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Abstract. Hansen, Kooperberg, and Sardy (1998) introduced a family of contin-
uous, piecewise linear functions defined over adaptively selected triangulations of
the plane as a general approach to statistical modeling of bivariate densities, regres-
sion and hazard functions. These triograms enjoy a natural affine equivariance that
offers distinct advantages over competing tensor product methods that are more
commonly used in statistical applications.

Triograms employ basis functions consisting of linear “tent functions” defined
with respect to a triangulation of a given planar domain. As in knot selection
for univariate splines, Hansen, et al adopt the regression spline approach of Stone
(1994). Vertices of the triangulation are introduced or removed sequentially in an
effort to balance fidelity to the data and parsimony.

In this paper we explore a smoothing spline variant of the triogram model based
on a simple roughness penalty adapted to the piecewise linear structure of the
triogram model. The proposed roughness penalty may be interpreted as a total
variation penalty on the gradient of the fitted function.

“Goniolatry, or the worship of angles, ...”
Pynchon (1997)

1. Introduction

Piecewise polynomial functions, or splines, have proven to be an extremely powerful
concept throughout approximation theory and the statistical literature on smoothing.
Like the eponymous drafting instrument, splines are a elegantly simple, yet eminently
practical tool. In the statistical literature on splines there continues to be a vigor-
ous debate over the relative merits of penalty methods for smoothing splines, versus
regression splines relying on knot selection. Both computational tractibility and sta-
tistical efficiency play important roles in this debate, and the resulting rivalry has
significantly broadened the scope of both approaches.

In an innovative recent paper Hansen, Kooperberg, and Sardy (1998) have in-
troduced a class of linear spline models for bivariate smoothing problems. These
triogram models are defined on triangulations of polyhedral planar domains; knot
selection strategies adapted from Stone, Hansen, Kooperberg, and Troung (1997) are
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2 Penalized Triograms

employed to control the degree of smoothing of the estimates. The primary objective
of the present paper is to begin to explore a smoothing spline approach to the estima-
tion of triograms. The roughness penalty we employ may be viewed as an attempt to
extend the total variation roughness penalty suggested in Koenker, Ng, and Portnoy
(1994) to bivariate settings.

2. Roughness Penalties and Nonparametric Regression

In its classical univariate form the (cubic) smoothing spline solves the problem of
finding a function g minimizing

n∑
i=1

(yi − g(xi))
2 + λ

∫
(g′′(x))2dx,

over a Sobolev space of continuous functions with absolutely continuous first deriv-
ative and square-integrable second derivative. The tuning parameter λ controls the
smoothness of the fitted function. In this form the estimator ĝ(·) is a natural cubic
spline with knots at the observed xi’s and may be interpreted as an estimate of the
conditional mean function. The penalty term may be viewed as representing a prior
belief that the L2 norm of g′′ is unlikely to exceed a specified bound controled by the
choice of λ.

There is nothing sacred about the Gaussian, conditional mean, formulation of the
smoothing spline problem and there have been numerous efforts to explore alternative
forms of both the fidelity and roughness penalties to achieve modified objectives. One
such effort is described in Koenker, Ng, and Portnoy (1994), where a non-parametric
approach to estimating conditional quantile functions is suggested based on g mini-
mizing

(2.1)
n∑
i=1

ρτ (yi − g(xi)) + λJ(g),

where ρτ (u) = u(τ − I(u < 0)) generates a fidelity term appropriate for conditional
quantile estimation, and the roughness penalty J(g) is taken to be total variation of
the first derivative of g.

Recall that the total variation of a function f(x) from [a, b] to R is given by

(2.2) V (f) = sup
n−1∑
k=0

|f(xk+1)− f(xk)|,

where the sup is taken over all possible partitions, a = x0 < x1 < ... < xn = b For
a continuous function f : R → R, the celebrated Banach (1925) indicatrix theorem
gives

(2.3) V (f) =

∫
N(y)dy,
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where N(y) = #{x : f(x) = y} is the Banach indicatrix of f , the function counting
the number of roots for each value in the range of f ; see e.g. Natanson (1974, Thm
VIII.5.3). If f is absolutely continuous, we can also write, again see Natanson (1974,
Thm IX.4.8),

(2.4) V (f) =

∫
|f ′(x)|dx,

which for f = g′ yields the roughness penalty

(2.5) J(g) = V (g′) =

∫
|g′′(x)|dx.

This establishes a clear link of the total variation penalty of Koenker, Ng, and Portnoy
to the classical L2 roughness penalty.

Total variation proves to be a natural alternative penalty for quantile regression
fidelity from a computational viewpoint since it preserves the piecewise linear form of
the objective function and thus preserves the linear programming formulation of the
optimization problem. Solutions to the problem (2.1) take the form of continuous,
piecewise linear functions with jumps in their derivative at the observed xi’s. The
L1 nature of the total variation penalty imposes a rather different shrinkage effect
than the classical L2 penalty. Just as ordinary `1 regression seeks to identify p basic
observations whose exact fit characterizes the p-dimensional parameter estimate, the
L1 penalty acts more like a model selection device by identifying a small number of
critical xi points at which ĝ′ will be allowed to jump. The number of these selected
jump points is controlled by the parameter λ, and provides a natural measure of the
dimensionality of the fitted function. See Tibshirani (1996) and Donoho, Chen, and
Saunders (1998) for related discussion of the model-selection, shrinkage effects of L1

type penalties.
The extension of univariate smoothing splines to bivariate situations, and beyond,

raises new questions about how to measure the roughness of surfaces. The thin plate
smoothing splines of Harder and Desmarais (1972), whose theory was developed by
Duchon (1976,1977), Meinguet (1979) and Wahba and Wendelberger (1980), and
others, minimize

