ν. When we choose a uniform prior for the regres-
sion coefficients β, we have the following conditional distributions. The conditional
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posterior density of ν is

ν|Y ∗, β, λ, Y ∼ π(ν)
n∏
i=1

λ
ν/2−1
i e−νλi/2

Γ(ν/2)(ν/2)−ν/2
.

where π(ν) is the prior density of ν. The conditional posterior density of independent
random variables λ1, . . . , λn is

λi|β, Y ∗, ν, Y ∼ Gamma(
ν + 1

2
,

2

ν + (Y ∗i − xTi β)2
).

Given the foregoing, the conditional density of β can be expressed as,

β|Y ∗, λ, ν ∼ N(β̂, (X>ΛX)−1)

where β̂ = (X>ΛX)−1X>ΛY ∗ and Λ = diag(λi). Finally, the conditional distribution
of latent variables is independent with

Y ∗i |β, λ, ν, Y ∼ N(xTi β, λ
−1
i )

truncated on (0,∞) if Yi = 1 or on (−∞, 0) if Yi = 0.
The Gibbs sampling procedure can now be implemented by drawing samples se-

quentially from these conditional distributions. The only remaining difficulty is the
somewhat non-standard conditional density of ν. Following Albert and Chib (1993)
we discretize this density, that is, we evaluate the conditional density of ν at grid
points {ν1, · · · , νL} which are chosen according to the prior π(ν).

We first draw {ν1, · · · , νL} from the prior distribution π(ν), and evaluate the condi-
tional posterior probabilities of ν at each grid point, say, {p1, . . . , pL}, and then draw
one multinomial observation of ν from the discrete set {ν1, · · · , νL} with probabilities
{p1, . . . , pL}. Parameterizing ν in terms of ξ = 1/ν we impose a uniform prior on
the interval [0, ξ̄]. We use an equally-spaced grid for ξ on the interval [0, ξ̄] as the
most probable realization from the uniform distribution. In our simulations we will
consider two values for the upper bound ξ̄. Both choices favor low degrees of freedom
ν since prior mass is concentrated near the lower bound 1/ξ̄.

2.3. A Simulation Exercise. To explore the performance of both maximum like-
lihood and Bayes estimators for the Gosset link function we report the results of a
small simulation experiment designed to evaluate both the accuracy of estimators and
their associated confidence/crediblity intervals. We consider 3 model configurations,

gν(πi) = β0 + β1xi i = 1, . . . , n

with ν = 1, 2, and 6. In all cases xi is iid Gaussian with mean zero and standard
deviation 5. The linear predictor parameters are fixed at β0 = 0, β1 = 1. We consider
two sample sizes n = 500 and n = 1000. Response observations are generated by the
latent variable model

y∗i = β0 + β1xi + ui
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with the ui iid Student with ν degrees of freedom, and observed response yi = I(y∗i >
0).

Criterion n = 500 n = 1000
ν = 1 ν = 2 ν = 6 ν = 1 ν = 2 ν = 6

MLE
Mean 1.177 2.837 14.499 1.019 2.231 12.500
Median 1.009 2.038 8.286 0.979 2.039 6.878
MAE 0.228 0.527 3.541 0.154 0.351 2.745
RMSE 1.426 3.386 14.403 0.250 1.008 12.401
Bayes-1
Mean 0.845 1.811 4.496 0.898 1.902 5.657
Median 0.769 1.515 3.571 0.847 1.786 5.000
MAE 0.273 0.766 2.712 0.213 0.483 2.269
RMSE 0.323 1.050 3.383 0.257 0.710 3.024
Bayes-2
Mean 0.981 1.862 4.832 0.957 1.898 5.770
Median 0.898 1.579 4.115 0.898 1.774 4.970
MAE 0.180 0.757 2.681 0.159 0.511 2.473
RMSE 0.305 1.071 3.739 0.197 0.663 4.100

Table 2. Performance of the maximum likelihood and Bayes estima-
tors of ν: We report Mean, Median, Mean absolute error (MAE), and
root mean squared error (RMSE) of the maximum likelihood and Bayes
estimates. Results are based on 500 replications for both sample sizes
n = 500 and n = 1000. Sample median of the posterior distribution of
ν is used as a Bayes point estimate. For “Bayes-1”, uniform prior for
ξ = 1/ν is placed on an interval [0, 2]. A modified prior for ξ = 1/ν
uniform on [0, 1.4] is used for “Bayes-2”.

Table 2 reports the performance of estimators in terms of bias, mean absolute error
(MAE), and root mean squared error (RMSE). Performance the maximum likelihood
estimator is quite good for the ν = 1 (Cauchy) and ν = 2 cases, exhibiting small
bias (within simulation error bounds) and respectable mean absolute and root mean
squared error. For ν = 6 case we see more bias upward and larger MAE and RMSE
reflecting the difficulty of distinguishing Student distributions with larger degrees of
freedom.

