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Or ... Pragmatic Goniolatry

“Goniolatry, or the worship of angles, ...”
Thomas Pynchon (Mason and Dixon, 1997).
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Univariate L2 Smoothing Splines

The Problem:

min
g∈G

n∑
i=1

(yi − g(xi))2 + λ

∫ b

a

(g′′(x))2dx,

Gaussian Fidelity to the data:

n∑
i=1

(yi − g(xi))2

Roughness Penalty on ĝ:

λ

∫ b

a

(g′′(x))2dx,
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Quantile Smoothing Splines

The Problem:

min
g∈G

n∑
i=1

ρτ(yi − g(xi)) + λJ(g),

Quantile Fidelity to the Data:

ρτ(u) = u(τ − I(u < 0))

Total Variation Roughness Penalty on ĝ:

J(g) = V (g′) =
∫
|g′′(x)|dx,

Ref: Koenker, Ng, Portnoy (Biometrika, 1994)
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Thin Plate Smoothing Splines

Problem:

min
g

n∑
i=1

(zi − g(xi, yi))2 + λJ(g)

Roughness Penalty:

J(g,Ω) =
∫ ∫

Ω

(g2
xx + 2g2

xy + g2
yy)dxdy

Equivariant to translations and rotations.

Easy to compute provided Ω = |R2. But this creates boundary problems.

References: Wahba(1990), Green and Silverman(1998).
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Thin Plate Smoothing Splines

Problem:

min
g

n∑
i=1

(zi − g(xi, yi))2 + λJ(g)

Roughness Penalty:

J(g,Ω) =
∫ ∫

Ω

(g2
xx + 2g2

xy + g2
yy)dxdy

Equivariant to translations and rotations.

Easy to compute provided Ω = |R2. But this creates boundary problems.

References: Wahba(1990), Green and Silverman(1998).

Question: How to extend total variation penalties to g : |R2 → |R?
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Thin Plate Example
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Figure 1: Integrand of the thin plate penalty for the He, Ng, and Portnoy
tent function interpolant of the points {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
The boundary effects are created by extension of the optimization over all of
|R2. For the restricted domain Ω = [0, 1]2 the optimal solution g(x, y) = xy
has considerably smaller penalty: 2 versus 2.77 for the unrestricted domain
solution.



7

Three Variations on Total Variation for f : [a, b]→ |R

1. Jordan(1881)

V (f) = sup
π

n−1∑
k=0

|f(xk+1)− f(xk)|

where π denotes partitions: a = x0 < x1 < . . . < xn = b.
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Three Variations on Total Variation for f : [a, b]→ |R

1. Jordan(1881)

V (f) = sup
π

n−1∑
k=0

|f(xk+1)− f(xk)|

where π denotes partitions: a = x0 < x1 < . . . < xn = b.

2. Banach (1925)

V (f) =
∫
N(y)dy

where N(y) = card{x : f(x) = y} is the Banach indicatrix

3. Vitali (1905)

V (f) =
∫
|f ′(x)|dx

for absolutely continuous f .
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Total Variation for f : |Rk → |Rm

A convoluted history ... de Giorgi (1954)

For smooth f : |R→ |R

V (f,Ω) =
∫

Ω

|f ′(x)|dx
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Total Variation for f : |Rk → |Rm

A convoluted history ... de Giorgi (1954)

For smooth f : |R→ |R

V (f,Ω) =
∫

Ω

|f ′(x)|dx

For smooth f : |Rk → |Rm

V (f,Ω, ‖ · ‖) =
∫

Ω

‖∇f(x)‖dx

Extension to nondifferentiable f via theory of distributions.

V (f,Ω, ‖ · ‖) =
∫

Ω

‖∇f(x) ∗ ϕε‖dx
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Roughness Penalties for g : |Rk → |R

For smooth g : |R→ |R

J(g,Ω) = V (g′,Ω) =
∫

Ω

|g′′(x)|dx
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Roughness Penalties for g : |Rk → |R

For smooth g : |R→ |R

J(g,Ω) = V (g′,Ω) =
∫

Ω

|g′′(x)|dx

For smooth g : |Rk → |R

J(g,Ω, ‖ · ‖) = V (∇g,Ω, ‖ · ‖) =
∫

Ω

‖∇2g‖dx

Again, extension to nondifferentiable g via theory of distributions.

