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Abstract. Hansen, Kooperberg, and Sardy (1998) introduced a family of contin-
uous, piecewise linear functions defined over adaptively selected triangulations of
the plane as a general approach to statistical modeling of bivariate densities, regres-
sion and hazard functions. These triograms enjoy a natural affine equivariance that
offers distinct advantages over competing tensor product methods that are more
commonly used in statistical applications.

Triograms employ basis functions consisting of linear “tent functions” defined
with respect to a triangulation of a given planar domain. As in knot selection
for univariate splines, Hansen, et al adopt the regression spline approach of Stone
(1994). Vertices of the triangulation are introduced or removed sequentially in an
effort to balance fidelity to the data and parsimony.

In this paper we explore a smoothing spline variant of the triogram model based
on a roughness penalty adapted to the piecewise linear structure of the triogram
model. We show that the proposed roughness penalty may be interpreted as a total
variation penalty on the gradient of the fitted function. The methods are illustrated
with two artificial examples and with an application to estimated quantile surfaces
of land value in the Chicago metropolitan area.

“Goniolatry, or the worship of angles, ...”
Pynchon (1997)

1. Introduction

Piecewise polynomial functions, or splines, have proven to be an extremely powerful
concept throughout approximation theory and the statistical literature on smoothing.
Like the eponymous drafting instrument, splines are a elegantly simple, yet eminently
practical tool. In the statistical literature on splines there continues to be a vigorous
debate over the relative merits of penalty methods for smoothing splines, versus
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2 Penalized Triograms

regression splines relying on knot selection. Both computational tractability and
statistical efficiency play important roles in this debate, and the resulting rivalry has
significantly broadened the scope of both approaches.

In an innovative recent paper Hansen, Kooperberg, and Sardy (1998) have in-
troduced a class of linear spline models for bivariate smoothing problems. These
triogram models are defined on triangulations of polyhedral planar domains; knot
selection strategies adapted from Stone, Hansen, Kooperberg, and Troung (1997) are
employed to control the degree of smoothing of the estimates. The primary objective
of the present paper is to begin to explore a smoothing spline approach to the estima-
tion of triograms. The roughness penalty we employ may be viewed as an attempt to
extend the total variation roughness penalty suggested in Koenker, Ng, and Portnoy
(1994) to bivariate settings.

2. Roughness Penalties and Nonparametric Regression

In its classical univariate form the (cubic) smoothing spline solves the problem of
finding a function g minimizing

n∑
i=1

(yi − g(xi))
2 + λ

∫
(g′′(x))2dx,

over a Sobolev space of continuous functions with absolutely continuous first deriv-
ative and square-integrable second derivative. The tuning parameter λ controls the
smoothness of the fitted function. In this form the estimator ĝ(·) is a natural cubic
spline with knots at the observed xi’s and may be interpreted as an estimate of the
conditional mean function. The penalty term may be viewed as representing a prior
belief that the L2 norm of g′′ is unlikely to exceed a specified bound controlled by the
choice of λ.

2.1. Total variation roughness in the one-dimensional case. There is nothing
sacred about the Gaussian, conditional mean, formulation of the smoothing spline
problem and there have been numerous efforts to explore alternative forms of both
the fidelity and roughness penalties to achieve modified objectives. One such effort
is described in Koenker, Ng, and Portnoy (1994), where a non-parametric approach
to estimating conditional quantile functions is suggested based on g minimizing

(2.1)
n∑
i=1

ρτ (yi − g(xi)) + λJ(g),

where ρτ (u) = u(τ − I(u < 0)) generates a fidelity term appropriate for conditional
quantile estimation, and the roughness penalty J(g) is taken to be total variation of
the first derivative of g.
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Recall that the total variation of a function f from [a, b] to R is given by

(2.2) V (f) = sup
n−1∑
k=0

|f(xk+1)− f(xk)|,

where the sup is taken over all possible partitions, a = x0 < x1 < ... < xn = b For
a continuous function f : R → R, the celebrated Banach (1925) indicatrix theorem
gives

(2.3) V (f) =

∫
N(y)dy,

where N(y) = #{x : f(x) = y} is the Banach indicatrix of f , the function counting
the number of roots for each value in the range of f ; see e.g. Natanson (1974, Theorem
VIII.5.3). If f is absolutely continuous, we can also write, again see Natanson (1974,
Theorem IX.4.8),

(2.4) V (f) =

∫
|f ′(x)|dx,

which for f = g′ yields the roughness penalty

(2.5) J(g) = V (g′) =

∫
|g′′(x)|dx.

This establishes a clear link of the total variation penalty of Koenker, Ng, and Portnoy
to the classical L2 roughness penalty. Mammen and van de Geer (1997) have studied
related total variation penalties on higher derivatives in the univariate setting, and
together with Portnoy (1997), they have explored the asymptotic behavior of related
estimators. More recently, Davies and Kovac (2001) have provided an extensive anal-
ysis of the performance of penalized estimators for univariate functions employing
total variation penalties on the function itself rather than its higher derivatives. This
approach permits discontinuities in the fitted functions, and thus helps to illuminate
statistical aspects of related work on total variation penalties for bivariate functions
used for edge detection and image segmentation. See Section 2.3 for some references
to this literature.