To compare performance of the Bayesian procedures with maximum likelihood we
use the Gibbs sampling procedure with equally-spaced grid values with 100 points for
ξ = 1/ν on the interval [0, 2]. We evaluate the conditional density of ν at grid points
and draw a multinomial random variable according to the evaluated probabilities.
Note that when ξ is uniform on the interval [0, 2], the prior density for ν is proportional
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to 1/ν2 on [0.5,∞], with half of prior mass is placed on [0.5, 1] for ν. Therefore, the
prior belief for the link function strongly prefers the lower degrees of freedom.

We generate chains of 20,000 draws for each realization of the simulation. The
first 10,000 draws are discarded and every tenth draw was retained thereafter. The
sample median of the retained draws is taken as a point estimate of ν, and 95%
credible intervals were constructed from the 0.025 and 0.975 quantiles of the retained
realizations for each chain.

In Table 2 under the heading “Bayes-1” we report performance measures of the
Bayesian point estimates. We observe that the Bayes point estimates exhibit down-
ward bias throughout the experiments. This is not surprising given the fact that our
prior prefers lower degrees of freedom. While having a stong prior imposes a cost
in terms of bias, there is also compensation in that it reduces the variability of the
Bayes estimator. When we compare the MSE and MAE of two estimators, we observe
that the Bayesian estimator outperforms the MLE in terms of MSE throughout the
experiments, but they show the comparable performance in terms of MAE. This ten-
dency is especially visible for the case of ν = 6. It indicates that MLE tend to yield a
few instances which go widely off the mark, but with a strong direction provided by
the prior, the Bayes point estimator has less tendency to do so. For example, when
ν = 6, the Bayes estimates tend to be clustered around a low degrees of freedom, this
seems to be largely attributable to the effect of the prior on ν which tends to heavily
discount the likelihood of large values of ν.

To check the sensitivity of our results to the particular choice of the prior for ν we
repeated the simulation with a uniform prior for ξ = 1/ν on the interval [0, 1.4]. The
results are shown under the heading “Bayes-2”. Here, the Bayes point estimator tends
to do better in terms of bias, as we can expect from the prior which emphasize less
on the region of lower degrees of freedom. Throughout the experiments, we observe
that the bias of the Bayes point estimates are much improved.

Table 3 reports rejection frequencies of both the likelihood ratio test and the test
based on 95% credible intervals for ν. Column entries represent fixed values of the
true ν parameter, while row entries represent fixed values of the hypothesized pa-
rameter. Thus, diagonal table entries indicate size of the test, off-diagonal entries
report power. Performance of the likelihood ratio test as reflected in rejection rates,
frequency of non-coverage, for the test under our three configurations seems to be
quite good. Nominal size of the tests is quite accurate, at sample size n = 500 there
is power roughly one-half of distinguishing ν = 1 from ν = 2, and similar power for
distinguishing ν = 2 from ν = 6; power increases to about 0.8 when the sample size
increases to n = 1000. At these sample sizes we can distinguish ν = 1 from ν = 6
with very high probability.

Table 3 also reports non-coverage frequencies for the Bayesian credibility intervals
for ν. These can be compared to the rejection frequencies of the likelihood ratio test.
We count how often the 95% credibility interval fails to include the value specified
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Frequency n = 500 n = 1000
ν0 = 1 ν0 = 2 ν0 = 6 ν0 = 1 ν0 = 2 ν0 = 6

MLE
H0 : ν0 = 1 0.062 0.530 0.988 0.056 0.842 1.000
H0 : ν0 = 2 0.458 0.056 0.516 0.776 0.070 0.808
H0 : ν0 = 6 0.930 0.522 0.010 1.000 0.814 0.042
Bayes-1
H0 : ν0 = 1 0.308 0.446 0.954 0.278 0.804 1.000
H0 : ν0 = 2 0.766 0.224 0.302 0.896 0.140 0.692
H0 : ν0 = 6 0.982 0.754 0.174 0.998 0.902 0.100
Bayes-2
H0 : ν0 = 1 0.072 0.470 0.952 0.130 0.802 1.000
H0 : ν0 = 2 0.756 0.256 0.372 0.886 0.174 0.726
H0 : ν0 = 6 0.972 0.754 0.168 1.000 0.886 0.098

Table 3. Rejection frequencies of the likelihood ratio test and the 95%
Bayesian credibility intervals. : Column entries represent fixed values
of the true ν parameter, while row entries represent fixed values of the
hypothesized parameter. Thus, diagonal table entries indicate size of
the test, off-diagonal entries report power. Results are based on 500
replications for each sample size. For the likelihood ratio test, we use
95% confidence interval based on χ2

1 distribution. For the Bayes test,
we count how often 95% credibility interval does not include the value
specified in the null hypothesis.