(2.6)
n∑
i=1

(zi − g(xi, yi))
2 + λJ(g,Ω, ‖ · ‖2

2)

with the roughness penalty defined as,

(2.7) J(g,Ω, ‖ · ‖2
2) =

∫ ∫
Ω

‖∇2g‖2
2dxdy =

∫ ∫
Ω

(g2
xx + 2g2

xy + g2
yy)dxdy

The integrand of the thin plate penalty is the squared Hilbert-Schmidt (Frobenius)
norm of the Hessian of g. This dependence on the norm is explicitly recognized
in our penalty notation in anticipation of taxonomic challenges that lie ahead. In
the classical thin-plate problem, Ω is taken to be all of R2, and this simplifies the
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Figure 2.1. Thin plate penalty integrand for the He, Ng Portnoy tent
function interpolant.

computations considerably. However, as noted by Green and Silverman (1994) there
can be considerable disparities between such solutions and solutions based on versions
of the penalty defined over restricted domains.

This is illustrated in the canonical example of He, Ng, and Portnoy (1998) of
interpolating the four points, (0, 0, 0), (1, 0, 0), (1, 1, 1), (1, 0, 0) forming a tent on the
unit square. Solving (2.6) with Ω = R

2 yields a function whose thin plate integrand
is illustrated in Figure 2.1. When integration is restricted to the unit square the thin
plate penalty is roughly 2.77. But simpler candidates can yield considerably smaller
penalties, e.g. g(x, y) = xy, gives J(g, [0, 1]2, || · ||22 = 2.I would be will-

ing to conjec-
ture that xy is
optimal.

If g(x, y) = h(x) for some h, then a straightforward computation shows that, on
rectangular Ω = Ω1 ×Ω2,

(2.8) J(g,Ω, || · ||22) = J(h,Ω1, || · ||22) µ(Ω2),

where J(h,Ω1, || · ||22) specializes to the classical univariate penalty
∫

(g′′(x))2dx, and
µ(Ω2) denotes the Lebesgue measure of Ω2. Thus, the thin plate penalty (2.6) may be
viewed as a natural bivariate extension of the classical univariate roughness penalty.
This raises the following questions. Can we, by analogy with the univariate total
variation penalty (2.5), define a bivariate roughness penalty? How should we define
total variation of the gradient of a function of two variables? These questions require
a brief mathematical detour.

2.1. Total Variation in Higher Dimensions. The quest for a satisfactory defini-
tion of total variation for functions from R

k to Rm has engaged the mathematical
community for more than a century. Only for k = 1, and m arbitrary, does the clas-
sical univariate definition (2.2) of Jordan (1881) adapt in a straightforward way, see
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Dinculeanu (1967). Early definitions for k ≥ 2 and m = 1 by Tonelli (1926, 1936),
and others suffered from coordinate-dependence and attendent reliance on rectangu-
lar domains. In nonparametric regression this is a drawback, as we will argue below.
The first orthogonally-invariant definitions were introduced by Kronrod (1949, 1950)
in the spirit of the Banach indicatrix theorem (2.3). For a real function f on Ω ⊆ R2,
the Kronrod variation is equal to

(2.9) VK(f,Ω) =

∫
Ω

L1(f−1(x))) dx,

where L1(f−1(x)) is the length, defined as one-dimensional Hausdorff or similar mea-
sure, of the preimage of x and dx denotes the integration over the one-dimensional
Lebesgue measure so that we need not care if the length of the preimage is infinite
for sets of zero measure. This line of development for arbitrary k and m = 1 was
subsequently cultivated in Russian literature by Vitushkin (1955) and Ivanov (1975).

Roughness penalties based on total variation of the gradient require a more general
definition for functions, f from R

k to Rk Consideration of (2.4) suggests

(2.10) V (f,Ω, ‖ · ‖) =

∫
Ω

‖∇f‖ dx,

where dx now denotes integration with respect to k-dimensional Lebesgue measure.
This is, in fact, the approach to multidimensional total variation that has dominated
the recent mathematical literature. Ambrosio, Fusco, and Pallara (2000) give a re-
cent account of this theory developed in the context of geometric measure theory
and variational calculus, tracing its origins back to Fichera (1954) and De Giorgi
(1954). The definition, which apparently covers only sufficiently smooth f , may be
extended to a broader domain of functions with the aid of techniques related to the
theory of Schwartz distributions. As in the theory of Sobolev spaces, the formalism
of distributions is invoked for differentation and limit transitions; the functions under
consideration remain standard. Functions with bounded variation are defined to be
those whose derivatives, in the sense of Schwartzian distributions, are measures. This
is a mathematically elegant definition, and also very convenient: it leaves the norm in
(2.10) unspecified, therefore presents a family of functionals depending on the norm.

A lower semicontinuous functional J initially defined for smooth functions can be
extended to a broader domain using the approach of Serrin (1961), in which

(2.11) J(g) = lim inf J(gn),

where the right-hand side expression denotes the inf of lim inf J(gn) over all sequences
gn approaching g in the sense of distributions. The total variation functionals of
the form (2.10) are lower semicontinuous and smooth functions are, with respect to
distributional convergence, dense in functions of bounded variation.