Total variation proves to be a natural alternative penalty for quantile regression
fidelity from a computational viewpoint since it preserves the piecewise linear form of
the objective function and thus preserves the linear programming formulation of the
optimization problem. Solutions to the problem (2.1) take the form of continuous,
piecewise linear functions with jumps in their derivative at some of the observed xi’s.
The L1 nature of the total variation penalty imposes a rather different shrinkage effect
than the classical L2 penalty. Just as ordinary `1 regression seeks to identify p basic
observations whose exact fit characterizes the p-dimensional parameter estimate, the
L1 penalty acts more like a model selection device by identifying a small number of
critical xi points at which ĝ′ will be allowed to jump. The number of these selected
jump points is controlled by the parameter λ, and provides a natural measure of the
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dimensionality of the fitted function. See Tibshirani (1996) and Donoho, Chen, and
Saunders (1998) for related discussion of the model-selection, shrinkage effects of L1

type penalties.
The extension of univariate smoothing splines to bivariate situations, and beyond,

raises new questions about how to measure the roughness of surfaces. The thin plate
smoothing splines of Harder and Desmarais (1972) whose theory was developed by
Duchon (1976,1977), Meinguet (1979), Wahba and Wendelberger (1980), and others,
minimize

(2.6)
n∑
i=1

(zi − g(xi, yi))
2 + λJ(g,Ω, ‖ · ‖2

2),

with the roughness penalty defined as

(2.7) J(g,Ω, ‖ · ‖2
2) =

∫∫
Ω

‖∇2g‖2
2dxdy =

∫∫
Ω

(g2
xx + 2g2

xy + g2
yy)dxdy.

The integrand of the thin plate penalty is the squared Hilbert-Schmidt (Frobenius)
norm of the Hessian of g. This dependence on the norm is explicitly recognized
in our penalty notation in anticipation of taxonomic challenges that lie ahead. In
the classical thin-plate problem, Ω is taken to be all of R2, and this simplifies the
computations considerably. However, as noted by Green and Silverman (1994), there
can be considerable disparities between such solutions and solutions based on versions
of the penalty defined over restricted domains.

If g(x, y) = h(x) for some h, then a straightforward computation shows that, on
rectangular Ω = Ω1 ×Ω2,

(2.8) J(g,Ω, || · ||22) = J(h,Ω1, || · ||22) µ(Ω2),

where J(h,Ω1, || · ||22) specializes to the classical univariate penalty
∫

(g′′(x))2dx, and
µ(Ω2) denotes the Lebesgue measure of Ω2. Thus, the thin plate penalty (2.6) may be
viewed as a natural bivariate extension of the classical univariate roughness penalty.
This raises the following questions. Can we, by analogy with the univariate total
variation penalty (2.5), define a bivariate roughness penalty? How should we define
total variation of the gradient of a function of two variables? These questions require
a brief mathematical detour.

2.2. Total Variation in Higher Dimensions. The quest for a satisfactory defini-
tion of total variation for functions from R

k to Rm has engaged the mathematical
community for more than a century. Only for k = 1, and m arbitrary, does the clas-
sical univariate definition (2.2) of Jordan (1881) adapt in a straightforward way, see
Dinculeanu (1967). Early definitions for k ≥ 2 and m = 1 by Tonelli (1926, 1936),
and others suffered from coordinate-dependence and attendant reliance on rectangu-
lar domains. In nonparametric regression this is a drawback, as we will argue below.
The first orthogonally-invariant definitions were introduced by Kronrod (1949, 1950)
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in the spirit of the Banach indicatrix theorem (2.3). For a real function f on Ω ⊆ R2,
the Kronrod variation is equal to

(2.9) VK(f,Ω) =

∫
Ω

L1(f−1(x))) dx,

where L1(f−1(x)) is the length, defined as one-dimensional Hausdorff, or similar mea-
sure, of the preimage of x and dx denotes the integration over the one-dimensional
Lebesgue measure so that we need not care if the length of the preimage is infinite
for sets of zero measure. This line of development for arbitrary k and m = 1 was
subsequently cultivated in Russian literature by Vitushkin (1955) and Ivanov (1975).

However, a definition for general k and m > 1 requires a reconsideration of (2.4).
We may illustrate this approach in the simple univariate case. The definition of the
total variation is given in two steps: for smooth f from [a, b] to R via (2.4), and then
for more general f via extension. The total variation of f can be obtained by a limit
transition from total variations of its smooth approximants.

There are numerous pitfalls on this path. It is necessary to take liminf rather than
simple limits, and the mode of approximation must be formalized properly. Rigorous
development inevitably invokes portions of the theory of Schwartz distributions. As
in the theory of Sobolev spaces, the formalism of distributions is needed for differ-
entiation and limit transitions; the functions under consideration remain standard.
This approach to multidimensional total variation dominates the recent mathematical
literature; Ambrosio, Fusco, and Pallara (2000) give a recent account of the theory
developed in the context of geometric measure theory and variational calculus, tracing
its origins back to Fichera (1954) and De Giorgi (1954).

As an initial step, it is convenient to outline the functional domain in a qualita-
tive way, without recourse to any particular total variation functional. Functions
with bounded variation are defined to be those whose derivatives, in the sense of
Schwartzian distributions, are measures. For a smooth function f from R

k to Rm, we
define, in the vein of (2.4),

(2.10) V (f,Ω, ‖ · ‖) =

∫
Ω

‖∇f‖ dx;

here dx denotes (multiple) integration with respect to k-dimensional Lebesgue mea-
sure.

Finally, a lower semicontinuous functional J initially defined for smooth functions
can be extended to a broader domain using the approach of Serrin (1961). We define

(2.11) J(g) = lim inf J(gν),

where the right-hand side expression denotes the inf of lim inf J(gν) over all sequences
gν approaching g in the sense of distributions. Since smooth functions are dense,
with respect to distributional convergence, in functions of bounded variation, and a
total variation functional of the form (2.10) is lower semicontinuous—this property
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is related to its convexity—the extension step concludes the definition. We omit,
however, the proof of the fact that the extension is finite for any functional of type
(2.10); we only remark that this property is not automatic, as our next example
shows.