in the null hypothesis. Just as before, “Bayes-1” corresponds to the choice of prior,
ξ = 1/ν uniform on [0, 2]. Here too the strong prior influences the performance of the
Bayesian procedure in terms of correct nominal coverage probability. For example,
when the true value of parameter ν = 1, the credible interval tends to exclude the
true value 30 percent of the time. Coverage is somewhat better for ν = 2 and ν = 6,
but still the prior tends to exaggerate our confidence in the credible interval. Of
course, Bayesian credible intervals are not meant to be invariant procedures that
attain nominal coverage for any fixed value of the population parameter, rather they
are intended to represent what one should believe after observing the data given the
prior. We repeated the simulation with a uniform prior for ξ = 1/ν on the interval
[0, 1.4]. These results, “Bayes-2” show some improvement for the Cauchy, ν = 1 case,
indicating that the previous choice of the prior apparently placed too much mass on
the interval of ν between 0.5 and 1, and thus too often obtained credibility intervals
that excluded the value 1.

A more direct measure of performance of the alternative link functions is obtained
by assessing the accuracy of the estimated success probabilities. To this end, we
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Estimator d1 d2 d∞
ν = 1 ν = 2 ν = 6 ν = 1 ν = 2 ν = 6 ν = 1 ν = 2 ν = 6

Probit 0.065 0.038 0.013 0.133 0.119 0.092 0.186 0.171 0.136
Cauchit 0.016 0.024 0.033 0.022 0.034 0.048 0.055 0.107 0.167
MLE 0.020 0.016 0.012 0.027 0.024 0.021 0.070 0.065 0.058
Bayes-2 0.019 0.018 0.014 0.026 0.028 0.026 0.069 0.081 0.078

Table 4. Performance of Several Binary Response Estimators : In
each run of Monte carlo experiment, three performance measures, d1,
d2, d∞ are calculated for probit, cauchit, Gosset MLE, Bayes estimator
with Gosset link function. Reported values are the sample mean of 500
replications for the sample size n= 500.

consider the family of performance measures,

dp(F̂ , F ) = (

∫
|F̂ (x>β̂)− F (x>β)|pdG(x))1/p

We will consider the three conventional choices of p ∈ {1, 2,∞}. In Table 4 we report
estimates of these performance measures for four estimators: probit, cauchit, the
Gosset MLE, and the Bayesian posterior coordinatewise median for the Gosset model
with the more concentrated prior described above. Estimates of our performance
measures are obtained by substituting the empirical measure of the x observations
into the above expression.

Performance of the MLE and Bayes estimators are quite similar over these settings.
There is a modest sacrifice of performance to the cauchit estimator when the model
is Cauchy, and rather substantial gains over the probit estimator in all three cases.

3. The Pregibon Link

Symmetry of the link function may be inappropriate for some applications and a
convenient two-parameter family of links is provided by the function

g(u) =
uα−δ − 1

α− δ
− (1− u)α+δ − 1

α + δ
.

This is the parameterization used by Pregibon to derive his goodness-of-link score
test. The Pregibon test provides a convenient one-step procedure to generate starting
values, but to the best of our knowledge there has been no systematic effort to explore
the behavior of the maximum likelihood and Bayes estimators for this family of link
functions.

Inference based on the profiled likelihood for (α, δ) can be fairly easily carried out
by plotting contours of the likelihood surface. This approach provides an alternative,
albeit a slightly more computational demanding one, to Pregibon’s score test. An
example is shown in Figure 5 based on 500 observations from a simple bivariate
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Figure 5. Contour plot of the profiled likelihood function for the Preg-
ibon link model. The example is based on 500 observations from a sim-
ple bivariate logit model. Contours a label in AIC units so difference
in contours can be compared directly to the quantiles of the χ2

2 distri-
bution.

logistic model. Obviously, in this example the data are not very informative about the
parameters (α, δ); the conventional χ2

2 theory gives a confidence region that includes
most of the densities illustrated in Figure 2.

3.1. Bayesian implementation for the Pregibon link. As Figure 2 clearly shows,
given (α, δ), both the density and the cumulative distribution function of the Pregibon
link function g(u) are well defined, although the actual computation is carried out by
numerical procedures. Let f(·, α, δ) and F (·, α, δ) denote the density and distribution
functions respectively.

The joint posterior of the model with the Pregibon link function is

π(Y ∗, β, α, δ|Y ) ∼ π(α, δ)π(β) ·
n∏
i=1

Mi f(Y ∗i − x>i β, α, δ)

whereMi = {I(Y ∗i > 0|Yi = 1)/(1−F (−x>i β, α, δ))+I(Y ∗i < 0|Yi = 0)/F (−x>i β, α, δ)}.
We divide the joint posterior into three conditional posteriors which correspond to
three blocks of parameters; the latent variables Y ∗, the shape parameters of the Preg-
ibon link α, δ, and finally the linear predictor β. Our Gibbs sampling procedure is
determined by the following conditional distributions.
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(i) Given Y, β, α, δ, the conditional distribution of Y ∗i is

Y ∗i |Yi, α, δ, β ∼Mi · f(Y ∗i − x>i β, α, δ)
which means that when we observe Yi = 1, Y ∗i ∼ F (·−x>i β, α, δ) truncated on
(0,∞), and when Yi = 0, Y ∗i ∼ F (· − x>i β, α, δ) truncated on (−∞, 0). If the
outcome is yi = 1, we draw u ∼ Uniform[F (−x>i β, α, δ), 1] and invert it by
Y ∗ = F−1(u, α, δ) + x>i β. If yi = 0, we draw u ∼ Uniform[0, F (−x>i β, α, δ)]
and invert it in the same way.

