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It is a textbook cliché that probit and logit link func-
tions for binary response models are “very similar.”
While true, this remark is unfortunately often extrap-
olated to imply that all links are essentially equiva-
lent. Like most extrapolations, this inferential leap
is dangerous. Some relatively minor recent changes
in the glm functions of R2.4.0 make it easy to explore
non-traditional link functions. This note is intended
to illustrate this functionality, and encourage others
to explore alternative links.

Since the early eighties, I’ve been teaching ap-
plied econometrics for economics graduate students
at the University of Illinois. When we come to bi-
nary response models I always introduce the Pregi-
bon (1980) “goodness of link” test, partly as a way
to reinforce the ideas underlying the Box-Cox trans-
formation and partly because I feel it is important to
convey a more skeptical attitude about the conven-
tional choice of logit and probit links.

Pregibon considers a two parameter generaliza-
tion of the logit link that we can write as,

g(u, a, b) =
ua−b − 1

a− b
− (1− u)a+b − 1

a + b
.

When a = b = 0 the link reduces to the logit expres-
sion log(u/(1 − u)), for b = 0 we have a family of
symmetric densities with a controlling the heaviness
of the tails, and when b 6= 0 it controls the skew-
ness of the distribution. The function g is the quantile
function of a version of the generalized Tukey-λ dis-
tributions, for which the gld package of King (2005)
provides “p-q-r-d” functions for R.

Another natural (one-parameter) family of link
functions for binary response is the Gosset, or
Student-t, link with a free degrees of freedom param-
eter, ν. When ν = 1 we have the so-called Cauchit
link corresponding to the Cauchy quantile function,
while for ν → ∞ we obtain the probit link. The Cau-
chit link is distinctly different than probit – admitting
that even extreme values of the linear predictor can
occasionally be overwhelmed by an even more ex-
treme realization of the Cauchy innovation of the la-
tent variable form of the binary response model. See
Morgan and Smith (1992) for an example of Cauchit
fitting.

Implementation

Parametric links may be specified in R as a structure
consisting of functions specifying the link function,
the inverse of the link function, the derivative of the
inverse link function, a validity check function, and

a name to be used for the link. This object should be
of class link-glm. The Gosset link is:

Gosset <- function(nu) {

qqt <- function(p, nu)

sign(p-0.5)*sqrt(qf(1-2*pmin(p,1-p), 1, nu))

linkfun <- function(mu) qqt(mu,nu)

linkinv <- function(eta) {

thresh <- -qqt(.Machine$double.eps,nu)

eta <- pmin(thresh, pmax(eta, -thresh))

pt(eta, nu)}

mu.eta <- function(eta)

pmax(dt(eta, nu), .Machine$double.eps)

valideta <- function(eta) TRUE

name <- "Gosset"

structure(list(linkfun=linkfun, linkinv=linkinv,

mu.eta=mu.eta, valideta=valideta, name=name),

class = "link-glm")}

Note that qt has been replaced by qqt since the
former has a restricted domain for ν ≥ 1 while the
version based on qf is reliable for ν ≥ 0.2. (Thanks
to Luke Tierney for this suggestion.)

The Pregibon link is implemented like this:

Pregibon <- function(a, b) {

linkfun <- function(mu)

- qPregibon(1 - mu,a = a, b = b)

linkinv <- function(eta) {

eps <- .Machine$double.eps^.5

tlo <- qPregibon(eps, a = a, b = b)

thi <- qPregibon(1 - eps, a = a, b = b)

eta <- -pmin(thi, pmax(-eta, tlo))

1 - pPregibon(-eta, a = a, b = b)}

mu.eta <- function(eta)

pmax(dPregibon(-eta, a = a, b = b),

.Machine$double.eps^.5)

valideta <- function(eta) TRUE

name <- "Pregibon"

structure(list(linkfun=linkfun, linkinv=linkinv,

mu.eta=mu.eta, valideta=valideta, name=name),

class = "link-glm")}

Since the parameterization of the Pregibon link
differs slightly from the parameterization used in the
gld package we use the following code to define the
required functions:

qPregibon <- function(x,a = 0,b = 0){

s <- (qgl(3/4,c(0,1,a-b,a+b)) -

qgl(1/4,c(0,1,a-b,a+b)))/2.197224

qgl(x,c(0,1,a-b,a+b))/s}

pPregibon <- function(x,a = 0,b = 0,tol=1e-12){

s <- (qgl(3/4,c(0,1,a-b,a+b)) -

qgl(1/4,c(0,1,a-b,a+b)))/2.197224

pgl(x*s, c(0,1,a-b,a+b),inverse.eps=tol)}

dPregibon <- function(x,a = 0,b = 0,tol=1e-12){

s <- (qgl(3/4,c(0,1,a-b,a+b)) -

qgl(1/4,c(0,1,a-b,a+b)))/2.197224

dgl(x*s, c(0,1,a-b,a+b),inverse.eps=tol)*s}

rPregibon <- function(n,a = 0,b = 0){

qPregibon(runif(n),a=a,b=b)}
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AN EXAMPLE PARAMETRIC LINKS FOR BINARY RESPONSE

Note that we have fixed scale so that all members
of the family have the same interquartile range; recall
that scale is unidentified in this class of models.

