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1. Introduction

This is basically an aide memoire for the conversion of the original Mosek implemen-
tation of the Kiefer-Wolfowitz nonparametric maximum likelihood estimator for mixture
models, now extended to permit a modified objective based on Rényi entropies.

2. The classical MLE formulation

The V8 implementation of KWDual directly implemented an additive formulation of
the MLE objective function:

min{
∑

wi log(νi) | 0 ≤ Aν ≤ d, ν ∈ Sn}

where, to preserve the minimization sense, the wi = −1. In V9 a new formulation is
required to move the nonlinearity of the log objective into conic constraints. To accomplish
this we need to replace the explicit log terms with the auxiliary variables, t ∈ Rn, and then
link the νi’s with the ti’s via the exponential cone constraints, t ≤ log νi, i = 1, · · · , n. In
Mosek cookbook notation this is written as (ν, 1, t) ∈ K. The canonical exponential cone
in Mosek speak is K = {x ∈ R3|x0 ≥ x1 exp(x2/x1, x0, x1 ≥ 0}, so t ≤ log νi, i = 1, · · · , n
becomes ν ≥ exp(t).

We now have 2n variables, so the objective function becomes linear in the t, as w>t,
and we need to augment the A matrix as well to kill the t contribution, and we have as
before ν ∈ Rn

+, but t lives in all of Rn. This leaves the cone constraints. For this I was
just extrapolating somewhat from example AFFCO2 in the Rmosek manual. We need to
impose the constraints, for i = 1, · · · , n,

(1)

e>i 0
0 0
0 e>i

(ν
t

)
+

0
1
0

 ∈ K
These constraints can be stacked with the following R code:

P$F <- sparseMatrix(c(seq(1,3*n, by = 3), seq(3, 3*n, by = 3)),

c(1:n, (n+1):(2*n)), x = rep(1,2*n))

P$g <- rep(c(0,1,0), n)

P$cones <- matrix(list("PEXP", 3, NULL), nrow = 3, ncol = n)

rownames(P$cones) <- c("type", "dim", "conepar")

This exploits the simplest of the storage schemes in the Matrix package in which one just
specifies the row and column indices of the matrix and then the entries as a triple.

The F matrix in this case looks like this for n = 6,

1For obscure historical reasons the dual formulation referred to in the title is referred to as a primal
formulation here, and vice-versa
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[1,] 1 . . . . . . . . . . .

[2,] . . . . . . . . . . . .

[3,] . . . . . . 1 . . . . .

[4,] . 1 . . . . . . . . . .

[5,] . . . . . . . . . . . .

[6,] . . . . . . . 1 . . . .

[7,] . . 1 . . . . . . . . .

[8,] . . . . . . . . . . . .

[9,] . . . . . . . . 1 . . .

[10,] . . . 1 . . . . . . . .

[11,] . . . . . . . . . . . .

[12,] . . . . . . . . . 1 . .

[13,] . . . . 1 . . . . . . .

[14,] . . . . . . . . . . . .

[15,] . . . . . . . . . . 1 .

[16,] . . . . . 1 . . . . . .

[17,] . . . . . . . . . . . .

[18,] . . . . . . . . . . . 1

3. Rényi Alternatives

To explore alternatives to the MLE based on Rényi entropies we need to modify the
cone constraints. Here we build on the framework of Koenker and Mizera (2018) for esti-
mating families of concave densities. In that context we began with maximum likelihood
estimation of log concave densities as solutions to a primal problem,

(P1) min
{ 1

n

n∑
i=1

g(Xi) +

∫
e−g(x)dx

∣∣∣ g ∈ K(X)
}
,

with K(X) denoting the set of closed convex functions on the convex hull, H(X), of the
observed sample X. Here g(x) = − log f(x), so the second term in the objective function
represents a Lagrangian term imposing an integrability constraint on the estimated den-
sity, f with implicit Lagrange multiplier one. This primal problem has dual formulation,

(D1) max
{∫
−f log fdx

∣∣∣ f =
d(Q(X)−G)

dx
, G ∈ K(X)o

}
,

where Q(X) = n−1
∑n

i=1 δXi
is the empirical probability measure,

K(X)o =
{
G ∈ C∗(X)

∣∣∣ ∫ g dG ≤ 0, g ∈ K(X)
}

is the polar cone associated with K(X), and C∗(X) denotes the set of (signed) Radon
measures on H(X). The appearance of the Shannon entropy in the dual formulation (D1)

may be interpreted as the desire to find f̂ closest in the Kullback-Leibler divergence to
the uniform distribution on H(X) subject to the concavity constraint.