The thin-plate functional (2.7) is lower semicontinuous, the property is closely
related to convexity, so there may be some hope of using this approach to extend
the thin plate penalty beyond its traditional domain. It turns out, however, that
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such an extension assigns +∞ to any g with discontinuous derivatives. In particular,
any function with a spike or a sharp ridge is evaluated as infinitely rough. Serrin
(1961) gives arguments why such an outcome is essentially unavoidable (in a sense,
not depending on a particular extension scheme); the reader may verify the conclusion
in dimension one and thence for any function for which formula (2.8) applies; a jump
in derivative with magnitude 1 interpolated by a piecewise linear function increasing
on an interval of length 2r results in the thin-plate functional of order (2r)−1; letting
r → 0 makes this infinite. Another example is the cone g(x, y) = (x2 + y2)1/2 on the
unit circle; a straightforward computation involving polar coordinates, neglecting the
contribution of the spike itself, which can be shown to be finite and nonzero, gives
J(g,Ω, ‖ · ‖2

2) =
∫ 1

0
r−1dr = +∞ .

Given our definition of total variation, we are now prepared to define a total-
variation based roughness penalty for functions, g, from R

2 to R to be

(2.12) J(g,Ω, ‖ · ‖) = V (∇g,Ω, ‖ · ‖) =

∫ ∫
Ω

‖∇2g‖ dx dy,

Any such penalty – regardless of the choice of the norm – can be considered an
extension of the univariate penalty (2.5).

Theorem 2.1. Suppose that g is a function from R
2 to R such that g(x, y) = h(x)

for some h. There is a constant c depending only on the choice of the matrix norm
in (2.12), but not on g, such that for any Ω = Ω1 ×Ω2,

(2.13) J(g,Ω, ‖ · ‖) = c J(h,Ω1, ‖ · ‖) |Ω2|,
where J(g,Ω, ‖ · ‖) =

∫
Ω1
|h′′(x)| dx, and |Ω2| denotes the Lebesgue measure of Ω2.

Proof: Let c be the norm of the 2× 2 matrix containing 1 in the upper left corner
and zeros elsewhere. By the properties of the norm, the norm of the matrix containing
u instead of 1 in the upper left corner and zeros otherwise is c|u|. Note that in the
Hessian, all second-order partial derivatives are zero, except for gxx(x, y) = h′′(x);
thus

J(g,Ω, ‖ · ‖) = c

∫ ∫
Ω

|h′′(x)| dx dy

and (2.13) follows by the Fubini theorem.
However, the question of the choice of norm in (2.10) remains open. For denois-I’ve com-

mented out the

Blomgren and
Chan stuff here

since it didn’t

fit nicely with
the norm idea,

i.e. was ugly.

ing images with a view toward reconstructing discontinuities in derivatives, Scherzer
(1998) proposed using the penalty corresponding to the `1 norm in (2.10); for smooth
functions g from R

2 to R this penalty is equal to

(2.14) J(g,Ω, ‖ · ‖1) =

∫ ∫
(|gxx|+ 2|gxy|+ |gyy|)dxdy.

A similar penalty was recently proposed in the statistical literature by He, Ng, and
Portnoy (1998), who introduced a bivariate form of the quantile smoothing spline
using a roughness penalty that sums univariate total variation of the function along
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rectangular grid lines. Their roughness penalty may be viewed as a total variation
of the gradient in the Tonelli-Cesari vein, (2.10), with the `1 norm applied to the
diagonal of the Hessian,

(2.15) J(g,Ω, ‖ · ‖HNP ) =

∫ ∫
(|gxx|+ |gyy|)dxdy,

This formulation gives rise to bilinear tensor product splines that are continuous and
piecewise linear on the grid lines, and bilinear on the rectangular patches between grid
lines. Similar tensor product splines have also been widely used in the least-squares
regression spline literature.

One potential disadvantage of the tensor product formulation in some applications
is its lack of orthogonal equivariance. Functions well oriented with respect to the
xy-axes may prove to be much more difficult to fit when the observations are rotated.
Invariance considerations provide valuable guidance through the forest of potential
definitions of total variation and roughness penalty functionals.

2.2. Invariance and equivariance. Given a function f from R
2 to R, with gradient

vector, ∇f , after an orthogonal change of coordinates, x = Uξ, the new gradient of f
is equal to (∇f)TU . Imposing invariance of the total variation functional V (f,Ω, ‖·‖)
for any f and U , we arrive at the requirement that ‖Ux‖ = ‖x‖ for any x ∈ R2 and any
orthogonal matrix U . The only norm satisfying this requirement, up to multiplication
by a constant, is the Euclidean norm. Therefore, the only coordinate-independent
total variation functional is, for k = 2, a constant multiple of

(2.16) V (g,Ω, ‖ · ‖2) =

∫ ∫
Ω

√
g2
x + g2

y dx dy.

Transforming the integral reveals that (2.16) is nothing but the Kronrod (1949) vari-
ation (2.9).

