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1 Asymptotic Critical Values

Like many other Kolmogorov-Smirnov type tests (see, e.g. Andrews (1993)), the lim-
iting distribution sup�2T kw0(�)k is dependent on the norm jj � jj, the pre-speci�ed T
and the dimension parameter q. Notice that the transformation is generally unstable
in the extreme right tails, and the uniform convergence of existing estimators of the
density and score (f(F�1(s)) and f 0=f(F�1(s))) usually requires that T be bounded
away from zero and one, we consider a subset of [0; 1] whose closure lies in (0; 1):

We calculated the 1%, 5%, and 10% critical values for the test statistic

Kn = sup
�2T

kevn(�)k
based on simulations where the Brownian motion was approximated by a Gaussian
random walk, using a sample size n = 2000 and 20; 000 replications. For the norm
k�k, we use the `1 norm for a q-dimensional vector x; kxk =

Pq
j=1 jxj j. Table 1 covers

T = [�; 1 � �] for � = 0:05; 0:1; 0:15, 0:2, 0:25, 0:3; and q = 1; 2; ::::::; 20. Although
conventionally we consider symmetric intervals T = [�; 1� �] for some small numbers
�, a much wider range of intervals T may be considered for the proposed tests. Critical
values based other choices of the interval T and the dimension parameter q can be
similarly calculated. Gauss programs are available from the authors upon request.

2 Monte Carlo Results

In this section, we describe some Monte Carlo experiments to examine the �nite
sample performance of the proposed tests. In particular, we examine the e�ectiveness
of the martingale transformation on the size and power properties of the tests. Some
general rules of bandwidth selection are given based on the Monte Carlo results. We
consider sample sizes n = 100; 200; 300; 400; 500; 800; as representive of sample sizes
in empirical analyses, and indicative of the validity of the asymptotic approximations.
The numbers of iterations in all these simulations are 1000.

First of all, to investigate the e�ectiveness of the martingale transformation on
quantile regression inference, we examine the size and power properties of the infea-
sible version tests where the true density and score functions are used in the stan-
dardization and the martingale transformation. We start with the heteroscedasticity
test as described in Section 5.3. The data were generated from the model

yi = �+ �xi + �(xi)ui; (1)
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where xi and ui are iidN (0; 1) random variates and are mutually independent, � = 0;
and � = 1. �(xi) = 
0 + 
1xi with 
0 = 1. We examine the empirical rejection rates
of the test for di�erent choices of sample sizes and 
1 values, at the 5% level of signif-
icance. In constructing the test, we used the OLS estimator for b�, and the truncation
parameter value � = 0:05 (i.e. T = [0:05; 0:95]). Since xi is a scalar, the limiting
null distribution of the test statistic is sup0:05���0:95 jW (�)j and the 5% level critical
value is 2.14. For the choices of the heteroscedasticity parameter 
1; we consider

1 = 0; 0:1; 0:2; 0:3; 0:5; 1; 2; 5: When 
1 = 0; the model is homoscedastic and the re-
jection rates give the empirical sizes. When 
1 6= 0; the model is heteroscedastic and
the rejection rates deliver the empirical powers. Table 1 reports the empirical rejec-
tion rates for di�erent values of 
1 and n: Other values of the truncation parameter �
were also tried and qualitatively similar results were obtained. In addition, noticing
that the true density and score function are known in this case, we also investigated
the test with no truncation for similar choices of 
1 values. The corresponding results
are reported in Table 2. These Monte Carlo results indicate that, given information
on the density and score, the martingale transformation yields good size and power
for the proposed testing procedure in �nite sample. The cases with estimated scores
and density for this model are examined and reported below.

