Penalty Methods for Bivariate Smoothing and Chicago Land Values

Roger Koenker University of Illinois, Urbana-Champaign *Ivan Mizera* University of Alberta, Edmonton

Northwestern University: October 2001

Or ... Pragmatic Goniolatry

Or ... Pragmatic Goniolatry

"Goniolatry, or the worship of angles, ..." Thomas Pynchon (*Mason and Dixon*, 1997).

Univariate \mathcal{L}_2 Smoothing Splines

The Problem:

$$\min_{g \in \mathcal{G}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int_a^b (g''(x))^2 dx,$$

Gaussian Fidelity to the data:

$$\sum_{i=1}^{n} (y_i - g(x_i))^2$$

Roughness Penalty on \hat{g} :

$$\lambda \int_{a}^{b} (g''(x))^2 dx$$

Quantile Smoothing Splines

The Problem:

$$\min_{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}(y_i - g(x_i)) + \lambda J(g),$$

Quantile Fidelity to the Data:

$$\rho_{\tau}(u) = u(\tau - I(u < 0))$$

Total Variation Roughness Penalty on \hat{g} :

$$J(g) = V(g') = \int |g''(x)| dx,$$

Ref: Koenker, Ng, Portnoy (*Biometrika*, 1994)

Thin Plate Smoothing Splines

Problem:

$$\min_{g} \sum_{i=1}^{n} (z_i - g(x_i, y_i))^2 + \lambda J(g)$$

Roughness Penalty:

$$J(g,\Omega) = \iint_{\Omega} (g_{xx}^2 + 2g_{xy}^2 + g_{yy}^2) dxdy$$

Equivariant to translations and rotations.

Easy to compute provided $\Omega = |\mathbb{R}^2$. But this creates boundary problems.

References: Wahba(1990), Green and Silverman(1998).

Thin Plate Smoothing Splines

Problem:

$$\min_{g} \sum_{i=1}^{n} (z_i - g(x_i, y_i))^2 + \lambda J(g)$$

Roughness Penalty:

$$J(g,\Omega) = \iint_{\Omega} (g_{xx}^2 + 2g_{xy}^2 + g_{yy}^2) dxdy$$

Equivariant to translations and rotations.

Easy to compute provided $\Omega = |\mathbb{R}^2$. But this creates boundary problems. References: Wahba(1990), Green and Silverman(1998).

Question: How to extend total variation penalties to $g : |\mathbb{R}^2 \to |\mathbb{R}^2$?

Thin Plate Example

Figure 1: Integrand of the thin plate penalty for the He, Ng, and Portnoy tent function interpolant of the points $\{(0,0,0), (0,1,0), (1,0,0), (1,1,1)\}$. The boundary effects are created by extension of the optimization over all of $|\mathbb{R}^2$. For the restricted domain $\Omega = [0,1]^2$ the optimal solution g(x,y) = xy has considerably smaller penalty: 2 versus 2.77 for the unrestricted domain solution.

Three Variations on Total Variation for $f : [a, b] \rightarrow \mathbb{R}$

1. Jordan(1881)

$$V(f) = \sup_{\pi} \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$$

where π denotes partitions: $a = x_0 < x_1 < \ldots < x_n = b$.

Three Variations on Total Variation for $f : [a, b] \rightarrow \mathbb{R}$

1. Jordan(1881)

$$V(f) = \sup_{\pi} \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$$

where π denotes partitions: $a = x_0 < x_1 < \ldots < x_n = b$.

2. Banach (1925)

$$V(f) = \int N(y) dy$$

where $N(y) = \operatorname{card} \{ x : f(x) = y \}$ is the Banach indicatrix

Three Variations on Total Variation for $f : [a, b] \rightarrow \mathbb{R}$

1. Jordan(1881)

$$V(f) = \sup_{\pi} \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$$

where π denotes partitions: $a = x_0 < x_1 < \ldots < x_n = b$.