Consider the thin-plate functional (2.7). It is lower semicontinuous, thus there may
be some hope that it can be extended beyond its traditional domain. It turns out,
however, that such an extension assigns +∞ to any g with discontinuous derivatives.
In particular, any function with a spike or a sharp ridge is evaluated as infinitely rough.
Serrin (1961) gives arguments why such an outcome is essentially unavoidable, not
depending on a particular extension scheme. The reader may verify the conclusion
in dimension one and thus for any function for which formula (2.8) applies. A jump
in derivative with magnitude 1 interpolated by a piecewise linear function increasing
on an interval of length 2r results in the thin-plate functional of order (2r)−1; letting
r → 0 makes this infinite. Another example is the cone g(x, y) = (x2 + y2)1/2 on
the unit circle; a straightforward computation employing polar coordinates yields
J(g,Ω, ‖ · ‖2

2) =
∫ 1

0
r−1dr = +∞, neglecting the contribution of the spike itself, which

can be shown to be finite and nonzero.

2.3. Roughness penalties based on total variation. Given our definition of total
variation, we are now prepared to define a total-variation based roughness penalty.
For a function g from R

2 to R we define,

(2.12) J(g,Ω, ‖ · ‖) = V (∇g,Ω, ‖ · ‖) =

∫∫
Ω

‖∇2g‖ dx dy.

Any such penalty—regardless of the choice of the norm—can be considered an exten-
sion of the univariate penalty (2.5).

Theorem 2.1. Suppose that g is a function from R
2 to R such that g(x, y) = h(x)

for some h. There is a constant c depending only on the choice of the matrix norm
in (2.12), but not on g, such that for any Ω = Ω1 ×Ω2,

(2.13) J(g,Ω, ‖ · ‖) = c J(h,Ω1, ‖ · ‖) |Ω2|,

where J(h,Ω1, ‖ · ‖) =
∫

Ω1
|h′′(x)| dx, and |Ω2| denotes the Lebesgue measure of Ω2.

Proof. Let c be the norm of the 2× 2 matrix containing 1 in the upper left corner
and zeros elsewhere. By the properties of the norm, the norm of the matrix containing
u instead of 1 in the upper left corner and zeros otherwise is c|u|. Note that in the
Hessian, all second-order partial derivatives are zero, except for gxx(x, y) = h′′(x);
thus

J(g,Ω, ‖ · ‖) = c

∫∫
Ω

|h′′(x)| dx dy

and (2.13) follows by the Fubini theorem for all smooth g and hence by extension for
all g under consideration.
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There is quite an extensive literature related to image processing employing total
variation penalties on bivariate functions themselves, rather than their gradients. See
e.g. Osher and Rudin (1990), Blomgren and Chan (1998), and Dibos and Koepfler
(2000). As we have previously noted this approach yields discontinuous fitted func-
tions and thus is attractive for edge-detection and image segmentation. However, it
does not seem to be well-suited for other statistical applications where a measure of
roughness based on curvature is more appropriate.

For denoising images with a view toward reconstructing discontinuities in deriva-
tives, Scherzer (1998) proposed using the penalty corresponding to the `1 norm in
(2.10); for smooth functions g from R

2 to R this penalty is equal to

(2.14) J(g,Ω, ‖ · ‖1) =

∫∫
(|gxx|+ 2|gxy|+ |gyy|)dxdy.

Related penalties have been recently proposed in the statistical literature by He, Ng,
and Portnoy (1998), who introduced a bivariate form of the quantile smoothing spline
using a roughness penalty that sums univariate total variation of the function along
rectangular grid lines. Their roughness penalty may be viewed as a total variation
of the gradient in the Tonelli-Cesari vein of (2.10), with the `1 norm applied to the
diagonal of the Hessian,

(2.15) J(g,Ω, ‖ · ‖HNP ) =

∫∫
(|gxx|+ |gyy|)dxdy.

Their formulation gives rise to bilinear tensor product splines that are continuous and
piecewise linear on the grid lines, and bilinear on the rectangular patches between grid
lines. Similar tensor product splines have also been widely used in the least-squares
regression spline literature.

One potential disadvantage of the tensor product formulation in some applications
is its lack of orthogonal equivariance. Functions well oriented with respect to the
xy-axes may prove to be much more difficult to fit when the observations are rotated.
Invariance considerations provide valuable guidance through the forest of potential
definitions of total variation and roughness penalty functionals.

2.4. Invariance and equivariance. Let f be a function from R
2 to R, with gradient

vector ∇f . After an orthogonal change of coordinates, x = Uξ, the new gradient of f
is equal to (∇f)TU . Imposing invariance of the total variation functional V (f,Ω, ‖·‖)
for any f and U , we arrive at the requirement that ‖Ux‖ = ‖x‖ for any x ∈ R2 and any
orthogonal matrix U . The only norm satisfying this requirement, up to multiplication
by a constant, is the Euclidean norm. Therefore, the only coordinate-independent
total variation functional is, for k = 2, a constant multiple of

(2.16) V (f,Ω, ‖ · ‖2) =

∫∫
Ω

√
f 2
x + f 2

y dx dy.
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Transforming the integral reveals that (2.16) is nothing but the Kronrod (1949) vari-
ation (2.9).

If, however, f = ∇g, as we require for our roughness penalties, we obtain by the
definition (2.10) applied to ∇g : R2 → R

2 that

(2.17) J(g,Ω, ‖ · ‖) = V (∇g,Ω, ‖ · ‖) =

∫∫
Ω

‖∇2g‖ dx dy,

where ∇2g is the Hessian of g. Invariance with respect to translations comes for free,
since we work with derivatives. The requirement of orthogonal invariance for the
penalty J leads to the requirement that

(2.18) ‖UTHU‖ = ‖H‖,

for any orthogonal matrix U and any symmetric matrix H. There are many norms
satisfying this property—apparently any norm which is a symmetric function of the
eigenvalues satisfies (2.18). In fact, von Neumann (1937) proved that every norm
satisfying ‖A‖ = ‖UA‖ = ‖AU‖ for any A and any unitary matrix U must be a
symmetric function of the singular values of A.