The remaining Monte Carlo experiments are based on the following two sample
model (

y1i = �1 + �1ui; i = 1; :::::; n1;
y2i = �2 + �2vi; i = 1; :::::; n2;

(2)

for di�erent values of (�1; �2; �1; �2): In particular, we report results based on the
following two sets of parameter values

Location Shift : �1 = 1; �2 = 0; �1 = �2 = 1; (3)

Location� Scale Shift : �1 = 1; �2 = 0; �1 = 2; �2 = 1; (4)

where ut; vt are iid N (0,1) random variates. Alternative values of (�1; �2; �1; �2)
have also been considered and, again, qualitatively similar results were obtained. As
shown in the previous discussion, the two samples can be pooled into one regression
by application of dummy variables. When the parameters take the �rst set of values,
(2) is a location shift model. The null hypothesis of a location shift model can be
tested by the procedure given in Section 5.3. When the data is generated based on
the second set parameters, (2) is a location-scale model. The location-scale model
hypothesis can be tested by the procedure given in Section 5.1. Table 3 reports the
empirical size of these tests for di�erent combinations of n1 and n2. We can see that
the test has pretty good size properties in �nite sample. These Monte Carlo results,
together with the results on the heteroskedasticity test in Tables 1 and 2, con�rm
the e�ectiveness of the martingale transformation in quantile regression inference.

The above Monte Carlo experiments use the true density and score. Obviously it is
also important to evaluate the e�ect of nonparametric nuisance parameter estimation
on the performance of the proposed tests. In the rest of our Monte Carlo experiments,
we estimate F�1(s) and '0(s) using the approach described in the text. For the score
function _g, we employ the adaptive kernel estimator of Portnoy and Koenker (1989).
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The kernel estimation procedures for these nuisance functions are nonparametric
and therefore obviously entail choices of bandwidth values. Unsuitable bandwidth
selection can produce poor results. However, under broad conditions on the conver-
gence rate of the bandwidth parameters, the nonparametric estimates are consistent
and testing procedures using di�erent bandwidth choices are (�rst order) asymp-
totically equivalent, although the �nite sample performance of these tests can vary
considerably with bandwidth choice. Extensive simulations have been conducted in
the literature to show the importance of bandwidth choice on estimation and testing
procedure that use nonparametric estimates.

It was anticipated that the estimation of '0(t), used in the standardization step,
would exert important in
uence on the �nite sample performance of our tests. This
is con�rmed in the simulations. For this reason, we pay particular attention to the
bandwidth choice in density estimation. A bandwidth rule that Hall and Sheather
(1988) suggested based on Edgeworth expansion for studentized quantiles is

hHS = n�1=3z2=3� [1:5s(t)=s00(t)]1=3;

where z� satis�es �(z�) = 1��=2 for the construction of 1�� con�dence intervals,
and s(t) = '0(t)

�1. In the absence of other information about the form of s(�); we
plug in the Gaussian model to select bandwidth and obtain

hHS = n�1=3z2=3� [1:5�2(��1(t))=(2(��1(t))2 + 1)]1=3:

Another bandwidth selection has been proposed by Bo�nger (1975). The Bo�nger
bandwidth hB was derived based on minimizing the mean squared error of the density
estimator and is of order n�1=5:

hB = n�1=5[4:5s2(t)=(s00(t))2]1=5:

Again, we plug in the Gaussian density and obtain the following bandwidth that has
been widely used in practice

hB = n�1=5[4:5�4(��1(t))=(2(��1(t))2 + 1)2]1=5:

To focus attention on the e�ect of 'n(s), we �rst conduct Monte Carlo experiments
where only the density function is estimated while the true score function is used,
the Monte Carlo results of the heteroscedasticity test are reported in Table 4. From
these results, we found over-rejection with the Hall-Sheather bandwidth, and under-
rejection when the Bo�nger bandwidth was used. Such a �nding is consistent with the
fact that the Bo�nger bandwidth is eventually much larger than the Hall/Sheather
bandwidth. (Notice that both of these bandwidth choices are varying over t 2 T .
For comparison purposes, we also tried using bandwidth choices h = n1=5; n1=4, and
n1=3. All these bandwidth values are constant over the whole range of quantiles. The
sampling performance of tests using a constant bandwidth turned out to be poor, and
are inferior to bandwidth choices such as the Hall/Sheather or Bo�nger bandwidth
that varies over the quantiles. For this reason, in the Monte Carlo that follows, we
focus on the Hall/Sheather and Bo�nger bandwidth, and their variants.)
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Finally we consider the estimation of both the density and the score in our tests.
For the density estimation, besides the Hall/Sheather bandwidth hHS and the Bo�n-
ger bandwidth hB , we also considered several bandwidth choices which are variants
of hHS and hB . Giving the above �ndings that the Hall-Sheather bandwidth over-
rejects and the Bo�nger bandwidth under-rejects, most of the bandwidths that we
consider take values between hHS and hB : We denote the variants of hB as h�B ,
h�B = �hB , where � is a scalar, we considered � = 0:4, 0.5, 0.6, 0.7, 0.8, and 1.2, in
our Monte Carlo and representative results are reported. (We have also considered
bandwidth of the form hÆHS = ÆhHS for di�erent values of Æ (mostly > 1), the results
are qualitatively similar to h�B and thus we report h�B only.)