(ii) Given Y ∗, Y, β, the conditional distribution of α, δ is

α, δ|Y, Y ∗, β ∼ π(α, δ)
n∏
i=1

f(Y ∗i − x>i β, α, δ)

This step is done by the Metropolis algorithm. We assume a flat prior,
π(α, δ) ∝ 1 inside a square α ∈ [−d, d], δ ∈ [−d, d]. In the t-th step of the
Metropolis algorithm, given the current value of parameters (αt−1, δt−1), we
propose a candidate pair (α∗, δ∗), and calculate the ratio of the densities

r =

∏n
i=1 f(Y ∗i − x>i β, α∗, δ∗)∏n

i=1 f(Y ∗i − x>i β, αt−1, δt−1)

and set (αt, δt) = (α∗, δ∗) with probability min(r, 1), or keep the old values
(αt, δt) = (αt−1, δt−1) otherwise.

(iii) Given Y ∗, Y, α, δ, the conditional distribution of β is

β|Y, Y ∗, α, δ ∼ π(β)
n∏
i=1

f(Y ∗i − x>i β, α, δ)

We approximate the above posterior for β by a multivariate normal dis-
tribution centered at the posterior mode. More specifically, assume a flat
prior π(β) ∝ 1 and let the logarithm of the posterior l(β|Y, Y ∗, α, δ) =∑n

i=1 log f(Y ∗i − x>i β, α, δ). Let β̂ be the mode of the log-posterior, and

lββ(β̂) be the Hessian matrix of the log-posterior, evaluated at the mode,

then the posterior distribution of β is approximated by N(β|β̂, [−lββ(β̂)]−1).
Once we find the mode and associated Hessian matrix, we generate β from
the multivariate normal distribution.

The “Metropolis within Gibbs” approach was suggested by Tierney (1994), and
further illustrated in, e.g. Gilks, Best, and Tan (1995) and Geweke and Tanizaki
(2001). This is a standard technique in MCMC literature when the direct sampling
from one or more of the conditional posteriors is difficult. The approximation of the
posterior based on single or multiple modes of the posterior is suggested in Chapter
12 of Gelman, Carlin, Stern, and Rubin (2004). We could, as suggested by the referee,
use another step of Metropolis algorithm with Gibbs here but our main concern of not
using it was the possiblilty that the dimension of the β is potentially quite large. It
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is known that in large dimensional problems the Metropolis-Hastings algorithm may
converge quite slowly, see e.g. Chapter 7 in Robert and Casella (2004) and Section 8
in Neal (2003).

In our simulations, we iterate the whole chain of Gibbs sampling 2000 times. In
every Gibbs step, for the parameters (α, δ), the Metropolis algorithm with the length
100 is used. We discard the first 1000 realizations of Gibbs sampling and keep every
fifth draw after the burn-in period. Bayesian inference is based on the posterior
samples of parameters we obtained. When we compare the performance of the Bayes
estimator with MLE, we use the coordinate-wise posterior median for the Bayes point
estimate. For the credible set of the Pregibon link parameters (α, δ), we calculate the
contours of a kernel density estimate of the bivariate density of (α, δ), of the posterior,
and choose a contour curve which includes 95% of total mass.

3.2. A Simulation Experiment. In an effort to gain some further experience we
undertook another small simulation exercise to evaluate maximum likelihood and
Bayes estimators of the (α, δ) parameters of the generalized λ family. We com-
pared behavior of the one-step Pregibon estimates, the maximum likelihood esti-
mates, and Bayes point estimates of (α, δ). In Tables 5 and 6 we report perfor-
mances of each estimator for four simulation configurations of the shape parameters:
(α, δ) = (0, 0), (α, δ) = (−.25, 0), (α, δ) = (−.15, .15) and (α, δ) = (−.4, .3). We report
median and mean bias and median absolute and mean squared error for two sample
sizes n = 500 and n = 1000.

In the first configuration the one-step estimator is starting from a consistent es-
timate (the truth) so it and the MLE have the same asymptotic distribution. This
is reflected in Tables 5 and 6 where the two estimators show almost the same per-
formance in terms of bias and MSE. It is not surprising that the MLE improves
substantially on the Pregibon one-step in the non-null cases, since the latter is seri-
ously biased in those cases, due to the inconsistent starting value.