3

Replacing Shannon entropy in (D1) by a variationally equivalent form of the Rényi
entropy, yields new pairs of dual and primal problems:

(Dα) max
{ 1

α

∫
fα(y) dy

∣∣∣ f =
d(Q(X)−G)

dy
, G ∈ K(X)o

}
,

and

(Pα) min
{ n∑
i=1

g(Xi) +
|1− α|
α

∫
gβ dx

∣∣∣ g ∈ K(X)
}
.

Here β is conjugate to α in the usual sense: 1/α+1/β = 1. Special provision for α ∈ {0, 1}
must obviously be made; we have already considered α = 1, MLE case which corresponds
to e−g, and we will now consider other cases, beginning with α = 0.

3.1. Rényi α = 0. In the primal formulation α = 0 replaces e−g by log g. This allows
us to maintain the exponential cone formulation except that now the roles of t and ν are
reversed and we have instead of (1),

(2)

 0 e>i
0 0
e>i 0

(ν
t

)
+

0
1
0

 ∈ K
implemented in R with,

P$F <- sparseMatrix(c(seq(3,3*n, by = 3), seq(1, 3*n, by = 3)),

c(1:n, (n+1):(2*n)), x = rep(1,2*n))

P$g <- rep(c(0,1,0), n)

P$cones <- matrix(list("PEXP", 3, NULL), nrow = 3, ncol = n)

rownames(P$cones) <- c("type", "dim", "conepar")

3.2. Rényi α ∈ (0, 1). The remaining Rényi formulations all require Mosek V9 “power
cones:” in dimension 3 the canonical power cone takes the form,

K = {x ∈ R3|xα0x1−α1 ≥ |x2|, x0, x1 ≥ 0}.

We first consider α ∈ (0, 1) which includes the important Hellinger case α = 1/2. Again
we introduce auxiliary variables, t ∈ Rn, and would like to impose the condition νβ ≥ t
which can be written as ναt1−α ≥ 1, and implemented in R as,

P$F <- sparseMatrix(c(seq(1, 3 * n, by = 3), seq(3, 3 * n, by = 3)),

c(1:n, (n + 1):(2 * n )), x = rep(1, 2 * n))

P$g <- rep(c(0, 1, 0), n)

P$cones <- matrix(list("PPOW", 3, c(alpha, 1 - alpha)), nrow = 3, ncol = n)

rownames(P$cones) <- c("type", "dim", "conepar")

3.3. Rényi α > 1. Pearson fidelity, α = 2 is the primary case of interest when α > 1.
If we write γ = 1/α, then we can implement the power cone constraint νγt1−γ ≥ 1 by
replacing α by 1/α.

3.4. Rényi α < 0. Finally, in the netherworld of α < 0 we can replace α by 1/(1− α).
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Table 1. MSE Performance of Rényi alternatives setting 1

n 1 2 0.5 0 -0.5
50 0.991 0.936 0.936 0.895 0.928
100 0.927 0.907 0.907 0.895 0.915
200 0.880 0.879 0.879 0.906 0.897
400 0.866 0.884 0.884 0.947 0.910
500 0.841 0.861 0.861 0.934 0.889
1000 0.842 0.873 0.873 0.968 0.904
2000 0.832 0.869 0.869 0.979 0.902

Table 2. MSE Performance of Rényi alternatives setting 2

n 1 2 0.5 0 -0.5
50 0.553 0.609 0.609 0.671 0.668
100 0.484 0.570 0.570 0.739 0.654
200 0.482 0.592 0.592 0.840 0.689
400 0.460 0.591 0.591 0.901 0.695
1000 0.447 0.580 0.580 0.941 0.688
2000 0.452 0.590 0.590 0.973 0.698

4. Simulations

To compare performance of the Rényi alternatives to the NPMLE we considered two
distinct simulation settings. In the first Yi = µi + ui with µi ∼ U [5, 15], ui ∼ N (0, 1) and
several sample sizes. In each case we compute mean squared error of the posterior mean
predictions of the µi’s, and report the results based on 200 replications in Table 1.

The second setting is the same except that µi ∈ {0, 3} with equal probability. Again
MSE based on 200 replications are reported in Table 2. Although there is some evidence
that for small sample sizes, the MLE is bested by other Rényi alternatives for the Uniform
setting, the discrete setting shows the NPMLE to be totally dominant.
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