2. Banach (1925)

$$V(f) = \int N(y) dy$$

where $N(y) = \operatorname{card} \{ x : f(x) = y \}$ is the Banach indicatrix

3. Vitali (1905)

$$V(f) = \int |f'(x)| dx$$

for absolutely continuous f.

Total Variation for $f : \mathbb{R}^k \to \mathbb{R}^m$

A convoluted history ... de Giorgi (1954)

For smooth $f: \ |\mathbb{R} \to |\mathbb{R}$

$$V(f,\Omega) = \int_{\Omega} |f'(x)| dx$$

Total Variation for f: $\mathbb{R}^k \to \mathbb{R}^m$

A convoluted history ... de Giorgi (1954) For smooth $f: |\mathbb{R} \to |\mathbb{R}$

$$V(f,\Omega) = \int_{\Omega} |f'(x)| dx$$

For smooth $f: \ |\mathbb{R}^k \to |\mathbb{R}^m$

$$V(f, \Omega, \|\cdot\|) = \int_{\Omega} \|\nabla f(x)\| dx$$

Total Variation for $f : |\mathbf{R}^k \rightarrow |\mathbf{R}^m$

A convoluted history ... de Giorgi (1954) For smooth $f : |\mathbb{R} \to |\mathbb{R}$

$$V(f,\Omega) = \int_{\Omega} |f'(x)| dx$$

For smooth $f: \ |\mathbb{R}^k \to |\mathbb{R}^m$

$$V(f, \Omega, \|\cdot\|) = \int_{\Omega} \|\nabla f(x)\| dx$$

Extension to nondifferentiable f via theory of distributions.

$$V(f,\Omega,\|\cdot\|) = \int_{\Omega} \|\nabla f(x) * \varphi_{\epsilon}\| dx$$

Roughness Penalties for $g : |\mathbf{R}^k \to \mathbf{R}$

For smooth $g: \ |\mathbf{R} \to |\mathbf{R}$

$$J(g,\Omega) = V(g',\Omega) = \int_{\Omega} |g''(x)| dx$$

Roughness Penalties for $g : |\mathbf{R}^k \rightarrow |\mathbf{R}|$

For smooth $g: \ |\mathbf{R} \to |\mathbf{R}$

$$J(g,\Omega) = V(g',\Omega) = \int_{\Omega} |g''(x)| dx$$

For smooth $g : \ |\mathbb{R}^k \to |\mathbb{R}$

$$J(g,\Omega, \|\cdot\|) = V(\nabla g,\Omega, \|\cdot\|) = \int_{\Omega} \|\nabla^2 g\| dx$$

Roughness Penalties for $g : |\mathbb{R}^k \to \mathbb{R}$

For smooth $g: \ |\mathbb{R} \to |\mathbb{R}$

$$J(g,\Omega) = V(g',\Omega) = \int_{\Omega} |g''(x)| dx$$

For smooth $g : |\mathbb{R}^k \to |\mathbb{R}$

$$J(g,\Omega, \|\cdot\|) = V(\nabla g,\Omega, \|\cdot\|) = \int_{\Omega} \|\nabla^2 g\| dx$$

Again, extension to nondifferentiable g via theory of distributions.

Roughness Penalties for $g : |\mathbb{R}^k \to |\mathbb{R}$

For smooth $g: \ |\mathbb{R} \to |\mathbb{R}$

$$J(g,\Omega) = V(g',\Omega) = \int_{\Omega} |g''(x)| dx$$

For smooth $g : |\mathbb{R}^k \to |\mathbb{R}$

$$J(g,\Omega, \|\cdot\|) = V(\nabla g,\Omega, \|\cdot\|) = \int_{\Omega} \|\nabla^2 g\| dx$$

Again, extension to nondifferentiable g via theory of distributions. Choice of norm is subject to dispute.