It is apparent that the skewness parameter δ is more precisely estimated than
is α, the parameter that governs tail behavior. To some degree this is due to the
fact that the scale of the coefficient vector of the linear predictor can compensate
for variation in α. This can be made more precise by exploring the asymptotic
behavior of the MLE. For fixed designs like those used in the simulation experiment,
we compared asymptotic confidence regions for (α, δ) at the logit model for both
known and unknown linear predictor vector β. Knowing β reduces the asymptotic
standard error of α̂ by about half, but has almost no effect on the precision of δ̂. These
findings are quite consistent with the simulation results reported in the tables. Indeed,
there is a striking resemblance in both size and orientation between the confidence
ellipses generated by the likelihood contours and their normal theory asymptotic
counterparts.

For all four configurations, Bayes point estimates correspond with MLEs nicely,
and both maximum likelihood and Bayes estimators performed better than one-step
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Criterion α δ
(0, 0) (−.25, 0) (−.15, .15) (−.4, .3) (0, 0) (−.25, 0) (−.15, .15) (−.4, .3)

Mean
One-step 0.160 -0.027 0.131 0.296 0.009 0.007 0.179 0.401
MLE 0.108 -0.184 -0.077 -0.320 0.007 0.009 0.172 0.330
Bayes -0.043 -0.365 -0.256 -0.493 0.001 0.003 0.163 0.318
Median
One-step 0.105 -0.072 0.099 0.240 0.002 0.004 0.157 0.347
MLE 0.093 -0.213 -0.107 -0.333 0.002 0.010 0.169 0.319
Bayes -0.033 -0.362 -0.237 -0.523 0.001 -0.001 0.162 0.317
MAE
One-step 0.112 0.178 0.249 0.640 0.056 0.035 0.085 0.140
MLE 0.158 0.157 0.166 0.187 0.059 0.068 0.065 0.076
Bayes 0.154 0.196 0.180 0.202 0.055 0.066 0.069 0.069
RMSE
One-step 0.276 0.262 0.340 0.761 0.126 0.098 0.140 0.306
MLE 0.241 0.230 0.252 0.316 0.112 0.104 0.106 0.143
Bayes 0.238 0.269 0.273 0.249 0.081 0.094 0.100 0.109

Table 5. Performance of one-step, maximum likelihood, and Bayes
estimators of Pregibon link parameters (α, δ) for sample size n = 500.
Results are based on 500 replications.

estimator. Estimation of the shape parameter α is more variable than that of skewness
parameter δ. For the bias in shape parameter α, we observe that maximum likelihood
estimates tend to choose distributions whose tails are thinner than the true one, on
the other hand, the Bayes point estimates are inclined to thicker tails. In terms of
MSE and MAE, both Bayes and maximum likelihood estimates performs comparably.

In Table 7 we report rejection frequencies of the (logit) null hypothesis that (α, δ) =
(0, 0). The line labeled GOL gives the rejection frequencies for the Pregibon goodness-
of-link test, while the LR test reports the frequency that

2(`(β̂, α̂, δ̂)− `(β̃, 0, 0)) > 5.99

where β̃ is usual logit estimator of β. The likelihood ratio test performs somewhat
better than the Pregibon score test in terms of its ability to detect departures from
the logit model, at the price of some inflation in size.

The last row reports the non-coverage frequencies of the 95% credible sets. It
will be noted that for the logistic (null) case, (α, δ) = (0, 0), the Bayes credible sets
tend to exclude the origin more often than the nominal coverage probability which is
supposed to be 0.05. When the sample size n = 500, the rejection frequency is 0.11,
whereas with larger sample size n = 1000, the rejection frequency is 0.09. We have
conducted several experiments to further explore the behavior of Bayesian credible
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Criterion α δ
(0, 0) (−.25, 0) (−.15, .15) (−.4, .3) (0, 0) (−.25, 0) (−.15, .15) (−.4, .3)

Mean
One-step 0.082 -0.099 0.075 0.228 0.005 0.002 0.159 0.356
MLE 0.054 -0.241 -0.105 -0.387 0.003 0.002 0.159 0.314
Bayes -0.023 -0.336 -0.190 -0.474 -0.001 -0.003 0.164 0.317
Median
One-step 0.049 -0.111 0.054 0.199 0.003 0.003 0.143 0.332
MLE 0.037 -0.240 -0.116 -0.378 0.001 0.001 0.157 0.310
Bayes -0.027 -0.321 -0.189 -0.480 0.000 -0.003 0.161 0.314
MAE
One-step 0.073 0.139 0.204 0.599 0.038 0.020 0.063 0.108
MLE 0.092 0.097 0.092 0.118 0.041 0.043 0.047 0.056
Bayes 0.098 0.130 0.107 0.148 0.041 0.045 0.042 0.054
RMSE
One-step 0.158 0.162 0.260 0.668 0.069 0.042 0.100 0.195
MLE 0.150 0.138 0.166 0.188 0.062 0.062 0.073 0.081
Bayes 0.150 0.199 0.169 0.206 0.063 0.066 0.073 0.082

Table 6. Performance of one-step, maximum likelihood, and Bayes
estimators of Pregibon link parameters (α, δ) for sample size n = 1000.
Results are based on 500 replications.

