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An Empirical Bayes Homework Problem
Suppose you observe a sample {Y1, ...,Yn} and Yi ∼ N(µi, 1) for
i = 1, ...,n, and would like to estimate all of the µi’s under squared error
loss. We might call this “incidental parameters with a vengence.”

Fact 1. If the µi are drawn iid-ly from a known distribution F so the Yi
have density,

g(y) =

∫
φ(y− µ)dF(µ),

then the Bayes rule is:

δ(y) = y+
g′(y)

g(y)

Fact 2. If F is unknown, one can try to estimate g and plug it into the
Bayes rule, but exponential family considerations dictate that
δ̂(·) should be monotone increasing.
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Stein Rules!

We’d like to estimate the µi’s with something other than the naı̈ve decision
rule, µi = Yi. For example, if we thought that F were N(µ0,σ

2
0) we would

have,

δ(y) = y+
g′(y)

g(y)
= µ0 +

σ2
0

1 + σ2
0

(y− µ0).

Note that in this case, Y ∼ N(µ0, 1 + σ2
0), so we can estimate (µ0,σ

2
0) at√

n rate, and we obtain a variant of the celebrated James-Stein (1960)
estimator. When the prior mean, µ0 = 0, and the prior variance, σ2

0 = 1,
then the optimal rule is “shrink by half.”

δ(y) = y/2
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Unobserved Heterogeneity

More generally we can consider models of the form:

g(y) =

∫
ϕ(y, θ)dF(θ),

where ϕ is a known parametric likelihood, and F is again a mixing
distribution over the parameter θ.

In survival analysis these are called ”fraility” models, or in the terminology
of Heckman and Singer (1984) models of ”unobserved heterogeneity.”
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The Obligatory Identification Slide

A natural question would be: When can we identify ϕ and F based on
knowledge of the mixture distribution G. Not surprisingly, the answer is
only with further assumptions. Two favorable special cases:

Gaussian Location Family When g(y) =
∫
φ(y− θ)dF(θ),

ψG(t) ≡
∫
eiytg(y)dy =

∫ ∫
eiytφ(y− θ)dF(θ)

= e−t2/2

∫
eiθtdF(θ),

so uniqueness of the characteristic function for G assures
identifiability, of F.

General Location Families When g(y) =
∫
ϕ(y− θ)dF(θ), we have,

ψG(t) = ψϕ(t)ψF(t), so unless ψϕ(t) = 0 over an open
interval, F is again uniquely defined.
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Back to the Homework
Most of the applications of our homework problem choose ϕ as a one
parameter exponential family with a ”natural” parameter, θ, so we may
write,

ϕ(y, θ) = m(y)eyθh(θ)

Quadratic loss implies that the Bayes rule is a conditional mean:

δG(y) = E[Θ|Y = y]

=

∫
θϕ(y, θ)dF/

∫
ϕ(y, θ)dF

=

∫
θeyθh(θ)dF/

∫
eyθh(θ)dF

=
d

dy
log(

∫
eyθh(θ)dF

=
d

dy
log(g(y)/m(y))
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Standard Gaussian Case
In the homework problem,

ϕ(y, θ) = φ(y− θ) = K exp{−(y− θ)2/2} = Ke−y2/2 · eyθ · e−θ2/2

So m(y) = e−y2/2 and the logarithmic derivative yields our Bayes rule:

(Fact 1) δ(y) =
d

dy

[
1

2
y2 + log g(y)

]
= y+

g′(y)

g(y)
.

For Fact 2, note that,

δ′G(y) =
d

dy

[∫
θϕdF∫
ϕdF

]
=

∫
θ2ϕdF∫
ϕdF

−

(∫
θϕdF∫
θϕdF

)2

= E[Θ2|Y = y] − (E[Θ|Y = y])2

= V[Θ|Y = y] > 0,

implying that δG must be monotone. This is the monotone likelihood ratio
property of the exponential family coming into play.
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Estimating δ(y)

So far we have emphasized knowing the form of the mixing distribution F
as well as ϕ, what if F is unknown? If F is known up to a finite dimensional
parameter, then there is quite a lot of literature on special cases.