The leading example of such a norm is the Hilbert-Schmidt (Frobenius, Euclidean)
norm of the matrix. The resulting penalty is, for sufficiently smooth g, given by

J(g,Ω, ‖ · ‖2) =

∫
Ω

√
g2
xx + 2g2

xy + g2
yy dx dy,

which brings us back through Pythagorean pathways to the thin-plate penalty. Only
the squaring of the norm is at issue. Other possibilities include the spectral norm,
the maximal absolute value of the eigenvalues, or absolute value of the trace; we refer
the reader to Mizera (2002) for some other intriguing candidates.

Another attractive property of total variation roughness penalties, particularly
when paired with absolute error fidelity, is their scale equivariance. If g minimizes

(2.19)
n∑
i=1

|zi − g(xi, yi)|+ λJ(g,Ω, ‖ · ‖)

then cg minimizes (2.19) with zi replaced by czi, provided that J(cg,Ω, ‖ · ‖) =
|c|J(g,Ω, ‖·‖). This is clearly not the case for the thin-plate penalty, but for Gaussian
fidelity the thin plate penalty is well matched.

Efficient numerical solution of the variational problems arising from such gen-
eral forms of roughness penalties based on total variation appears quite challeng-
ing. However, by restricting the domain of functions over which we are optimizing
some progress can me made. One such restriction leads to penalized versions of the
piecewise linear triograms of Hansen, Kooperberg, and Sardy (1998).
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3. Triograms

Following Hansen, Kooperberg and Sardy, let U be a compact region of the plane,
and let ∆ denote a collection of sets {δi : i = 1, . . . , N} with disjoint interiors such
that U = ∪δ∈∆δ. In general the collection ∆ is called a tessellation of U . We will be
concerned only with the case that the δ ∈ ∆ are planar triangles, in which case ∆ is
called a triangulation.

The continuous functions g on U that are linear when restricted to δ ∈ ∆ are
called triograms. Their collection G associated with the triangulation ∆ is a finite-
dimensional linear space space. The piecewise linearity of the functions g ∈ G is obvi-
ously a stringent requirement, but there are persuasive arguments for the advantages
offered by their simplicity. Hansen, Kooperberg and Sardy propose a regression spline
approach to estimating triogram models in which vertices are sequentially added and
deleted in an effort to find a parsimonious fit. The approach is remarkably flexible
and can be used for density estimation, regression and other “extended linear mod-
els.” Selecting a good triangulation is clearly critical to success, and considerable
attention needs to be devoted to stepwise addition and deletion strategies for vertices
to achieve a “good” choice of ∆. Motivated by the success of penalty methods else-
where in the spline literature we were encouraged to explore an alternative penalized
triogram approach.

3.1. A Roughness Penalty for Triograms. Thin-plate penalties are inappropriate
for triograms for the reasons described in the previous section: such penalties assign
infinity to any function with a discontinuity in the gradient, and thus are inherently
incapable of discriminating among triograms. Roughness penalties based on the total
variation of the gradient offer a more straightforward solution. Fortuitously, it also
turns out that the troublesome choice of the norm disappears—once we insist on a
coordinate-independent penalty for triograms, all penalties reduce to a single one.

Theorem 3.1. Suppose that g : R2 → R is a piecewise-linear function on the tri-
angulation ∆. For any coordinate-independent penalty of the form (2.17), there is a
constant c dependent only on the choice of the norm such that

(3.1) J(g,Ω, ‖ · ‖) = c
∑
e

‖∇g+
e −∇g−e ‖ ‖e‖

where e runs over all the interior edges of the triangulation, ‖e‖ is the Euclidean
length of the edge e, and ‖∇g+

e − ∇g−e ‖ is the Euclidean length of the difference
between gradients of g on the triangles adjacent to e.

Proof. Evaluating J , we split the integration domain Ω to disjoint pieces whose
contribution to J is determined separately. First, the contribution of all linear parts,
the interiors of the triangles, is 0; the second derivatives vanish thereon.
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The contribution of the edge e is the corresponding term in (3.1): consider the
trapezoidal region consisting of two triangles adjacent to the edge. Extend the func-
tions on the triangles linearly to have a rectangular domain—this should not alter
the penalty. Coordinatewise independence then allows for rotating the rectangle so
that its edges are parallel to xy-axes; the application of Theorem 2.1 then gives the
desired result.

The final, and only technical part of the proof is to show that the contribution of
any vertex of the triangulation is 0. This is done employing the definition (2.11).
The sequence gν approximating g is obtained via mollification: gν is taken to be the
convolution of g with ν2φ(νx, νy), where φ is a smooth function assigning 0 to all
values outside the unit circle whose integral is equal to 1. A common example of such
a φ(x, y) is a multiple of exp(−1/(1 − x2 − y2)) on the unit circle and 0 elsewhere.
When ν → ∞, gν approaches g in the distributional sense. The contribution of the
vertex is bounded from above by

(3.2) lim inf
ν→∞

∫∫
Bν

‖∇2gν‖ dx dy,

where Bν is the circle centered at the vertex with radius 1/ν. Since any two norms
on a finite-dimensional vector space are equivalent, (3.2) is bounded from above by
a constant multiple of (3.2) with the Hilbert-Schmidt norm, the constant depending
only on the original norm. In what follows, C stands for a generic constant. Since
the derivatives of g in the neighborhood of the vertex are piecewise constant, with
finitely many pieces, we have

|gνxx(x, y)| =
∣∣∣∣∫∫ ν3φx(νu, νv)gx(x− u, y − v) du dv

∣∣∣∣
≤ ν

∫∫ ∣∣ν2φx(νu, νv)gx(x− u, y − v)
∣∣ du dv

≤ ν

∫∫
C
∣∣ν2φx(νu, νv)

∣∣ du dv ≤ Cν

∫∫
|φx(u, v)| du dv = Cν;

the same inequalities hold for the other terms in the Hessian ∇2gν , the constants
being independent of x, y, and ν. By the properties of the Hilbert-Schmidt norm,∫∫

Bν

‖∇2gν‖ dx dy ≤
∫∫

Bν

Cν dx dy = Cν−1.