If, however, f = ∇g, as we require for our roughness penalties, the definition (2.10)
applied to ∇g : R2 → R

2, we obtain,

(2.17) J(g,Ω, ‖ · ‖) = V (∇g,Ω, ‖ · ‖) =

∫ ∫
Ω

‖∇2g‖ dx dy,

where ∇2g is the Hessian of g. The requirement of orthogonal invariance for the
penalty J , invariance with respect to translations comes for free, since we work with
derivatives, leads to the requirement that

(2.18) ‖UTHU‖ = ‖H‖,
for any orthogonal matrix U and any symmetric matrix H. There are many norms
satisfying this property – apparently any norm which is a symmetric function of the
eigenvalues satisfies (2.18). In fact, von Neumann (1937) proved that every norm
satisfying ‖A‖ = ‖UA‖ = ‖AU‖ for any A and any unitary matrix U must be a
symmetric function of the singular values of A. Are these

elementary

symmetric
functions?
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The leading example of such a norm is the Hilbert-Schmidt (Frobenius, Euclidean)
norm of the matrix. The resulting penalty is, for sufficiently smooth g, given by,

J(g,Ω, ‖ · ‖2) =

∫
Ω

√
g2
xx + 2g2

xy + g2
yy dx dy,

which brings us back through Pythagorean pathways to the thin-plate penalty. Only
the squaring of the norm is at issue. Other possibilities include the absolute value of
the trace, or determinant; we refer the reader to Mizera (2001) for other intriguing
candidates.

Another attractive property of total variation roughness penalties, particularly
when paired with absolute error fidelity, is their scale equivariance. If g minimizes

(2.19)
n∑
i=1

|zi − g(xi, yi)|+ λJ(g,Ω, ‖ · ‖)

then cg minimizes (2.19) with zi replaced by czi, provided that J(cg,Ω, ‖ · ‖) =
|c|J(g,Ω, ‖ · ‖). This is clearly not the case for the thin-plate penalty.

Efficient numerical solution of the variational problems arising from such gen-
eral forms of roughness penalties based on total variation appears quite challeng-
ing. However, by restricting the domain of functions over which we are optimizing
some progress can me made. One such restriction leads to penalized versions of the
piecewise linear triograms of Hansen, Kooperberg, and Sardy (1998).

3. Triograms

Following Hansen, Kooperberg and Sardy, let U be a compact region of the plane,
and let ∆ denote a collection of sets δi : i = 1, . . . , N with disjoint interiors such
that U = ∪δ∈∆δ. In general the collection, ∆, is called a tessellation of U . We will
be concerned only with the case that the δ ∈ ∆ are planar triangles, in which case
∆ is called a triangulation. We will further restrict attention to ∆ whose vertices
are not collinear. This is considerably stronger than the notion of “conforming”We don’t re-

ally need this
restriction.

triangulations used by Hansen, Kooperberg and Sardy, but is natural if we consider
vertices V = {vi = (xi, yi)}pi=1, generated at random from a process with a (Lebesgue)
density.

The continuous functions g on U that are linear when restricted to δ ∈ ∆ are
called triograms. Their collection, G, associated with the triangulation, ∆, is a finite-
dimensional linear space space. The piecewise linearity of the functions g ∈ G is obvi-
ously a stringent requirement, but there are persuasive arguments for the advantages
offered by their simplicity. Hansen, Kooperberg and Sardy propose a regression spline
approach to estimating triogram models in which vertices are sequentially added and
deleted in an effort to find a parsimonious fit. The approach is remarkably flexible
and can be used for density estimation, regression and other “extended linear mod-
els.” Selecting a good triangulation is clearly critical to success, and considerable
attention needs to be devoted to stepwise addition and deletion strategies for vertices
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to achieve a “good” choice of ∆. Motivated by the success of penalty methods else-
where in the spline literature we were encouraged to explore an alternative penalized
triogram approach.

3.1. A Roughness Penalty for Triograms. Thin-plate penalties are inappropriate
for triograms for the reasons described in the previous section: such penalties assign
infinity to any function with a discontinuity in the gradient, and thus are inherently
incapable of discriminating among triograms. Roughness penalties based on the total
variation of the gradient offer a more straightforward solution. Fortuitiously, it also
turns out that the troublesome choice of the norm disappears once we insist on a
coordinate-independent penalty for triograms, all penalties reduce to a single one.

Theorem 3.1. Suppose that g : R2 → R, is a piecewise-linear function on the
triangulation, ∆. For any coordinate-independent penalty of the form (2.17), there is
a constant c dependent only on the choice of the norm such that

(3.1) J(g,Ω, ‖ · ‖) = c
∑
e

‖∇g+
e −∇g−e ‖ ‖e‖

where e runs over all the interior edges of the triangulation ‖e‖ is the Euclidean
length of the edge e, and ‖∇g+

e − ∇g−e ‖ is the Euclidean length of the difference
between gradients of g on the triangles adjacent to e.

Proof: Basically, two steps: 1. showing that the contribution of the vertices is zero;
2. computing the contribution of a single edge as given above. I tentatively keep the
chunks of the following text (which concern step 2) until I have a better Biometrika
style wording.

Consider the trapezoidal region consisting of two adjacent triangles. We would like
to evaluate the roughness penalty on this region, by which we mean on the interior of
this region, We are free, by orthogonal invariance, to orient the region so the common
edge of the two triangles lies along the x-axis and we will suppose, without loss of
generality that our function takes the value 1 at the right end of this edge and takes
the value 0 at all 3 other vertices. By definition, our triogram is just the function
that linearly interpolates on the interior of this set, but this causes some apparent
difficulties for our definition since it suggests that gij(x) = 0 almost everywhere and
is undefined on the crucial common edge.

Fortunately, these difficulties can be smoothed over by replacing the sharp edge
by something smoother. Imagine a small cylinder fitting just inside the angle made
by the edge, so a “mollified” version of the function may be defined by replacing
the sharp angle of the original by a smooth arc of and continuing in the usual linear
fashion after the points of tangency.