Test n = 500 n = 1000
(0, 0) (−.25, 0) (−.15, .15) (−.4, .3) (0, 0) (−.25, 0) (−.15, .15) (−.4, .3)

GOL 0.050 0.168 0.416 0.890 0.056 0.354 0.684 0.996
LR 0.084 0.260 0.480 0.882 0.074 0.488 0.716 0.944
Bayes 0.108 0.368 0.446 0.872 0.092 0.484 0.726 0.984

Table 7. Performance of Pregibon goodness-of-link (GOL), likelihood
ratio (LR) tests, and Bayesian credible sets (Bayes) of the logistic hy-
pothesis H0 : (α, δ) = (0, 0): The table entries report rejection fre-
quencies for the two tests under the null and two configurations of the
alternative hypothesis. All entries are based on 500 replications of the
test.

sets. For example, expanding the length of the Gibbs sampling chain from 2000 to
30000 reduced exclusion frequency to 0.075 for n = 1000. In terms of the power
of the test based on confidence and credible regions, both maximum likelihood and
Bayesian methods show comparable results.

Table 8 is comparable to Table 4. It compares the performance of estimators in
terms of the estimated probabilities. As the Pregibon link parameters deviate from
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Estimator n=500 n=1000
(0,0) (-.25,0) (-.15,.15) (-.4,.3) (0,0) (-.25,0) (-.15,.15) (-.4,.3)

d1

Logit 0.013 0.020 0.023 0.042 0.009 0.017 0.021 0.041
MLE 0.017 0.019 0.019 0.021 0.012 0.013 0.013 0.015
Bayes 0.018 0.021 0.021 0.021 0.013 0.015 0.014 0.015
d2

Logit 0.019 0.027 0.031 0.054 0.014 0.023 0.028 0.052
MLE 0.026 0.026 0.028 0.029 0.018 0.018 0.019 0.020
Bayes 0.027 0.029 0.030 0.030 0.019 0.021 0.020 0.022
d∞
Logit 0.044 0.063 0.071 0.120 0.031 0.055 0.064 0.116
MLE 0.063 0.062 0.067 0.072 0.042 0.043 0.044 0.050
Bayes 0.066 0.070 0.074 0.075 0.045 0.050 0.047 0.054

Table 8. Performance of Several Binary Response Estimators : Esti-
mated probabilities with Pregibon link families.

the null logistic case further, the fitted probabilities from both maximum likelihood
and Bayes estimators are much closer to the true probabilities than those obtained
from logit model.

4. Propensity Score Matching Methods

In this section we reanalyze data from the National Supported Work (NSW) Demon-
stration experiment. The effectiveness of the job training program is measured by the
post-intervention income levels of program participants. Several authors, including
Dehejia and Wahba (1999), Dehejia and Wahba (2002), and Smith and Todd (2005),
have explored the use of propensity score matching methods for estimating average
treatment effect using this data.

Most empirical studies use logit or probit model to estimate the propensity score,
and it is usually claimed that these models produce similar results. But as we have
already argued this should not be taken as evidence that a broader class of link
functions should also be summarily dismissed. Since the matching estimator of the
average treatment effect crucially depends on the first step estimation of the propen-
sity score, as Shaikh, Simonsen, Vytlacil, and Yildiz (2005) argued, the misspecified
propensity score may lead to inconsistent estimates of the average treatment effect.

Since the logistic model was used in all the foregoing studies involving the NSW
data, we decided to investigate whether logistic specification can be justified within
the larger class of Pregibon link models. This class is not nearly as general as some
semi-parametric estimators that have been proposed in the literature, but more nar-
rowly targeted alternatives are sometimes preferably to more omnibus methods when
sample sizes are moderate.
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The literature on the propensity score matching methods focuses on several re-
lated robustness issues. LaLonde (1986) has argued that applied to the NSW data,
various econometric estimators produce widely different results, and fail to replicate
benchmarks obtained from an experimental sample, highlighting the risk involved in
using observational studies. In contrast Dehejia and Wahba (1999) have argued that
one can still find reasonably good estimators with the non-experimental data. They
showed that a matching method based on the propensity score produced results very
close to the benchmark from the experiments.

There has been considerable controversy regarding the sensitivity of propensity
score matching methods to sample selection and covariate specification. Smith and
Todd (2005) have noted that Dehejia and Wahba’s results are highly sensitive to their
choice of a particular subsample from LaLonde’s original data. The propensity score
matching method performed remarkably well in Dehejia and Wahba’s subsample, but
did poorly in both LaLonde’s sample and Smith and Todd’s subsample. In addition,
the outcome of the matching method varied substantially with the choice of covariates
used in estimating the propensity score. Dehejia (2005) has responded that one has
to choose different set of variables in a different set of data, and showed that if
one carefully chooses the right set of variables, the matching method based on the
propensity score performs well in all samples.