The last term goes to 0 when ν →∞. Note that for the thin-plate penalty the bound
for the elements of the Hessian would be Cν2, and the contribution of the vertex
would not vanish, though it would be finite.

The triogram model is an elementary example of the class of ridge function models
surveyed in a recent paper by Pinkus (1997). Ridge functions bring together a num-
ber of important ideas in the approximation theory literature as well as important
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statistical ideas involving projection pursuit and neural networks. See Candes (2000)
for a unified statistical perspective.

4. Computation of Penalized Triograms

4.1. A Basis for G. A basis for the linear space G consists of the linear “tent”
functions, {Bi(u)}pi=1, that may be expressed in terms of the barycentric coordinates
of points u represented by the vertices v1, v2, v3 of the triangle δ containing u,

uj =
3∑
i=1

Bi(u)vij j = 1, 2.

and satisfying the condition

1 =
3∑
i=1

Bi(u).

Solving for the Bi(u)’s we obtain by Cramer’s rule, provided the vertices aren’t
collinear,

B1(u) =
A(u, v2, v3)

A(v1, v2, v3)
,

where

A(v1, v2, v3) =
1

2

∣∣∣∣∣∣
v11 v21 v31

v12 v22 v32

1 1 1

∣∣∣∣∣∣
is the signed area of the triangle δ. The remaining Bi(u) are defined analogously by
replacing the vertex vi by u. Clearly, the {Bi(u)} are linear in u on δ, and satisfy the
interpolation conditions that Bi(vj) = 1 for i = j and = 0 otherwise; thus they are
linearly independent. They are also affine equivariant; that is, for any non-singular,
2× 2 matrix A, and vector b ∈ R2,

Bi(u) = B∗i (Au+ b) u ∈ U ,

where {Bi(u)} are formed from the vertices {vi}pi=1 and {B∗i } are formed from the
vertices {Avi + b}ni=1. In particular, the basis is equivariant to rotations of the coor-
dinate axes, a property notably missing in many other bivariate smoothing methods.
Like their univariate B-spline basis function counterparts they satisfy 0 ≤ Bi(u) ≤ 1
with

p∑
i=1

Bi(u) = 1 u ∈ U .
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4.2. Computing the Fidelity. Any function g ∈ G may be expressed in terms of
the barycentric basis functions and the values βi that it takes at the vertices of the
triangulation as:

g(x, y) =

p∑
i=1

βiBi(x, y).

Thus, we can express the fidelity of the function, ĝ(x, y), fitted to the observed sample,
{(xi, yi, zi), i = 1, ..., n} in `1 terms as,

n∑
i=1

|zi − ĝ(xi, yi)| =
n∑
i=1

|zi − aT

i β̂|,

where the p-vectors ai denote the “design” vectors with elements, aij = (Bj(xi, yi)).
In the simplest case there is a vertex at every point (xi, yi) and the matrix A = (aij)
is just the n-dimensional identity. Typically, however, one may wish to choose p < n
and there would be a need to compute some nontrivial barycentric coordinates for
some elements of the matrix A.

4.3. Computing the Penalty. Fix the triangulation ∆ and consider the triogram
g ∈ G on a specified triangle δ ∈ ∆. Let {(xi, yi, zi), i = 1, 2, 3} denote the points at
the three vertices of δ. We have

zi = θ0 + θ1xi + θ2yi i = 1, 2, 3,

where θ denotes a vector normal to the plane representing the triogram restricted to
δ. Solving the linear system, we obtain the gradient vector,

∇gδ =

(
θ1

θ2

)
= [det(D)]−1

(
(y2 − y3) (y3 − y1) (y1 − y2)
(x3 − x2) (x1 − x3) (x2 − x1)

) z1

z2

z3

 ,

whereD is the 3 by 3 matrix with columns [1, x, y]. This gradient is obviously constant
on δ and linear in the values of the function at the vertices. Thus, for any pair of
triangles δi, δj with common edge ek(i,j) we have the constant gradients ∇gδi ,∇gδj
and we can define the contribution of the edge to the total roughness of the function
as,

|ck| = |ηT

ij(∇gδi −∇gδj)| · ‖ek(i,j)‖
= ‖(∇gδi −∇gδj)‖ · ‖ek(i,j)‖,

where ηij denotes the unit vector orthogonal to the edge. The second formulation
follows from the fact that ηij is just the gradient gap renormalized to have unit
length; this can be easily seen by considering a canonical orientation in which the
edge k(i, j) runs from (0, 0) to (1, 0). The penalty is then computed by summing
these contributions over all interior edges.
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Since the gradient terms are linear in the parameters βi determining the function
at the vertices, the penalty may also be expressed as a piecewise linear function of
these values, ∑

k

|ck| =
∑
k

|hT

k β̂|,

where the index k runs over all of the edges formed by the triangulation ∆. The
problem of optimizing the fidelity of the fitted function subject to a constraint on
the roughness of the function may thus be formulated as the augmented linear `1

problem,

(4.1) min
β∈Rp

n∑
i=1

|zi − aT

i β|+ λ

M∑
k=1

|hT

kβ|.

A family of conditional quantile triogram models can be estimated by simply replacing
| · | by ρτ (·), for an empirical example, see Section 6.3.

4.4. Penalized Triograms for Conditional Mean Models. A corresponding pe-
nalized least squares problem may be formulated as,

min
β∈Rp

n∑
i=1

(zi − aT

i β)2 + λ
M∑
k=1

(hT

kβ)2.