Reconsidering J(g) for the mollified triogram we see that g11 = g12 = g21 = 0, and
g22 is monotone and depends only on y, so,

J(g,Ω, ‖ · ‖) =

∫ ∫
|g22|dy = |g2(x, y + ε)− g2(x, y − ε)|‖e‖.
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The first term is independent of x, and also independent of ε as long as ε is greater than
the width of the mollifying arc. Thus, the roughness of the piecewise linear function
on the trapezoid is simply the absolute difference in the slopes of the function on
the two triangles in the directions orthogonal to the edge multiplied by the length of
edge. In the next subsection we elaborate on this form of the roughness penalty and
begin to analyze its suitability for triogram applications.

For those of a certain age, the image of a geodesic structure composed of interlocking
triangular surfaces connected by Tinker-Toy dowels may induce a mild Proustean
epiphany. The triogram model is just an elementary example of the class of ridge
function models surveyed in a recent paper by Pinkus (1997). Ridge functions bring
together a number of important ideas in the approximation theory literature as well
as important statistical ideas involving projection pursuit and neural networks. See
Candes (2000) for a unified statistical prespective.

4. Computation of Penalized Triograms

4.1. A Basis for G. A basis for the linear space G consists of the linear “tent”
functions, {Bi(u)}pi=1, that may be expressed in terms of the barycentric coordinates
of points u represented by the vertices v1, v2, v3 of the triangle δ containing u,

uj =
3∑
i=1

Bi(u)vij j = 1, 2.

and satisfying the condition

1 =
3∑
i=1

Bi(u).

Solving for the Bi(u)’s we obtain by Cramer’s rule, provided the vertices aren’t
collinear,

B1(u) =
A(u, v2, v3)

A(v1, v2, v3)
,

where

A(v1, v2, v3) =
1

2

∣∣∣∣∣∣
v11 v21 v31

v12 v22 v32

1 1 1

∣∣∣∣∣∣
is the signed area of the triangle δ. The remaining Bi(u) are defined analogously by
replacing the vertex vi by u. Clearly, the {Bi(u)} are linear in u on δ, and satisfy the
interpolation conditions that Bi(vj) = 1 for i = j and = 0 otherwise; thus they are
linearly independent. They are also affine equivariant; that is, for any non-singular,
2× 2 matrix A, and vector b ∈ R2,

Bi(u) = B∗i (Au+ b) u ∈ U ,
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where {Bi(u)} are formed from the vertices {vi}pi=1 and {B∗i } are formed from the
vertices {Avi + b}ni=1. In particular, the basis is equivariant to rotations of the coor-
dinate axes, a property notably missing in many other bivariate smoothing methods. Terminology

here may

need to be
reconciled with

Section 2.

Like their univariate B-spline basis function counterparts they satisfy 0 ≤ Bi(u) ≤ 1
with

p∑
i=1

Bi(u) = 1 u ∈ U .

4.2. Computing the Fidelity. Since any function, g ∈ G, may be expressed in
terms of the barycentric basis functions and the values, βi, that it takes at the vertices
of the triangulation as,

g(x, y) =

p∑
i=1

βiBi(x, y),

we can express the fidelity of the fitted function, ĝ(x, y), to the observed sample,
{(xi, yi, zi), i = 1, ..., n} in `1 terms as,

n∑
i=1

|zi − ĝ(xi, yi)| =
n∑
i=1

|zi − aT

i β̂|

where the p-vectors, ai denote the “design” vectors with elements, aij = (Bj((xi, yi))).
In the simplest case there is a vertex at every point (xi, yi) and the matrix, A = (aij)
is just the n-dimensional identity. Typically, however, one may wish to choose, p < n
and there would be a need to compute some barycentric coordinates for some elements
of the matrix, A.

4.3. Computing the Penalty. Fix the triangulation, ∆, and consider the triogram,
g ∈ G on a specified triangle δ ∈ ∆. Let {(xi, yi, zi), i = 1, 2, 3} denote the points at
the three vertices of δ, so,

zi = θ0 + θ1xi + θ2yi i = 1, 2, 3,

where θ denotes a vector normal to the plane representing the triogram restricted to
δ. Solving the linear system, we obtain the gradient vector,

∇gδ =

(
θ1

θ2

)
= [det(D)]−1

(
(y2 − y3) (y3 − y1) (y1 − y2)
(x3 − x2) (x1 − x3) (x2 − x1)

) z1

z2

z3


whereD is the 3 by 3 matrix with columns [1, x, y]. This gradient is obviously constant
on δ and linear in the values of the function at the vertices. Thus, for any pair of
triangles, δi, δj, with common edge, ek(i,j), we have the constant gradients, ∇gδi ,∇gδj ,
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and we can define the contribution of the edge to the total roughness of the function
as,

|ck| = |ηT

ij(∇gδi −∇gδj)| · ‖ek(i,j)‖,
= ‖(∇gδi −∇gδj)‖ · ‖ek(i,j)‖,

where ηij denotes the unit vector orthogonal to the edge. The second formulation
follows from the fact that ηij is just the gradient gap renormalized to have unit
length; this can be easily seen by considering a canonical orientation in which the
edge k(i, j) runs from (0, 0) to (1, 0). The penalty is then computed by summing
these contributions over all interior edges.

Since the gradient terms are linear in the parameters, βi, determining the function
at the vertices, the penalty may also be expressed as a piecewise linear function of
these values, ∑

k

|ck| =
∑
k

|hT

k β̂|,

where the index k runs over all of the edges formed by the triangulation, ∆. The
problem of optimizing the fidelity of the fitted function subject to a constraint on
the roughness of the function may thus be formulated as the augmented linear `1

problem,

min
β∈Rp

n∑
i=1

|zi − aT

i β|+ λ
M∑
k=1

|hT

kβ|.