We would prefer not to take a position on these controversial aspects of the specifi-
cation and focus attention instead on the simpler issue of the choice of link function.
We adopt the set of covariates chosen by Dehejia (2005) in each treatment-control
group and estimate the propensity score employing the Pregibon link function and
test whether logistic model is justified; the tests indicate that the logistic specification
is implausible.

We considered three versions of the treatment sample: the LaLonde (1986) original
treatment sample, the Dehejia and Wahba (1999) sample which is a proper subsam-
ple of LaLonde (1986), and the Smith and Todd (2005) sample, which is a proper
subsample of the Dehejia and Wahba sample. For the control group, we use full PSID
sample in LaLonde (1986). The last two rows of Table 9 show the sample size in each
treatment and control group. Two covariate selections were considered: the set of
covariates chosen in Dehejia (2005), which is called Dehejia specification4 and a sim-
pler specification which include only linear terms in the covariates without indicators,
quadratics, and interaction terms.5 The unbalanced sample sizes of the control and

4The following variables are used in each sample. LaLonde sample : re75 (real income in 1975),
married, black, hispanic, age, school, black · school, hispanic · re75, nodegree · school. Dehejia-
Wahba sample : re74, re75, married, black, hispanic, age, school, married·u75, nodegree·u74 (u74
= indicator taking 1 when re74 = 0). Smith-Todd sample : re74, re75, married, black, hispanic,
age, school, hispanic · school, re742. For further details, see Table 2 in Dehejia (2005).

5The linear specification includes the following variables. married, black, hispanic, age, school,
nodegree, re74, re75.
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Estimator LaLonde Dehejia-Whaba Smith-Todd
Dehejia Linear Dehejia Linear Dehejia Linear

MLE
α -0.196 -0.334 -0.494 -0.634 -1.260 -1.286
δ 0.056 0.145 0.244 0.311 0.887 0.906
p-value 0.387 0.174 0.006 0.001 0.007 0.005
Bayes
α -0.046 -0.236 -0.366 -0.570 -1.712 -0.620
δ -0.040 0.107 0.220 0.307 1.857 0.354
p-value 0.030 0.001 0.001 0.001 0.001 0.001
Number of obs.
control group 2490 2490 2490 2490 2490 2490
treatment group 297 297 185 185 108 108

Table 9. Comparison of Logistic and Pregibon Models for the NSW
Application: The table gives point estimates and “p-values” for tests of
the logit model against the more general Pregibon specification for three
choices of sample and two specifications of the covariates, as discussed
in the text. The “p-values” for the likelihood ratio tests are based
on the classical asymptotic χ2 theory; while for the Bayesian MCMC
methods they are computed from the contours of the bivariate (α,δ)
posterior density plot.

treatment groups contributes to the difficulty of estimating average treatment effects,
as well as the estimation of the propensity score.

In Table 9, we report point estimates of the parameters of the Pregibon link func-
tion, and p-values of “tests” of the logistic hypothesis for the various sample and
covariate specifications. The Bayes credibility regions assign negligible probability to
the logistic hypothesis; as do the the likelihood ratio tests except in the case of the
LaLonde sample.

Figure 6 compares estimated propensity scores from logit model with the propensity
scores from the maximum likelihood estimates of the Pregibon model. The 45 degree
line corresponds to a perfect match in terms of fitted probabilities. Departures from
the 45 degree line indicate that the propensity scores differ. The top two panels
illustrate results for the Dehejia-Wahba treatment group, the bottom panels depict
results for the Smith-Todd treatment group. We only plot the propensity scores of the
treatment group; propensity scores of the control groups display similar tendencies.
Systematic discrepancies between the logit and Pregibon specifications of the link
may result in misleading propensity scores and consequently misleading estimates of
treatment effects.
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Figure 6. PP Plots of the estimated probabilities of the logit and
Pregibon models. The solid line is 45 degree line. The Top-left is
the results from the Dehejia-Wahba treatment group/Dehejia speci-
fication. The Top-right hand side is for Dehejia-Wahba treatment
group/linear specification. The bottom-left is Smith-Todd treatment
group/Dehejia specification, and the bottom-right is Smith-Todd treat-
ment group/linear specification. We plot propensity scores of the treat-
ment group. The propensity score of the control groups display the
same tendency.

5. Conclusion

Some simple methods for introducing parametric link functions for binary response
models have been described and evaluated in some very limited simulation experi-
ments. Much more general semi-parametric methods for analyzing binary response
are, of course, already available in the literature, however sometimes intermediate,
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parametric methods can also provide additional insight. The Gosset and Pregibon
models span a reasonably large class of plausible link functions that significantly ex-
pand on the traditional logit/probit options. Both maximum likelihood and Bayes
point estimators perform well in our investigations. Bayesian credibility regions pro-
duced by our MCMC methods were somewhat optimistic in both simulation settings
in the sense that observed coverage was somewhat less than the nominal level of the
intervals. However, in the Gosset setting this could be attributed to the lack of equiv-
ariance induced by the prior, while in the Pregibon setting with a less informative
prior results were quite comparable to the likelihood ratio intervals.