For example, in Johnstone and Silverman’s (2004) paper ”Needles and
Straw in Haystacks,” they consider prior densities of the form:

f(u) = (1 −w)δ0(u) +wγ(u)

so F has mass 1 −w at zero, and its remaining mass spread according to
a density γ which is taken either to be Laplace (double exponential) or as
a beta mixture of normals with Cauchy tails. They construct empirical
Bayes estimators that estimate the mass w and the scale of the γ density.
Estimators are then selected as the median of the posterior, or the mean,
and a quite extensive simulation experiment conducted.
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Johnstone and Silverman Simulation Design

Data is generated from 12 distinct models, all of the form:

Yi = µi + ui, ui ∼ N(0, 1), i = 1, ..., 1000.

Of the n = 1000 observations n− k of the µi = 0, and the remaining k
take one of the four values {3, 4, 5, 7}. There are three choices of k:
{5, 50, 500}. There are 50 replications for each of the 12 experimental
settings and 18 different competing estimators.

Performance is measured by the mean (over replications) of the sum (over
the n = 1000 observations) of squared errors, so a score of 500 means
that the mean squared prediction error is 0.5, or half of what the naı̈ve
prediction µ̂i = Yi would yield if the µi were all zero.
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Johnstone and Silverman Simulation Results
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Non-parametric Empirical Bayes

What about nonparametric estimation of the mixture density g?
Brown and Greenshtein (Annals, 2009) propose estimating g by standard
fixed bandwidth kernel methods and they compare performance of the
resulting estimated Bayes rule with various other methods including the 18
methods investigated by Johnstone and Silverman, employing their
simulation design. For these simulations they employ bandwidth h = 1.15.

Estimator k = 5 k = 50 k = 500
3 4 5 7 3 4 5 7 3 4 5 7

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505
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Monotone Empirical Bayes Rules

But our homework asked for a monotone Bayes rule.

Find a density estimate ĝ for the mixture density such that

δ̂(y) = y+ ĝ′(y)/ĝ(y)

is monotone increasing, or equivalently, such that,

K(y) =
1

2
y2 + log ĝ(y)

is convex. This problem is closely related to recent work on estimating
log-concave densities, e.g. Cule, Samworth and Stewart (JRSSB, 2010),
K and Mizera (Annals, 2010), Seregin and Wellner (2010).
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Monotone Empirical Bayes Rules

We could, as van Houwelingen and Stijnen (Stat. Ned., 1983), try to make
a preliminary (kernel) density estimate and then monotonize its logarithmic
derivative, but why not maximum likelihood?

ĝ = argmax{
n∑
i=1

log g(Yi) |

∫
gdy = 1, K(y) ∈ K},

where K is the convex cone of convex functions. This can be solved by
standard interior point methods, or equivalently we can solve the dual
problem of minimizing Shannon entropy or the Kullback-Leibler distance
between the estimated density and a uniform density on the support of the
empirical df.
Solutions have piecewise linear K functions, and rather funny looking ĝ’s.

Roger Koenker (UIUC) Empirical Bayes Joel Fest: 24.6.2011 13 / 26



Discrete Formulation
Let h(y) = − log g(y), and write the primal problem as,

(P) max
α

{w>α−
∑

cie
αi | Dα+ 1 > 0}.

and dual problem as,

(D) min
ν

{
∑

cigi log gi + 1>ν | g = C−1(w+D>ν), ν > 0}.

For example with F ∼ U[5, 15] we obtain estimates like this:
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Revenge of the MLE

How well do these monotone Bayes rules perform in the Johnstone and
Silverman sweepstakes?

Estimator k = 5 k = 50 k = 500
3 4 5 7 3 4 5 7 3 4 5 7

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Shockingly well, actually. But as ever so, there is disappointment just
around the corner.
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Revenge2 of the MLE
Kiefer and Wolfowitz (1956) reconsidering the Neyman and Scott (1948)
problem showed that non-parametric maximum likelihood could be used to
establish consistent estimators even when the number of incidental
parameters tended to infinity. Laird (1978) and Heckman and Singer
(1984) suggested that the EM algorithm could be used to compute the
MLE in such cases.