A corresponding penalized least squares problem may be formulated as,

min
β∈Rp

n∑
i=1

(zi − aT

i β)2 + λ
M∑
k=1

(hT

kβ)2.

Like the median regression problem this may be viewed as an augmented regression

problem with response vector (zT , 0T ) ∈ Rn+M , and design matrix [AT
...HT ]T where

A = (aT
i ) and H = (hT

k).

4.4. On Sparsity. A crucial feature of the penalized triogram estimators described
above is the sparsity of the augmented design matrices. In the fidelity component
A, rows have at most three non-zero elements needed to represent the barycentric
coordinates of the (xi, yi) points not included as basic vertices. For basic rows, the
vector ai is one in only one element and zero everywhere else. In the penalty matrix,
H, each row has four nonzero entries and the remaining elements are zero.

To appreciate the consequences of this it may help to consider an example. Suppose
we have n = 1600 observations and we introduce basic vertices (knots) at each of the
points, {(xi, yi) : i = 1, ..., n}. The resulting matrix A is just the n = 1600 identity
matrix. The number of interior edges of the Delaunay triangulation is given by

e = 3n− 2c− 3,
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where c denotes the number of exterior edges, see Okabe, Boots, Sugihara, and Chiu
(2000). So the matrix H is 4753 by 1600 in a typical example, and the augmented
`1 regression problem is thus, 6353 by 1600. This may appear computationally in-
tractable, and would be intractable on many machines using conventional statistical
software, But recognizing the sparsity of the problem, that is noting that only 0.2
percent of the more than 10 million elements of the design matrix are nonzero, drasti-
cally reduces the memory requirement and computational complexity of the problem
from about 80Mb to only 160Kb.

In our MATLAB implementation of the triogram software only the nonzero ele-
ments of the design matrix need to be stored, along with their identifying indices.
This drastically reduces the memory requirements of the computations and improves
efficiency. Much better performance would be possible if the computations were re-
coded a lower level language like C or fortran using one of several available sparse
matrix libraries.

4.5. On Triangulation. Up to this point we have taken the form of the triangula-
tion, ∆, as fixed, it is now time to consider how to determine ∆ given the observations,
{(xi, yi, zi), i = 1, ..., n}. In full generality, as we have already suggested, this is an
extremely challenging problem that involves a delicate consideration of the function
being estimated. This draws us back into the vertex insertion/deletion schemes like
those described by Hansen, Kooperberg, and Sardy. Since it was our intention from
the beginning to circumvent these aspects of the problem, replacing such model se-
lection strategies by shrinkage governed by our proposed roughness penalty, we will
focus on the classical triangulation method of Delaunay.1

A simple, direct characterization of the Delaunay triangulation may be stated for
points in general position in the plane. We will say that points in R2 are in general
position if no three points lie on a line, and no four points lie on a circle. The Delaunay
triangulation of a set of points V = {vi ∈ R2 : i = 1, ...n} in general position consists
of all triangles whose circumscribing circle contains no V-points in their interior.
There is a vast literature on how to compute the Delaunay triangulation.

Delaunay triangulation abhors long, thin triangles. Indeed, another way to char-
acterize the Delaunay triangulation is that it maximizes,

α(∆) = min
δ∈∆
{a(δ)}

over all possible triangulations, ∆ of the set V , where the scalar, a(δ) denotes the
smallest angle of the triangle, δ. This maxmin property was long considered a major
virtue of the Delaunay method. However, relatively recently it has been noted by
Rippa (1992) that the benefits of this phobia about thinness are strongly linked to

1B.N. Delone (1890-1973) a leading Russian authority on the theory of numbers; not to be con-
fused with Robert Delaunay (1885-1941), the French painter and proponent of Orphism, a technique
of isolating regions of pure colors in painting that occasionally achieves the appearance of Delaunay
triangulation.
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the eventual application of the triangulation. If, for example, the objective is to find
a good interpolant for a function whose curvature happens to be very large in one
direction and small in the other, then long thin triangles may be very advantageous.2

To see this consider the example suggested by Rippa. We have a quadrilateral U ,
with vertices at (±α, o) and (0,±β). Suppose we want to fit the quadratic function,

F (x, y) =
1

2
(x, y)H(x, y)′

and we would like to compare the performance of the piecewise linear interpolant F̂h
using the horizontal triangulation ∆h with F̂v using the vertical triangulation ∆v.
Rippa’s performance measure is integrated squared error

ISE(F̂i, F,U) =

∫
U

(F̂i(x, y)− F (x, y))2dxdy

Proposition 4.1. (Rippa) The triangulation ∆h is preferred to ∆v is the sense of
ISE iff

(4.1)
|H11|
|H22|

<

(
β

α

)2

.

It seemed interesting to explore whether this result changes if one replaces inte-
grated squared error by integrated absolute error.

IAE(F̂i, F,U) =

∫
U
|F̂i(x, y)− F (x, y)|dxdy

Proposition 4.2. The triangulation ∆h is preferred to ∆v is the sense of IAE iff
(4.1) holds.

Thus the comparison of the two triangulations reduces to exactly the same expres-
sion as in the squared error case. The proof of the second proposition appears in the
appendix.