The score function was estimated by the method of Portnoy and Koenker (1989)
and we choose the Silverman (1986) bandwidth in our Monte Carlo. Our simulation
results show that the tests are more a�ected by the estimation of the '0(t) than that
of the score. Intuitively, the estimator of the density '0(t) plays the role of a scalar
and thus has the largest in
uence. The Monte Carlo results also indicates that the
method of Portnoy and Koenker (1989) coupled with the Silverman bandwidth has
reasonably good performance.

Table 5 reports the Monte Carlo results for the heteroscedasticity (location-shift)
test with these bandwidth selections, and Table 6 gives the corresponding results
of the location-scale test. The Monte Carlo evidence recon�rmed the fact that the
bandwidth choice does have an important in
uence on the �nite sample performance
of these tests. For the location-scale test, we found that the Bo�nger bandwidth
hB to be a reasonable choice. For the heteroscedasticity test, we again found over-
rejection for hHS , and under-rejection with hB . From the Monte Carlo results, at
least for the model and the nonparametric methods used here, it seems that the
Hall/Sheather bandwidth provides a good lower bound in bandwidth selection, and
the Bo�nger bandwidth provides a good upper bound. Among di�erent variants of
hB ; the bandwidth h0:6B seems to be roughly optimal for the heteroskedasticity tests.
Similarly, among variants of hHS ; we found that h3:7HS = 3:7hHS to be the best.

All these Tables also show that: as the sample sizes increase, the tests do have
improved size and power properties, corroborating the asymptotic theory. In sum-
mary, the Monte Carlo results indicate that, by choosing appropriate bandwidth, the
proposed tests have reasonable size and power properties.
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Asymptotic Critical Values
" = 0:05 " = 0:1 " = 0:15