An Example

To illustrate the fitting procedure we will consider
a model of quit behavior for Western Electric work-
ers. The transformed probability of quitting within
six months of starting a new job is modeled as a lin-
ear function of a gender indicator, the score on a pre-
employment dexterity exam, and a quadratic func-
tion of years of education, denoted by sex, dex, and
lex, respectively. The data come originally from the
study of Klein et al. (1991), but have been modified
over the years to heighten the pedagogical impact.

To fit a Gosset model with a fixed value of the de-
grees of freedom parameter one can simply write:

u <- "http://www.econ.uiuc.edu/~roger/courses/

471/data/weco.dat"

d <- read.table(u, header=TRUE)

f <- glm(kwit ~ sex + dex + poly(lex, 2),

data=d, family=binomial(link=Gosset(1.0)))

This is equivalent to:

f <- glm(kwit ~ sex + dex + poly(lex, 2),

data=d, family=binomial(link="cauchit"))

but of course the value 1.0 can be replaced with
something else.

Figure 1 plots twice the log-likelihood as a func-
tion of ν for this model and indicates a 95% con-
fidence interval for ν based on classical χ2 limit-
ing theory. This interval falls strictly below one, so
the Cauchit model is rejected at this conventional
level of significance in favor of even heavier tailed
alternative links. In light of this evidence one can,
and should, still ask the question: How different are
the predicted probabilities from the estimated Gosset
model when compared to those from the probit spec-
ification. Figure 2 shows a PP plot comparing these
fitted probabilities evaluated at the sample observa-
tions. Clearly, the two models deliver dramatically
different estimates of the quit probabilities.
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Figure 1: Profile likelihood for the Gosset link param-
eter ν for a model of quit behavior. The vertical lines
indicate a 95% confidence interval for ν.
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Figure 2: PP Plot of Fitted Probabilities of the Pro-
bit and Gosset Models for the WECO data: The solid
line is the 45 degree line.

The Pregibon link poses somewhat more of a
challenge for fitting our quit model. In Figure 3 we
plot likelihood contours for the θ = (a, b) parame-
ters of the Pregibon link. The contours are labeled
according to the asymptotic relation

2(`(θ̂)− `(θ)) ∼ χ2
2,

where θ̂ is the maximum likelihood estimate. Thus,
if dAIC is a difference in AIC values at the points
θ and θ̂ then pchisq(dAIC,2) is the asymptotic p-
value of a test, and confidence regions can be labeled
accordingly. A formal test of the logistic hypothesis
against Pregibon alternatives gives a test statistic of
14.85 with an asymptotic p-value of 0.0006, strongly
repudiating the logit specification. The maximu-
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mum likelihood estimates from the Pregibon model
are (â, b̂) = (−3.58, 0.57) suggesting a much longer
tailed and somewhat skewed innovation density rel-
ative to the logistic. Figure 4 plots the fitted density.
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Figure 3: Profile likelihood contours for the Pregibon
link parameters for a model of quit behavior. Con-
tours are labeled according to asymptotic probability
content.
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Figure 4: Fitted Pregibon innovation density for the
quit model compared to the standardized logistic
density (in grey).

Evaluation of the likelihood in the region depe-
icted in the figure requires some care to assure con-

vergence of the glm algorithm. This is facilitated by
specifying reasonable initial values of the linear pre-
dictor coefficients using start argument. We begin
the evaluation of the likelihood on the grid required
for the contour plot with a central point of the grid
near the maximum likelihood estimate. It is pru-
dent to organize the remaining evaluations by mov-
ing away from the central grid point in a rectangular
spiral, updating the start argument as one travels
around the grid.

The code used to produce the figures is available
at: http://www.econ.uiuc.edu/~roger/research/
links/links.html

Conclusions

Given the opportunity to estimate glm models with
a wider class of parametric link functions it is ob-
viously attractive to embed such estimation into R
optimization of profiled likelihoods. This step, im-
plemented in a somewhat perfunctory fashion in
the code referred to above, finally answers my stu-
dents’ annual query: “What do we do if the Pregibon
goodness-of-link test rejects?”

Acknowledgments

I would like to think John Fox and Jungmo Yoon for
comments that led to substantial improvements in
the exposition, and I would like to thank Brian Ripley
for suggestions that led to a dramatic simplification
of the code.

Bibliography

R. King. gld: Basic functions for the generalised (Tukey)
lambda distribution, R package version 1.7.2, 2005.
http://www.r-project.org.

R. Klein, R. Spady, and A. Weiss. Factors affecting the
output and quit propensities of production work-
ers. The Review of Economic Studies, 58:929–954,
1991.

B. J. T. Morgan and D. M. Smith. A note on Wadley’s
problem with overdispersion. Applied Statistics, 41:
349–354, 1992.

D. Pregibon. Goodness of link tests for generalized
linear models. Applied Statistics, 29:15–24, 1980.

3


	 Parametric Links for Binary Response
	Implementation
	An Example
	Conclusions
	Acknowledgments