4.6. Automatic λ Selection. In Koenker, Ng and Portnoy it was suggested that a
variant of the well-known Schwarz (1978) model selection criterion could be used to
automatically select λ. This suggestion can also be adapted to the present context
in the following way. Given a fit ĝλ(·, ·) for a specified λ, we would like to have a
reasonable measure of the dimension of the fitted function. As with other `1 type
estimation methods, this is provided by simply counting the number of interpolated

2This is related to the following observation by Bern and Eppstein (1992). If you consider lifting
the points in V onto the paraboloid mapping (x, y) to (x, y, x2 + y2), the convex hull of the lifted
points can be split into an upper portion and a lower portion. A face of the convex hull belongs to the
lower portion if it is supported by a plane that separates the points in V from the point (0, 0,−∞).
The projection of this lower portion of the hull onto the xy-plane is the Delaunay triangulation.
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observations in the fidelity component of objective function. Letting pλ denote the
dimension of ĝλ defined in this way, we may consider selecting λ to minimize,

log(n−1
∑

ρτ (zi − ĝλ(xi, yi))) + 1
2
n−1pλ log n.

It should be emphasized that that this is a purely ad hoc expedient at this stage and
needs considerable further investigation.

5. Examples

In the first example, we consider estimating a noisey inverted bowl,

zi = max{1/4− 1/2(x2
i + y2

i ), 0}+ ui.

The (xi, yi)’s are generated as independent uniforms on [−1, 1]2, and the ui are iid
Gaussian with standard deviation σ = .02. The sample size is taken to be n = 400,
and the fits are based on the Delaunay triangulation of all n points. With n = 400
the number of Delaunay edges is roughly 1200, so the resulting `1 regression problems
are roughly 1600 by 400. Even so, the fitting in MATLAB is quite quick, about 1.5
seconds per fit on a Sun Ultra 2.

In Figure 5.1 we illustrate four different triogram fits corresponding to various
values of the smoothing parameter λ. In the first panel, the fit is essentially an
interpolation of the observations and is evidently too rough. Above the panels we
report the value of λ and the effective dimension of the fitted function as measured
by the number of observations interpolated by the fitted function. In the first panel
this number is nearly 400. In the second panel pλ has been reduced to 36, and the
fit is quite accurate. The flat area outside the region A = {x2 + y2 ≤ 1/2} is quite
well represented and the inverted bowl is quite smooth. In the third panel pλ has
been reduced to 17, and the fitted function is already somewhat oversmoothed. In
particular, the sharp edge on the boundary of the region A has been lost. In the
last of the four panels, the structure has been lost entirely and we quite close to the
limiting linear fit achieved as λ→∞. This last plot conveys some idea of the nature
of the Delaunay triangulation of the domain of fitted functions.

In the next figure we illustrate four fits of the same data for the least squares version
of the triogram estimator. In this case, following Hastie and Tibshirani (1990), we use
the trace of the linear operator defining the least squares fit to measure the dimension
of the fitted surface. This seems to yield a plausible estimate of the dimension, and
is monotonically decreasing in λ, but further study is clearly warranted.

In the second example we consider estimating the function

g0(x, y) =
40 exp(8((x− .5)2 + (y − .5)2))

(exp(8((x− .2)2 + (y − .7)2)) + exp(8((x− .7)2 + (y − .2)2)))

The function has a ridge along the 45 degree line and therefore presents a challenge to
tensor product methods. It has been previously considered by Gu, Bates, Chen, and
Wahba (1989), Breiman (1991), Friedman (1991), He and Shi (1996), and Hansen,
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Figure 5.1. Four median triogram fits for the inverted bowl example.
The values of the smoothing parameter λ and the number of interpo-
lated points in the fidelity component of the objective function, pλ are
indicated above each of the four plots.

Kooperberg, and Sardy (1998), among others. Using the experimental design of
He and Shi (1996) we compare their L1 and L2 tensor product regression spline
estimators with the L1 and L2 versions of the penalized triogram. The observations
{(xi, yi) : i = 1, ..., n} are generated as independent uniforms on [0, 1]2 and we
generate,

zi = g0(xi, yi) + ui,

with iid {ui}. Three distributions are considered: standard normal N (0, 1); the
normal mixture, .95N (0, 1) + .05N (0, 25); and slash, N (0, 1)/U [0, 1]. The sample
size is n = 100. As a measure of performance we focus explusively on,

MISE = average{n−1
∑

(ĝn(xi, yi)− (g0(xi, yi))
2},

averaging over the R = 1000 replications.
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Figure 5.2. Four mean triogram fits for the inverted bowl example.
The values of the smoothing parameter λ and the trace of the linear
operator defining the estimator, pλ are indicated above each of the four
plots.

In Table 5.1 we report He and Shi’s results for their tensor product regression
splines, and the corresponding results for the L1 and L2 penalized triogram approach.
The selection of λ for the triogram fitting was made by minimizing SIC(λ) over a
grid of λ’s from 0.1 to 1.0. The grid consisted of the points {λ = 10i/20 : i =
−20,−19, ..., 0}. This procedure yielded a fit with median pλ of 16.