Like the median regression problem this may be viewed as an augmented regression

problem with response vector (zT , 0T ) ∈ Rn+M , and design matrix [AT
...HT ]T where

A = (aT
i ) and H = (hT

k).

4.5. Convexity as a Qualitative Constraint. A triogram is convex if and only
if it is convex on all pairs of adjacent triangles. This condition is easily checked
for each quadralateral since it reduces to checking a linear inequality on the values
taken by the function at the four vertices of the quadralateral. Imposing convexity
on penalized triogram fitting thus amounts to adding m linear inequality constraints
to the problems already introduced, where m denotes the number of interior edges
of the triangulation. This is particularly straightforward in the case of the quantile
fidelity given the linear programming formulation of the optimization problem.

4.6. On Sparsity. A crucial feature of the penalized triogram estimators described
above is the sparsity of the augmented design matrices. In the fidelity component
A, rows have at most three non-zero elements needed to represent the barycentric
coordinates of the (xi, yi) points not included as basic vertices. For basic rows, the
vector ai is one in only one element and zero everywhere else. In the penalty matrix
H, each row has four nonzero entries and the remaining elements are zero.

To appreciate the consequences of this it may help to consider an example. Suppose
we have n = 1600 observations and we introduce basic vertices (knots) at each of the
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points, {(xi, yi) : i = 1, ..., n}. The resulting matrix A is just the n = 1600 identity
matrix. The number of interior edges of the Delaunay triangulation is given by

e = 3n− 2c− 3,

where c denotes the number of exterior edges, see Okabe, Boots, Sugihara, and Chiu
(2000). So the matrix H is 4753 by 1600 in a typical example, and the augmented
`1 regression problem is thus, 6353 by 1600. This may appear computationally in-
tractable, and would be intractable on many machines using conventional statistical
software. But recognizing the sparsity of the problem, that is, noting that only 0.2
percent of the more than 10 million elements of the design matrix are nonzero, drasti-
cally reduces the memory requirement and computational complexity of the problem
from about 80Mb to only 160Kb.

In our Matlab implementation of the penalized triogram software only the nonzero
elements of the design matrix need to be stored, along with their identifying indices.
This drastically reduces the memory requirements of the computations and improves
efficiency. As we note more explicitly below, fitting our penalized quantile triograms
requires only a few seconds for our smaller examples, and up to about a minute on
the larger ones in our Matlab implementation. Better performance would obviously
be possible if the computations were recoded in a lower level language using one of
several available sparse matrix libraries.

4.7. Automatic λ Selection. In Koenker, Ng and Portnoy it was suggested that a
variant of the well-known Schwarz (1978) model selection criterion could be used to
automatically select λ. This suggestion can also be adapted to the present context
in the following way. Given a fit ĝλ(·, ·) for a specified λ, we would like to have a
reasonable measure of the dimension of the fitted function. As with other `1 type
estimation methods, this is provided by simply counting the number of interpolated
observations in the fidelity component of objective function. Letting pλ denote the
dimension of ĝλ defined in this way, we may consider selecting λ to minimize,

log(n−1
∑

ρτ (zi − ĝλ(xi, yi))) + 1
2
n−1pλ log n.

It should be emphasized that that this is a purely ad hoc expedient at this stage and
needs considerable further investigation.

5. On Triangulation

Up to this point we have taken the form of the triangulation, ∆, as fixed, it is now
time to consider how to determine ∆ given the observations, {(xi, yi, zi), i = 1, ..., n}.
In full generality, as we have already suggested, this is an extremely challenging
problem that involves a delicate consideration of the function being estimated. This
draws us back into the vertex insertion/deletion schemes like those described by
Hansen, Kooperberg, and Sardy. Since it was our intention from the beginning to
circumvent these aspects of the problem, replacing such model selection strategies by
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shrinkage governed by our proposed roughness penalty, we will focus on the classical
triangulation method of Delaunay.

A simple, direct characterization of the Delaunay triangulation may be stated for
points in general position in the plane. We will say that points in R2 are in general
position if no three points lie on a line, and no four points lie on a circle. The Delaunay
triangulation of a set of points V = {vi ∈ R2 : i = 1, ...n} in general position consists
of all triangles whose circumscribing circle contains no V-points in their interior.
There is a vast literature on how to compute the Delaunay triangulation.

Delaunay triangulation abhors long, thin triangles. Indeed, another way to char-
acterize the Delaunay triangulation is that it maximizes,

A(∆) = min
δ∈∆
{a(δ)}

over all possible triangulations ∆ of the set V , where the scalar a(δ) denotes the
smallest angle of the triangle δ. This maxmin property was long considered a major
virtue of the Delaunay method. However, relatively recently it has been noted by
Rippa (1992) that the benefits of this phobia about thinness are strongly linked to
the eventual application of the triangulation. If, for example, the objective is to find
a good interpolant for a function whose curvature happens to be very large in one
direction and small in the other, then long thin triangles may be very advantageous.1

To see this consider the example suggested by Rippa. We have a quadrilateral U ,
with vertices at (±α, 0) and (0,±β). Suppose we want to fit the convex quadratic

F (x, y) =
1

2
(x, y)H(x, y)T

and we would like to compare the performance of the piecewise linear interpolant F̂h
using the horizontal triangulation ∆h with F̂v using the vertical triangulation ∆v.
Rippa’s performance measure is integrated squared error

ISE(F̂i, F,U) =

∫
U

(F̂i(x, y)− F (x, y))2dxdy.

Rippa showed that the triangulation ∆h is preferred to ∆v in the sense of ISE if and
only if

(5.1)
|H11|
|H22|

<

(
β

α

)2

.