1% 5% 10% 1% 5% 10% 1% 5% 10%

p = 1 2.721 2.140 1.872 2.640 2.102 1.833 2.573 2.048 1.772

p = 2 4.119 3.393 3.011 4.034 3.287 2.946 3.908 3.199 2.866

p = 3 5.350 4.523 4.091 5.267 4.384 3.984 5.074 4.269 3.871

p = 4 6.548 5.560 5.104 6.340 5.430 4.971 6.148 5.284 4.838

p = 5 7.644 6.642 6.089 7.421 6.465 5.931 7.247 6.264 5.758

p = 6 8.736 7.624 7.047 8.559 7.412 6.852 8.355 7.197 6.673

p = 7 9.876 8.578 7.950 9.573 8.368 7.770 9.335 8.125 7.536

p = 8 10.79 9.552 8.890 10.53 9.287 8.662 10.35 9.044 8.412

p = 9 11.81 10.53 9.820 11.55 10.26 9.571 11.22 9.963 9.303

p = 10 12.91 11.46 10.72 12.54 11.17 10.43 12.19 10.85 10.14

p = 11 14.03 12.41 11.59 13.58 12.10 11.29 13.27 11.77 10.98

p = 12 15.00 13.34 12.52 14.65 13.00 12.20 14.26 12.61 11.86

p = 13 15.93 14.32 13.37 15.59 13.90 13.03 15.22 13.48 12.69

p = 14 16.92 15.14 14.28 16.52 14.73 13.89 16.12 14.34 13.48

p = 15 17.93 16.11 15.19 17.53 15.67 14.76 17.01 15.24 14.36

p = 16 18.85 16.98 16.06 18.46 16.56 15.65 17.88 16.06 15.22

p = 17 19.68 17.90 16.97 19.24 17.44 16.53 18.78 16.93 16.02

p = 18 20.63 18.83 17.84 20.21 18.32 17.38 19.70 17.80 16.86

p = 19 21.59 19.72 18.73 21.06 19.24 18.24 20.53 18.68 17.70

p = 20 22.54 20.58 19.62 22.02 20.11 19.11 21.42 19.52 18.52

" = 0:2 " = 0:25 " = 0:3

1% 5% 10% 1% 5% 10% 1% 5% 10%

p = 1 2.483 1.986 1.730 2.420 1.923 1.664 2.320 1.849 1.602

p = 2 3.742 3.100 2.781 3.633 3.000 2.693 3.529 2.904 2.602

p = 3 4.893 4.133 3.749 4.737 4.018 3.632 4.599 3.883 3.529

p = 4 6.023 5.091 4.684 5.818 4.948 4.525 5.599 4.807 4.365

p = 5 6.985 6.070 5.594 6.791 5.853 5.406 6.577 5.654 5.217

p = 6 8.147 6.985 6.464 7.922 6.760 6.241 7.579 6.539 6.024

p = 7 9.094 7.887 7.299 8.856 7.611 7.064 8.542 7.357 6.832

p = 8 10.03 8.775 8.169 9.685 8.510 7.894 9.413 8.211 7.633

p = 9 10.90 9.672 9.018 10.61 9.346 8.737 10.27 9.007 8.400

p = 10 11.89 10.52 9.843 11.48 10.17 9.517 11.15 9.832 9.192

p = 11 12.85 11.35 10.66 12.48 10.99 10.28 12.06 10.62 9.929

p = 12 13.95 12.22 11.48 13.54 11.82 11.11 12.96 11.43 10.74

p = 13 14.86 13.09 12.31 14.34 12.66 11.93 13.82 12.24 11.51

p = 14 15.69 13.92 13.11 15.26 13.46 12.67 14.64 13.03 12.28

p = 15 16.55 14.77 13.91 16.00 14.33 13.47 15.46 13.85 13.05

p = 16 17.41 15.58 14.74 16.81 15.09 14.26 16.25 14.61 13.78

p = 17 18.19 16.43 15.58 17.59 15.95 15.06 17.04 15.39 14.54

p = 18 19.05 17.30 16.37 18.49 16.78 15.83 17.85 16.14 15.30

p = 19 19.96 18.09 17.17 19.40 17.50 16.64 18.78 16.94 16.05

p = 20 20.81 18.95 17.97 20.14 18.30 17.38 19.48 17.74 16.79
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TABLE 1: Size and Power of the Heteroskedasticity Test (Truncated, � = 0:05)

Size Power

n 
1 = 0 
1 = 0:1 
1 = 0:2 
1 = 0:3 
1 = 0:5 
1 = 1 
1 = 2 
1 = 5

100 0.006 0.134 0.377 0.729 0.974 0.981 0.990 0.999

200 0.054 0.269 0.77 0.977 0.999 1.000 1.000 1.000

300 0.052 0.383 0.931 1.000 1.000 1.000 1.000 1.000

400 0.052 0.549 0.989 1.000 1.000 1.000 1.000 1.000

500 0.052 0.616 1.000 1.000 1.000 1.000 1.000 1.000

800 0.051 0.829 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 2: Size and Power of the Heteroskedasticity Test (No Truncation)
Size Power

n 
1 = 0 
1 = 0:1 
1 = 0:2 
1 = 0:3 
1 = 0:5 
1 = 1 
1 = 2 
1 = 5

100 0.069 0.129 0.347 0.626 0.682 0.96 0.98 0.989

200 0.073 0.258 0.753 0.982 1.000 1.000 1.000 1.000

300 0.067 0.395 0.92 0.999 1.000 1.000 1.000 1.000

400 0.063 0.51 0.987 1.000 1.000 1.000 1.000 1.000

500 0.056 0.595 0.999 1.000 1.000 1.000 1.000 1.000

800 0.052 0.802 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 3: Application to The Two-Sample Models
Case 1: Location Shift Case 2: Location-Scale Shift