The performance of the L1 triogram estimator is quite good for the normal and
normal mixture error distributions.3 However, it appears that the L1 triogram fails
badly for the slash distribution. It is worth delving into this failure a bit further.
The first observation to be made is that the failure to due entirely to two spectacular

3He and Shi (1996) also report performance of MARS (Friedman (1991)) and PIMPLE (Breiman
(1991)), which they find less satisfactory than their tensor product approach.
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Distribution L1 tensor L1 triogram L2 tensor L2 triogram
Normal 0.609 0.442 0.544 0.3102

(0.095) (0.161) (0.072) (0.093)
Normal Mixture 0.691 0.515 0.747 0.602

(0.233) (0.245) (0.327) (0.187)
Slash 0.689 4.79 31.1 171.1

(6.52) (125.22) (18135) (4723)

Table 5.1. Comparative MISE for fitting the Gu, Bates, Chen and
Wahba function.

disasters out of the 1000 replications. If we drop the two worst replications, the slash
entry in the table changes from 4.79 (125.22) to .486(3.25), and now appears quite
competitive. What went wrong?

In each case the explanation lies in a single outlying zi value that occurred on
the convex hull of the observed (xi, yi) points. Since the boundary edges of the
triangulation do not contribute to the penalty, the only consequence of over-zealous
fitting of such points is the associated interior connecting edge effects. For sufficiently
small values of λ this contribution is dominated by the gain in fidelity acheived by
exact fitting of the outlying point. There seem to be two important lessons to be
learned from this experience. First, one ignores the boundary effects of the fitting
procedure at one’s peril. And second, the SIC criterion is not to be trusted in cases
in which it exhibits significant discontinuities.

If one had an informative boundary condition that could be explicitly built into the
penalty function, this would help considerably. Or, if our λ selection had managed to
select a more parsimonious model the situation would also have been salvaged. One
could also place the blame on the slash specification, which is admittedly extreme,
but this be tantamount to a repudiation of the robustness objective.

6. Conclusions

We believe that regularization, or shrinkage, methods offer a promising comple-
mentary approach to knot selection for triogram models. Roughness penalties based
on total variation seem particularly well-suited to triogram applications. They satisfy
natural equivariance requirements and are computationally very attractive. There are
many possible lines of development for penalized triograms: from fundamental ques-
tions about the geometric measure theory of total variation of vector valued functions,
to pragmatic issues of algorithmic design.
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Appendix

Consider the problem of interpolating the quadratic function

F (x, y) =
1

2
(x, y)H(x, y)′

by a piecewise linear function on the triangle, δ, with vertices {(0, 0), (1, 0), (u, v)}. We
will assume the matrixH is positive definite and (u, v) ∈ R2

+. Since the approximating

function, F̂ , must agree with F at the vertices, we have

F̂ (x, y) =
1

2
H11x+ v−1(f(u, v)− uH11/2).

Then

I =

∫ ∫
δ

|F̂ − F |dxdy

=

∫ u

0

∫ xv/a

0

(F̂ − F )dydx+

∫ 1

u

∫ v(1−x)/(1−u)

0

(F̂ − F )dydx

since F̂ (x, y) ≥ F (x, y) on δ. Direct evaluation yields,

I =
v

24
(H11(1− u+ u2) + v(H12(2u− 1) + vH22).

Now let di = f(xi+1 − xi, yi+1 − yi) i = 1, 2, 3 where (xi, yi) denotes the ith vertex
of δ, and (x4, y4) = (x1, y1). Then,

3∑
i=1

di = f(1, 0) + f(u− 1, v) + f(−u,−v)

= H11(1− u+ u2) + vH12(2u− 1) +H22v

The area of δ is v/2 so we may express I as

I =
|δ|
12

3∑
i=1

di.

Finally, we would like to compare the integrated absolute error on the competing
triangulations ∆1 = {(±α, 0), (0, β)} and ∆2 = {(α, 0), (0,±β)}. This comes down
to comparing

I(δ1) = f(2α, 0) + f(−α, β) + f(−α,−β)

and
I(δ2) = f(α, β) + f(−α, β) + f(0,−2β)

and we conclude that ∆h is preferred to ∆v, just as in the L2 case, iff

|H11|
|H12|

<

(
β

α

)2



20 Penalized Triograms

References

Ambrosio, L., N. Fusco, and D. Pallara (2000): Functions of bounded variation and free
discontinuity problems. Clarendon Press, Oxford.

Banach, S. (1925): “Sur les lignes rectifiables et les surfaces dont l’aire est finie,” Fund. Math., 7,
225–236.

Bern, M., and D. Eppstein (1992): “Mesh generation and optimal triangulation,” in Computing
in Euclidean Geometry, ed. by D. Du, and F. Hwang, pp. 23–90. World Scientific Publishing.

Breiman, L. (1991): “The Π Method for Estimating Multivariate Functions From Noisy Data
(Disc: P145-160),” Technometrics, 33, 125–143.

Candes, E. J. (2000): “Ridgelets: Estimating with Ridge Functions,” preprint, Department of
Statistics, Stanford University.

De Giorgi, E. (1954): “Su uns teoria generale della misura (r− 1)-dimensionale in uno spazio a r
dimensioni,” Ann. Math. Pura Appl. (4), 36, 191–213.

Dinculeanu, N. (1967): Vector measures. Pergamon Press, Oxford, New York.
Donoho, D., S. Chen, and M. Saunders (1998): “Atomic decomposition by basis pursuit,”
SIAM J. of Scientific Computing, 20, 33–61.

Duchon, J. (1976): “Interpolation des fonctions de deuix variables suivant le principe de la flexion
des plaques minces,” R.A.I.R.O., Analyse numérique, 10, 1–13.

(1977): “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Construc-
tive Theory of Functions of Several Variables, Oberwolfach 1976, Lecture Notes in Mathematics
571, pp. 85–100. Springer, Berlin.

Fichera, G. (1954): Lezioni sulle transformazioni lineari. Istituto matematico dell’Università di
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