Choice of norm is subject to dispute.
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Invariance Considerations

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

‖U>HU‖ = ‖H‖



10

Invariance Considerations

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

‖U>HU‖ = ‖H‖

Examples:

‖∇2g‖ =
√
g2
xx + 2g2

xy + g2
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Invariance Considerations

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

‖U>HU‖ = ‖H‖

Examples:

‖∇2g‖ =
√
g2
xx + 2g2

xy + g2
yy

‖∇2g‖ = |trace∇2g|
‖∇2g‖ = max|eigenvalue(H)|

‖∇2g‖ = |gxx|+ 2|gxy|+ |gyy|
‖∇2g‖ = |gxx|+ |gyy|

Solution of associated variational problems is difficult!
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Triograms

Following Hansen, Kooperberg and Sardy (JASA, 1998):

Let U be a compact region of the plane, and let ∆ denote a collection of
sets δi : i = 1, . . . , n with disjoint interiors such that U = ∪δ∈∆δ.

If δ ∈ ∆ are planar triangles, ∆ is a triangulation of U ,

Definition: A continuous, piecewise linear function on a triangulation,
∆, is called a triogram.
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Triograms

Following Hansen, Kooperberg and Sardy (JASA, 1998):

Let U be a compact region of the plane, and let ∆ denote a collection of
sets δi : i = 1, . . . , n with disjoint interiors such that U = ∪δ∈∆δ.

If δ ∈ ∆ are planar triangles, ∆ is a triangulation of U ,

Definition: A continuous, piecewise linear function on a triangulation,
∆, is called a triogram.

For triograms roughness is less ambiguous.
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A Roughness Penalty for Triograms

For triograms the “ambiguity of the norm” problem for total variation
roughness penalties is resolved.

Theorem. Suppose that g : |R2 → |R, is a piecewise-linear function on the
triangulation, ∆. For any coordinate-independent penalty, J , there is a
constant c dependent only on the choice of the norm such that

J(g) = cJ4(g) = c
∑
e

‖∇g+
e −∇g−e ‖ ‖e‖ (1)

where e runs over all the interior edges of the triangulation ‖e‖ is the
length of the edge e, and ‖∇g+

e −∇g−e ‖ is the length of the difference
between gradients of g on the triangles adjacent to e.
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Computation of Median Triograms

The Problem:
min
g∈G4

∑
|zi − g(xi, yi)|+ λJ4(g)

can be reformulated as an augmented `1 (median) regression problem,

min
β∈|Rp

n∑
i=1

|zi − a>i β|+ λ

M∑
k=1

|h>k β|.

where β denotes a vector of parameters representing the values taken by
the function g at the vertices of the triangulation 4. The ai are
barycentric coordinates of the (xi, yi) points in terms of these vertices, and
the hk represent the penalty contribution in terms of these vertices.
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Computation of Median Triograms

The Problem:
min
g∈G4

∑
|zi − g(xi, yi)|+ λJ4(g)

can be reformulated as an augmented `1 (median) regression problem,

min
β∈|Rp

n∑
i=1

|zi − a>i β|+ λ

M∑
k=1

|h>k β|.

where β denotes a vector of parameters representing the values taken by
the function g at the vertices of the triangulation 4. The ai are
barycentric coordinates of the (xi, yi) points in terms of these vertices, and
the hk represent the penalty contribution in terms of these vertices.

Extensions to quantile and mean triograms are straightforward.
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Barycentric Coordinates

Triograms, G, on ∆ constitute a linear space with elements

g(u) =
3∑
i=1

αiBi(u) u ∈ δ ⊂ ∆ B1(u) =
Area (u, v2, v3)
Area (v1, v2, v3)

etc.
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Delaunay Triangulation

Properties of Delaunay triangles:

• Circumscribing circles of Delaunay triangles exclude other vertices,

• Maximize the minimum angle of the triangulation.
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Robert Delaunay
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B.N. Delone (1890-1973)
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Four Median Triograms Fits