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

 $\|U^\top H U\| = \|H\|$

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

 $\|U^\top H U\| = \|H\|$

Examples:

$$\|\nabla^2 g\| = \sqrt{g_{xx}^2 + 2g_{xy}^2 + g_{yy}^2}$$
$$\|\nabla^2 g\| = |trace \nabla^2 g|$$
$$\|\nabla^2 g\| = max|eigenvalue(H)|$$

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

 $\|U^\top H U\| = \|H\|$

Examples:

$$\|\nabla^2 g\| = \sqrt{g_{xx}^2 + 2g_{xy}^2 + g_{yy}^2}$$
$$\|\nabla^2 g\| = |trace \nabla^2 g|$$
$$\|\nabla^2 g\| = max|eigenvalue(H)|$$

$$\|\nabla^2 g\| = |g_{xx}| + 2|g_{xy}| + |g_{yy}|$$
$$\|\nabla^2 g\| = |g_{xx}| + |g_{yy}|$$

Invariance helps to narrow the choice of norm.

For orthogonal U and symmetric matrix H, we would like:

 $\|U^\top H U\| = \|H\|$

Examples:

$$\|\nabla^2 g\| = \sqrt{g_{xx}^2 + 2g_{xy}^2 + g_{yy}^2}$$
$$\|\nabla^2 g\| = |trace \nabla^2 g|$$
$$\|\nabla^2 g\| = max|eigenvalue(H)|$$

$$\|\nabla^2 g\| = |g_{xx}| + 2|g_{xy}| + |g_{yy}|$$
$$\|\nabla^2 g\| = |g_{xx}| + |g_{yy}|$$

Solution of associated variational problems is difficult!

Triograms

Following Hansen, Kooperberg and Sardy (JASA, 1998):

Let \mathcal{U} be a compact region of the plane, and let Δ denote a collection of sets $\delta_i : i = 1, \ldots, n$ with disjoint interiors such that $\mathcal{U} = \bigcup_{\delta \in \Delta} \delta$.

If $\delta \in \Delta$ are planar triangles, Δ is a triangulation of \mathcal{U} ,

Definition: A continuous, piecewise linear function on a triangulation, Δ , is called a triogram.

Triograms

Following Hansen, Kooperberg and Sardy (JASA, 1998):

Let \mathcal{U} be a compact region of the plane, and let Δ denote a collection of sets $\delta_i : i = 1, \ldots, n$ with disjoint interiors such that $\mathcal{U} = \bigcup_{\delta \in \Delta} \delta$.

If $\delta \in \Delta$ are planar triangles, Δ is a triangulation of \mathcal{U} ,

Definition: A continuous, piecewise linear function on a triangulation, Δ , is called a triogram.

For triograms roughness is less ambiguous.

A Roughness Penalty for Triograms

For triograms the "ambiguity of the norm" problem for total variation roughness penalties is resolved.

Theorem. Suppose that $g : |\mathbb{R}^2 \to |\mathbb{R}$, is a piecewise-linear function on the triangulation, Δ . For any coordinate-independent penalty, J, there is a constant c dependent only on the choice of the norm such that

$$J(g) = cJ_{\Delta}(g) = c\sum_{e} \|\nabla g_{e}^{+} - \nabla g_{e}^{-}\| \|e\|$$
(1)

where e runs over all the interior edges of the triangulation ||e|| is the length of the edge e, and $||\nabla g_e^+ - \nabla g_e^-||$ is the length of the difference between gradients of g on the triangles adjacent to e.

Computation of Median Triograms

The Problem:

$$\min_{g \in \mathcal{G}_{\triangle}} \sum |z_i - g(x_i, y_i)| + \lambda J_{\triangle}(g)$$

can be reformulated as an augmented ℓ_1 (median) regression problem,

$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n |z_i - a_i^\top \beta| + \lambda \sum_{k=1}^M |h_k^\top \beta|$$

where β denotes a vector of parameters representing the values taken by the function g at the vertices of the triangulation \triangle . The a_i are barycentric coordinates of the (x_i, y_i) points in terms of these vertices, and the h_k represent the penalty contribution in terms of these vertices.