�1 = 1; �2 = 0; �1 = �2 = 1 �1 = 1; �2 = 0; �1 = 2; �2 = 1

n1 n2 size n1 n2 size n1 n2 size n1 n2 size

100 100 0.074 100 200 0.060 100 100 0.153 100 200 0.179

150 150 0.080 100 300 0.086 150 150 0.158 100 300 0.196

200 200 0.064 150 300 0.055 200 200 0.169 150 300 0.175

250 250 0.054 200 300 0.056 250 250 0.172 200 300 0.183

300 300 0.053 250 350 0.054 300 300 0.141 250 350 0.150

400 400 0.051 300 500 0.053 400 400 0.088 300 500 0.102
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TABLE 4: The Heteroskedasticity Test (Estimated Density)
hHS hB

Size Power Size Power

n 
1 = 0 0:2 0:5 1 
1 = 0 0:2 0:5 1

100 0.29 0.71 0.989 0.998 0.026 0.130 0.392 0.762

200 0.22 0.842 1.000 1.000 0.031 0.197 0.606 0.882

300 0.18 0.92 1.000 1.000 0.031 0.316 0.997 1.000

400 0.16 0.97 1.000 1.000 0.037 0.561 0.999 1.000

500 0.13 1.000 1.000 1.000 0.039 0.688 1.000 1.000

800 0.07 1.000 1.000 1.000 0.044 0.812 1.000 1.000

TABLE 5: The Heteroskedasticity Test (Estimated Density and Scores)

hHS hB
Size Power Size Power

n 
1 = 0 0:2 0:5 1 
1 = 0 0:2 0:5 1

100 0.45 0.723 0.99 1.000 0.009 0.053 0.197 0.545

200 0.21 0.877 1.000 1.000 0.013 0.109 0.772 0.949

300 0.195 0.952 1.000 1.000 0.019 0.229 0.985 0.992

400 0.186 0.995 1.000 1.000 0.023 0.412 0.997 0.998

500 0.173 1.000 1.000 1.000 0.029 0.565 1.000 1.000

800 0.102 1.000 1.000 1.000 0.041 0.792 1.000 1.000

TABLE 5(Continued): The Heteroskedasticity Test (Estimated Density and Scores)
h0:5B h0:6B h0:7B

Size Power Size Power Size Power

n 
1 = 0 0:2 0:5 1 
1 = 0 0:2 0:5 1 
1 = 0 0:2 0:5 1

100 0.101 0.264 0.804 0.898 0.035 0.211 0.755 0.820 0.016 0.126 0.641 0.828

200 0.070 0.48 0.988 0.999 0.041 0.406 0.990 0.989 0.022 0.280 0.964 0.992

300 0.062 0.622 0.998 1.000 0.043 0.665 1.000 1.000 0.029 0.416 0.998 1.000

400 0.054 0.812 1.000 1.000 0.043 0.809 1.000 1.000 0.035 0.632 1.000 1.000

500 0.054 0.916 1.000 1.000 0.045 0.911 1.000 1.000 0.040 0.814 1.000 1.000

800 0.053 0.982 1.000 1.000 0.050 0.969 1.000 1.000 0.049 0.924 1.000 1.000
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TABLE 6: Empirical Size of Location-Scale Test (Estimated Density and Scores)
n1 n2 hHS hB h0:6B h0:7B h1:2B
50 50 0.616 0.028 0.063 0.054 0.011

75 75 0.603 0.033 0.086 0.069 0.029

100 100 0.589 0.038 0.098 0.069 0.038

150 150 0.538 0.079 0.112 0.095 0.036

200 200 0.511 0.079 0.123 0.112 0.042

250 250 0.507 0.065 0.126 0.120 0.048

300 300 0.456 0.078 0.135 0.127 0.047

400 400 0.415 0.088 0.138 0.106 0.053

500 500 0.406 0.105 0.145 0.103 0.079

600 600 0.312 0.085 0.101 0.092 0.069

700 700 0.226 0.072 0.089 0.085 0.065
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