Consider estimating the noisy cone:

zi = max{0, 1/3− 1/2
√
x2
i + y2

i }+ ui,

with the (xi, yi)’s generated as independent uniforms on [−1, 1]2, and with
the ui are iid Gaussian with standard deviation σ = .02. With sample size
n = 400, the triogram problems are roughly 1600 by 400, but very sparse.
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Four Median Triograms Fits
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Figure 2: Four median triogram fits for the inverted cone example. The
values of the smoothing parameter λ and the number of interpolated points
in the fidelity component of the objective function, pλ are indicated above
each of the four plots.
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Four Mean Triograms Fits

Figure 3: Four mean triogram fits for the noisy cone example. The values
of the smoothing parameter λ and the trace of the linear operator defining
the estimator, pλ are indicated above each of the four plots.
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Figure 4: Perspective Plot of Median Model for Chicago Land Values.
Based on 1194 land sales in Chicago Metropolitan Area in 1995-97, prices
in dollars per square foot.
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Figure 5: Contour Plot of First Quartile Model for Chicago Land Values.
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Figure 6: Contour Plot of Median Model for Chicago Land Values.
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Figure 7: Contour Plot of Third Quartile Model for Chicago Land Values.
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Automatic λ Selection

Schwarz Criterion:

log(n−1
∑

ρτ(zi − ĝλ(xi, yi))) + (2n)−1pλ log n.

where the dimension of the fitted function, pλ, is defined as the number of
points interpolated by the fitted function ĝλ. Other approaches: Stein’s
unbiased risk estimator, Donoho and Johnstone (1995), and e.g.
Antoniadis and Fan (2001).



28

Extensions

Triograms can be constrained to be convex (or concave) by imposing m
additional linear inequality constraints, one for each interior edge of the
triangulation. This might be interesting for estimating bivariate densities
since we could impose, or test (?) for log-concavity. Now computation is
somewhat harder since the fidelity is more complicated.

Partial linear model applications are quite straightforward.

Extensions to penalties involving V (g) may also prove interesting.
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Monte-Carlo Performance

Design: He and Shi (1996)

zi = g0(xi, yi) + ui i = 1, ..., 100.

g0(x, y) =
40 exp(8((x− .5)2 + (y − .5)2))

(exp(8((x− .2)2 + (y − .7)2)) + exp(8((x− .7)2 + (y − .2)2)))

with (x, y) iid uniform on [0, 1]2 and ui distributed as normal, normal scale
mixture, or slash.
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Monte-Carlo Performance

Design: He and Shi (1996)

zi = g0(xi, yi) + ui i = 1, ..., 100.

g0(x, y) =
40 exp(8((x− .5)2 + (y − .5)2))

(exp(8((x− .2)2 + (y − .7)2)) + exp(8((x− .7)2 + (y − .2)2)))

with (x, y) iid uniform on [0, 1]2 and ui distributed as normal, normal scale
mixture, or slash.

Comparison of both L1 and L2 triogram and tensor product splines.
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Monte-Carlo MISE (1000 Replications)

Distribution L1 tensor L1 triogram L2 tensor L2 triogram
Normal 0.609 0.442 0.544 0.3102

(0.095) (0.161) (0.072) (0.093)
Normal Mixture 0.691 0.515 0.747 0.602

(0.233) (0.245) (0.327) (0.187)
Slash 0.689 4.79 31.1 171.1

(6.52) (125.22) (18135) (4723)

Table 1: Comparative mean integrated squared error
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Monte-Carlo MISE (1000 Replications)

Distribution L1 tensor L1 triogram L2 tensor L2 triogram
Normal 0.609 0.442 0.544 0.3102

(0.095) (0.161) (0.072) (0.093)
Normal Mixture 0.691 0.515 0.747 0.602

(0.233) (0.245) (0.327) (0.187)
Slash 0.689 4.79 31.1 171.1

(6.52) (125.22) (18135) (4723)

Table 2: Comparative mean integrated squared error
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Monte-Carlo MISE (998 Replications)

Distribution L1 tensor L1 triogram L2 tensor L2 triogram
Normal 0.609 0.442 0.544 0.3102

(0.095) (0.161) (0.072) (0.093)
Normal Mixture 0.691 0.515 0.747 0.602

(0.233) (0.245) (0.327) (0.187)
Slash 0.689 0.486 31.1 171.1

(6.52) (3.25) (18135) (4723)

Table 3: Comparative mean integrated squared error
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