1This is related to the following observation by Bern and Eppstein (1992). If you consider lifting
the points in V onto the paraboloid mapping (x, y) to (x, y, x2 + y2), the convex hull of the lifted
points can be split into an upper portion and a lower portion. A face of the convex hull belongs to the
lower portion if it is supported by a plane that separates the points in V from the point (0, 0,−∞).
The projection of this lower portion of the hull onto the xy-plane is the Delaunay triangulation.
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One may ask whether this result is altered if one replaces integrated squared error by
integrated absolute error

IAE(F̂i, F,U) =

∫
U
|F̂i(x, y)− F (x, y)|dxdy.

Proposition 5.1. The triangulation ∆h is preferred to ∆v is the sense of IAE if and
only if (5.1) holds.

The proof of this proposition appears in the appendix. The comparison of the two
triangulations thus reduces to exactly the same expression as in the squared error
case.

The sensitivity of the approximation quality to the choice of the triangulations
suggests the need for careful selection, especially if a small number of vertices are
employed. However, an advantage of penalty methods in this respect is that their
reliance on a considerably larger set of vertices can compensate to some extent for
deficiencies in the triangulation. In this paper we restrict attention to triangulations
based on the observed (x, y) points, but it is straightforward to incorporate “dummy
vertices” at other points in the plane, vertices that contribute to the penalty term,
but not to the fidelity. By so doing one can essentially annihilate the effect of the
initial triangulation and refine the fit to achieve more flexibility.

6. Examples

In this section we consider several examples to illustrate the performance of the
proposed methods.

6.1. A Noisy Cone. Consider estimating the model,

zi = max{0, 1/3− 1/2
√
x2
i + y2

i }+ ui,

with the (xi, yi)’s generated as independent uniforms on [−1, 1]2, and the ui are iid
Gaussian with standard deviation σ = .02. The sample size is taken to be n = 400,
and the fits are based on the Delaunay triangulation of all n points. With n = 400 the
number of Delaunay edges is roughly 1200, so the resulting `1 regression problems are
roughly 1600 by 400. Even so, the fitting in Matlab is quite quick, about 1.5 seconds
per fit on a Sun Ultra 2.

In Figure 6.1 we illustrate four different triogram fits corresponding to various
values of the smoothing parameter λ. In the first panel, the fit is essentially an
interpolation of the observations and is evidently too rough. Above the panels we
report the value of λ and the effective dimension of the fitted function as measured
by the number of observations interpolated by the fitted function. In the first panel
this number is nearly 400. In the second panel pλ has been reduced to 43, and the fit
is quite accurate. The flat area outside the region A = {x2 + y2 ≤ 4/9} is quite well
represented and the cone is quite smooth. In the third panel pλ has been reduced to
25, and the fitted function seems already somewhat oversmoothed. In particular, the
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Figure 6.1. Four median triogram fits for the noisy cone example.
The values of the smoothing parameter λ and the number of interpo-
lated points in the fidelity component of the objective function, pλ are
indicated above each of the four plots.

sharp edge on the boundary of the region A has been lost. In the last of the four
panels, the structure has been lost entirely and we quite close to the limiting linear fit
achieved as λ→∞. This last plot conveys some idea of the nature of the Delaunay
triangulation of the domain of fitted functions.

In Figure 6.2 we illustrate four fits of the same data for the least-squares, mean
triogram estimator. In this case, following Hastie and Tibshirani (1990), we use the
trace of the linear operator defining the penalized least-squares fit to measure the
dimension of the fitted surface. This seems to yield a plausible estimate of the di-
mension, and is monotonically decreasing in λ, but further study is clearly warranted.
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Figure 6.2. Four mean triogram fits for the noisy cone example. The
values of the smoothing parameter λ and the trace of the linear operator
defining the estimator, pλ are indicated above each of the four plots.

6.2. A Monte-Carlo Experiment. In our second example we consider estimating
the function

g0(x, y) =
40 exp(8((x− .5)2 + (y − .5)2))

(exp(8((x− .2)2 + (y − .7)2)) + exp(8((x− .7)2 + (y − .2)2)))
.

The function has a ridge along the 45 degree line and therefore presents a challenge to
tensor product methods. It has been previously considered by Gu, Bates, Chen, and
Wahba (1989), Breiman (1991), Friedman (1991), He and Shi (1996), and Hansen,
Kooperberg, and Sardy (1998), among others. Using the experimental design of
He and Shi (1996), we compare their L1 and L2 tensor product regression spline
estimators with the L1 and L2 versions of the penalized triogram. The (xi, yi)’s are
generated as independent uniforms on [0, 1]2, and we generate

zi = g0(xi, yi) + ui
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Distribution L1 tensor L1 triogram L2 tensor L2 triogram
Normal 0.609 0.442 0.544 0.3102

(0.095) (0.161) (0.072) (0.093)
Normal Mixture 0.691 0.515 0.747 0.602

(0.233) (0.245) (0.327) (0.187)
Slash 0.689 4.79 31.1 171.1

(6.52) (125.22) (18135) (4723)

Table 6.1. Comparative MISE for fitting the Gu, Bates, Chen and
Wahba function.

with iid {ui}. Three distributions for the {ui} are considered: standard normal
N (0, 1); the normal mixture, .95N (0, 1) + .05N (0, 25); and slash, N (0, 1)/U [0, 1].
The sample size is n = 100. As a measure of performance we focus exclusively on

MISE = average{n−1
∑

(ĝn(xi, yi)− (g0(xi, yi))
2},

averaging over the R = 1000 replications.
In Table 6.1 we report He and Shi’s results for their tensor product regression

splines, and the corresponding results for the L1 and L2 penalized triogram approach.
The selection of λ for the triogram fitting was made by minimizing SIC(λ) over a
grid λ = 10i/20 with i = −20,−19, ..., 0. This procedure yielded a fit with median pλ
of 16.