Computation of Median Triograms

The Problem:

$$\min_{g \in \mathcal{G}_{\triangle}} \sum |z_i - g(x_i, y_i)| + \lambda J_{\triangle}(g)$$

can be reformulated as an augmented ℓ_1 (median) regression problem,

$$\min_{\beta \in |\mathbb{R}^p} \sum_{i=1}^n |z_i - a_i^\top \beta| + \lambda \sum_{k=1}^M |h_k^\top \beta|$$

where β denotes a vector of parameters representing the values taken by the function g at the vertices of the triangulation \triangle . The a_i are barycentric coordinates of the (x_i, y_i) points in terms of these vertices, and the h_k represent the penalty contribution in terms of these vertices.

Extensions to quantile and mean triograms are straightforward.

Barycentric Coordinates

Triograms, ${\mathcal G}$, on Δ constitute a linear space with elements

$$g(u) = \sum_{i=1}^{3} \alpha_i B_i(u) \quad u \in \delta \subset \Delta \qquad B_1(u) = \frac{\operatorname{Area}(u, v_2, v_3)}{\operatorname{Area}(v_1, v_2, v_3)} \text{ etc.}$$

Delaunay Triangulation

Properties of Delaunay triangles:

- Circumscribing circles of Delaunay triangles exclude other vertices,
- Maximize the minimum angle of the triangulation.

Robert Delaunay

B.N. Delone (1890-1973)

Four Median Triograms Fits

Consider estimating the noisy cone:

$$z_i = \max\{0, 1/3 - 1/2\sqrt{x_i^2 + y_i^2}\} + u_i,$$

with the (x_i, y_i) 's generated as independent uniforms on $[-1, 1]^2$, and with the u_i are iid Gaussian with standard deviation $\sigma = .02$. With sample size n = 400, the triogram problems are roughly 1600 by 400, but very sparse. Four Median Triograms Fits

Figure 2: Four median triogram fits for the inverted cone example. The values of the smoothing parameter λ and the number of interpolated points in the fidelity component of the objective function, p_{λ} are indicated above each of the four plots.

Four Mean Triograms Fits

Figure 3: Four mean triogram fits for the noisy cone example. The values of the smoothing parameter λ and the trace of the linear operator defining the estimator, p_{λ} are indicated above each of the four plots.

Figure 4: Perspective Plot of Median Model for Chicago Land Values. Based on 1194 land sales in Chicago Metropolitan Area in 1995-97, prices in dollars per square foot.

Figure 5: Contour Plot of First Quartile Model for Chicago Land Values.

Figure 6: Contour Plot of Median Model for Chicago Land Values.

Figure 7: Contour Plot of Third Quartile Model for Chicago Land Values.

Automatic λ Selection

Schwarz Criterion:

$$\log(n^{-1}\sum \rho_{\tau}(z_i - \hat{g}_{\lambda}(x_i, y_i))) + (2n)^{-1}p_{\lambda}\log n.$$

where the dimension of the fitted function, p_{λ} , is defined as the number of points interpolated by the fitted function \hat{g}_{λ} . Other approaches: Stein's unbiased risk estimator, Donoho and Johnstone (1995), and e.g. Antoniadis and Fan (2001).

Extensions

Triograms can be constrained to be convex (or concave) by imposing *m* additional linear inequality constraints, one for each interior edge of the triangulation. This might be interesting for estimating bivariate densities since we could impose, or test (?) for log-concavity. Now computation is somewhat harder since the fidelity is more complicated.

Partial linear model applications are quite straightforward.

Extensions to penalties involving V(g) may also prove interesting.