Appendix A. Implementation of MCMC for Parametric Links

We describe briefly in this appendix the implementation of MCMC method with
the Pregibon link function. Full details of the implementation are available from
the url: http://www.econ.uiuc.edu/ roger/research/links/ links.html. The
order of the presentation follows the three blocks of the Gibbs sampling discussed
in page 11-12. First, to generate the latent variable Y ∗, given the values of other
parameters β, (α, δ), we define a function

latent<-function(y,x,beta,ab,tol = 1e-10){
yhat <- cbind(1,x)%*%beta
w <- pPregibon(-yhat,ab[1],ab[2])
ww <- pmax(tol,pmin(w,(1-tol)))
umin <- ifelse(y,ww,0)
umax <- ifelse(y,1,ww)
u <- runif(length(yhat),umin,umax)
z <- qPregibon(u,ab[1],ab[2])+yhat
return(z)
}

Second, to draw the Pregibon shape parameters (α, δ), we use the Metropolis al-
gorithm with length M within Gibbs sampling. The shape parameters in Pregibon
distribution (α, δ) are defined on square domain [−d, d]2. A new candidate (α′, δ′)
is generated from a bivariate uniform distribution on a box, centered at the current
values ((α, δ), extended to both direction by L, that is, the proposal distribution is
p(α′, δ′|α, δ) ∼ U [α− L, α + L]2.

proposal<-function(ab, d = 1, L= .02){
a<-runif(1,min=max(-d,(ab[1]-L)),max=min(d,(ab[1]+L)))
b<-runif(1,min=max(-d,(ab[2]-L)),max=min(d,(ab[2]+L)))

return(c(a,b))
}

The function Metropolis performs the Metropolis iterations M times inside each
Gibbs step. For the parameters in Metropolis algorithm, such as, M, d, and L, appro-
priate values should be chosen by users.
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Metropolis <- function(x, z, M = 100, beta, ab, tol=1e-10){
ehat <- z - cbind(1,x)%*%beta
u <- runif(M)
for(i in 2:M){

proposed <- proposal(ab)
R0 <- sum(log(dPregibon(ehat,proposed[1],proposed[2]) + tol))
R1 <- sum(log(dPregibon(ehat,ab[1],ab[2]) + tol))
adj<- max(R0,R1)
R <- exp(R0-adj)/exp(R1-adj)
if(u[i] < R) ab <- proposed
}

return(ab)
}

The results we reported in our paper are based on the following choices. Our
default length of the Metropolis iteration is 100. The default value for the domain
of Pregibon parameters is d= 1. For the proposal distribution, we have tried several
values for L from 0.01 to 0.05, but the results in this paper are based on L= 0.02. We
have tried both shorter or longer chains, but results seem to be stable.

Finally, for the regression coefficients β given Y ∗, α, δ, we define the logarithm of
the conditional posterior with uniform prior, and use R’s nlm function to find the
mode of log-posterior and its Hessian matrix. Since the default of nlm routine is
minization, we define a negative log-posterior and minimize it. The function mvrnorm

from the R package MASS, generates a random vector from the specified multivariate
normal distribution.

f <- function(theta, x, z, a1, b1, tol=1e-10){
sum(-log(dPregibon((z-theta[1]-theta[2]*x),a1,b1) + tol))
}

newbeta <- function(x, z, ab, beta){
out<-nlm(f,beta,x=x,z=z,a1=ab[1],b1=ab[2],hessian=TRUE)
return(mvrnorm(n=1,mu=out$estimate,Sigma=solve(out$hessian)))

}

To initiate the chain, we need starting values for the parameters. In our Monte carlo
studies, for the initial value of β, we use the outcome of the logistic regression, and
for the initial values of (α, δ), we simply start from the origin. We tried other ways of
choosing initial values of α, δ, such as generating them from a uniform distribution,
but it did not change the results. So we have the following initialization before Gibbs
iteration. Given all three blocks of the conditional posterior sampling, we can now
run Gibbs sampling as follows:

# Initialization
beta0 <- glm(y~x,family=binomial(link="logit"))$coef
ab0 <- c(0,0)
betav <- matrix(0,2,G)
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abv <- matrix(0,2,G)

# Main MCMC Loop
for(i in 1:G){

z <- latent(y,x,beta0,ab0)
beta1 <- newbeta(x,z,ab0,beta0)
ab1 <- Metropolis(x,z,M,beta1,ab0)
betav[,i] <- beta1
abv[,i] <- ab1
beta0 <- beta1
ab0 <- ab1
}
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