The performance of the L1 triogram estimator is quite good for the normal and
normal mixture error distributions.2 However, it appears that the L1 triogram fails
badly for the slash distribution. It is worth delving into this failure a bit further.
The first observation to be made is that the failure is due entirely to two spectacular
disasters out of the 1000 replications. If we drop the two worst replications, the slash
entry in the table changes from 4.79 (125.22) to .486(3.25), and now appears quite
competitive. What went wrong?

In each case the explanation lies in a single outlying zi value that happened to occur
on the convex hull of the observed (xi, yi) points. Since the boundary edges of the
triangulation do not contribute to the penalty, the only consequence of over-zealous
fitting of such points is the associated interior connecting edge effects. For sufficiently
small values of λ this contribution is dominated by the gain in fidelity achieved by
exact fitting of the outlying point. There seem to be two important lessons to be
learned from this experience. First, one ignores the boundary effects of the fitting
procedure at one’s peril. And second, the SIC criterion is not to be trusted in cases
in which it exhibits significant discontinuities. If one had an informative boundary

2He and Shi (1996) also report performance of MARS (Friedman (1991)) and PIMPLE (Breiman
(1991)), which they find less satisfactory than their tensor product approach.
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condition that could be explicitly built into the penalty function, this would help
considerably. Or, if our λ selection had managed to select a more parsimonious
model the situation would also have been salvaged. One could also place the blame
on the slash specification, which is admittedly extreme, but this would be tantamount
to a repudiation of the robustness objective.

6.3. Chicago Land Values. Our final example involves estimating a model for
Chicago land values. The data consists of 1194 vacant land sales occurring at 761
distinct sites in the Chicago metropolitan area during the period 1995-1997. We take
the sale price of the land in dollars per square foot as zi and (xi, yi) pairs are measured
in miles from the intersection of State and Madison. We illustrate a median fit of the
Chicago land value distribution in Figure 5.3. In Matlab fitting of this model takes
about 45 seconds on an Sparc Ultra 2. It is possible to recognize the peak correspond-
ing to the central business district, and another mode further north along the lake,
but the perspective plot is difficult to interpret without some further geographical
reference points. These landmarks are more easily provided in a contour plot of the
fitted surface. In Figures 5.4-6 we illustrate three such contour plots corresponding
to fitted surfaces for the three quartiles of the land value distribution. In each case
the smoothing parameter λ is chosen, rather arbitrarily, to be .25. The contours are
indicated in black and are labeled in dollars per square foot. It should be noted that
the alignment of the contours to the map surface are, at present, somewhat crude,
but close to the resolution of the figure. Among several possible refinements of this
simple model for land values, we note that it is quite straightforward to add other
covariates like the parcel size in a partially linear model formulation. See Koenker
and Mizera (2002) for further details on this approach.

7. Conclusions

We believe that regularization, or shrinkage, methods offer a promising comple-
mentary approach to knot selection for triogram models. Roughness penalties based
on total variation seem particularly well-suited. They satisfy natural equivariance re-
quirements and are computationally very attractive. There are many possible lines of
development for penalized triograms: from fundamental questions about the geomet-
ric measure theory of total variation of vector valued functions, to pragmatic issues
of algorithmic design. Further work is clearly necessary, but a strong prima facie
case has been made for the attractive features of total variation penalties and their
application to triogram estimation.
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Figure 6.3. Perspective Plot of Median Model for Chicago Land Values.

Appendix

Proof of Proposition 4.1 First, we derive a formula for the IAE of the linear
interpolation of a quadratic function on a triangle. Without loss of generality, we may
choose the coordinate system so that the triangle δ has vertices (0, 0), (1, 0), (u, v),
with 0 ≤ u ≤ 1 and v ≥ 0. The interpolated quadratic function is

F (x, y) =
1

2
(x, y)H(x, y)T ,

where H is positive definite. Since the approximating function F̂ must agree with F
at the vertices, we have

F̂ (x, y) = 1
2
H11x+ yv−1(F (u, v)− 1

2
H11u).
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Figure 6.4. Contour Plot of First Quartile Model for Chicago Land Values.

Then

I =

∫ ∫
δ

|F̂ − F |dxdy

=

∫ u

0

∫ xv/u

0

(F̂ − F )dydx+

∫ 1

u

∫ v(1−x)/(1−u)

0

(F̂ − F )dydx,

since F (x, y) is convex and thus F̂ (x, y) ≥ F (x, y) on δ. Direct evaluation yields

I =
v

24
(H11(1− u+ u2) + v(H12(2u− 1) + vH22).
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Figure 6.5. Contour Plot of Median Model for Chicago Land Values.

Now, for i = 1, 2, 3, let di = F (xi+1 − xi, yi+1 − yi), where (xi, yi) denotes the i-th
vertex of δ and (x4, y4) = (x1, y1). Observing that

3∑
i=1

di = F (1, 0) + F (u− 1, v) + F (−u,−v)

= H11(1− u+ u2) +H12v(2u− 1) +H22v,

we obtain the expression

(7.1) I =
|δ|
12

3∑
i=1

di,

where |δ| is the area of the triangle δ, equal to v/2. Note that the final formula is
coordinate-free, so it applies in general, for any triangle δ.

Using (7.1), we can compare the integrated absolute error on the competing tri-
angulations ∆h = {(±α, 0), (0, β)} and ∆v = {(α, 0), (0,±β)}. This comes down to
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Figure 6.6. Contour Plot of Third Quartile Model for Chicago Land Values.

comparing

I(δh) = F (2α, 0) + F (−α, β) + F (−α,−β)

and

I(δv) = F (α, β) + F (−α, β) + F (0,−2β).

We conclude that ∆h is preferred to ∆v, just as in the L2 case, if and only if

|H11|
|H22|

<

(
β

α

)2

.
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