Monte-Carlo Performance

Design: He and Shi (1996)

$$z_i = g_0(x_i, y_i) + u_i \quad i = 1, ..., 100.$$

$$g_0(x,y) = \frac{40 \exp(8((x-.5)^2 + (y-.5)^2))}{(\exp(8((x-.2)^2 + (y-.7)^2)) + \exp(8((x-.7)^2 + (y-.2)^2)))}$$

with (x, y) iid uniform on $[0, 1]^2$ and u_i distributed as normal, normal scale mixture, or slash.

Monte-Carlo Performance

Design: He and Shi (1996)

$$z_i = g_0(x_i, y_i) + u_i \quad i = 1, ..., 100.$$

$$g_0(x,y) = \frac{40 \exp(8((x-.5)^2 + (y-.5)^2))}{(\exp(8((x-.2)^2 + (y-.7)^2)) + \exp(8((x-.7)^2 + (y-.2)^2)))}$$

with (x, y) iid uniform on $[0, 1]^2$ and u_i distributed as normal, normal scale mixture, or slash.

Comparison of both L_1 and L_2 triogram and tensor product splines.

Monte-Carlo MISE (1000 Replications)

Distribution	L_1 tensor	L_1 triogram	L_2 tensor	L_2 triogram
Normal	0.609	0.442	0.544	0.3102
	(0.095)	(0.161)	(0.072)	(0.093)
Normal Mixture	0.691	0.515	0.747	0.602
	(0.233)	(0.245)	(0.327)	(0.187)
Slash	0.689	4.79	31.1	
	(6.52)	(125.22)	(18135)	(4723)

Table 1: Comparative mean integrated squared error

Monte-Carlo MISE (1000 Replications)

Distribution	L_1 tensor	L_1 triogram	L_2 tensor	L_2 triogram
Normal	0.609	0.442	0.544	0.3102
	(0.095)	(0.161)	(0.072)	(0.093)
Normal Mixture	0.691	0.515	0.747	0.602
	(0.233)	(0.245)	(0.327)	(0.187)
Slash	0.689	4.79		
	(6.52)	(125.22)	(18135)	(4723)

Table 2: Comparative mean integrated squared error

Monte-Carlo MISE (998 Replications)

Distribution	L_1 tensor	L_1 triogram	L_2 tensor	L_2 triogram
Normal	0.609	0.442	0.544	0.3102
	(0.095)	(0.161)	(0.072)	(0.093)
Normal Mixture	0.691	0.515	0.747	0.602
	(0.233)	(0.245)	(0.327)	(0.187)
Slash	0.689	0.486		
	(6.52)	(3.25)	(18135)	(4723)

Table 3: Comparative mean integrated squared error

• Triograms are nice elementary surfaces

- Triograms are nice elementary surfaces
- Roughness penalties are preferable to knot selection

- Triograms are nice elementary surfaces
- Roughness penalties are preferable to knot selection
- Total variation provides a natural roughness penalty

- Triograms are nice elementary surfaces
- Roughness penalties are preferable to knot selection
- Total variation provides a natural roughness penalty
- Schwarz penalty for λ selection based on model dimension

- Triograms are nice elementary surfaces
- Roughness penalties are preferable to knot selection
- Total variation provides a natural roughness penalty
- Schwarz penalty for λ selection based on model dimension
- Sparsity of linear algebra facilitates computability

- Triograms are nice elementary surfaces
- Roughness penalties are preferable to knot selection
- Total variation provides a natural roughness penalty
- Schwarz penalty for λ selection based on model dimension
- Sparsity of linear algebra facilitates computability
- Quantile fidelity yields a family of fitted surfaces

- Triograms are nice elementary surfaces
- Roughness penalties are preferable to knot selection
- Total variation provides a natural roughness penalty
- Schwarz penalty for λ selection based on model dimension
- Sparsity of linear algebra facilitates computability
- Quantile fidelity yields a family of fitted surfaces