Jiang and Zhang (Annals, 2009) adapt this approach for the empirical
Bayes problem: Let ui : i = 1, ...,m denote a grid on the support of the
sample Yi’s, then the prior (mixing) density f is estimated by the fixed point
iteration:

f̂
(k+1)
j = n−1

n∑
i=1

f̂
(k)
j φ(Yi − uj)∑m

`=1 f̂
(k)
` φ(Yi − u`)

,

and the implied Bayes rule becomes at convergence:

δ̂(Yi) =

∑m
j=1 ujφ(Yi − uj)f̂j∑m
j=1φ(Yi − uj)f̂j

.
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The Incredible Lethargy of EM-ing
Unfortunately, EM fixed point iterations are notoriously slow and this is
especially apparent in the Kiefer and Wolfowitz setting. Solutions
approximate discrete (point mass) distributions, but EM goes ever so
slowly. (Approximation is controlled by the grid spacing of the ui’s.)
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Accelerating EM
There is a large literature on accelerating EM iterations, but none of the
recent developments (that I tried) seemed to help very much. Eventually it
occurred to me that the problem could be reformulated as a maximum
likelihood problem to exploit interior point methods for solving convex
programs. Consider,

max
f∈F

n∑
i=1

log(

m∑
j=1

φ(yi − uj)fj),

or reformulating slightly,

min{−

n∑
i=1

log(yi) | Az = y, z ∈ S},

where A = (φ(yi − uj)) and S = {s ∈ |Rm|1>s = 1, s > 0}. So zj
denotes the estimated mixing density estimate f̂ at the grid point uj, and
yi denotes the estimated mixture density estimate, ĝ, at Yi.
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Interior Point vs. EM
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Interior Point vs. EM

In the foregoing test problem we have n = 200 observations and m = 300
grid points. Timing and accuracy is summarized in this table.

Estimator EM1 EM2 EM3 IP
Iterations 100 10, 000 100, 000 15
Time 1 37 559 1
L(g) - 422 0.9332 1.1120 1.1204 1.1213

Comparison of EM and Interior Point Solutions: Iteration counts, log likelihoods
and CPU times (in seconds) for three EM variants and the interior point solver.

Scaling problem sizes up, the deficiency of the EM approach is even more
serious.
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Performance of the NP-MLE Bayes Rule

In the (now familiar) Johnstone and Silverman sweepstakes we have the
following comparison of performance.

Estimator k = 5 k = 50 k = 500
3 4 5 7 3 4 5 7 3 4 5 7

δ̂MLE−IP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂MLE−EM 37 33 21 11 162 111 56 14 458 285 130 18

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Here MLE-EM is Jaing and Zhang’s (2009) Bayes rule with their suggested
100 EM iterations. It does somewhat better than the shape constrained
estimator, but the interior point version MLE-IP does even better.
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... , but how does it work in theory?
The fundamental theorem of compound decisions (Robbins (1951))
asserts that the multivariate problem of estimating all the θ’s can be
reduced to

R∗(Gn) = min
t∈T

R(t,Gn) = min
t∈T

EGn(t(Yi) − ξ)2

that is, to finding a Bayes Rule for the univariate problem:

Y|ξ ∼ N(ξ, 1), ξ ∼ G,

with G = Gn, the empirical df of the θ’s, over the class of Borel functions.

We can constrain the class, T in various ways:

Linear t(·) – James-Stein estimator,

soft thresholding t(·) – Stein unbiased risk estimator (SURE),

hard thresholding t(·) – FDR/generalized Cp estimator,

posterior medians – Johnstone and Silverman’s EBThresh
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Adaptive Minimaxity and the Oracle

Comparing performance with that of the Oracle estimator using F = Fn:

Estimator k = 5 k = 50 k = 500
3 4 5 7 3 4 5 7 3 4 5 7

Oracle 27 22 12 1 144 93 46 3 443 273 128 8

δ̂MLE−IP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂MLE−EM 37 33 21 11 162 111 56 14 458 285 130 18

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Question: How can such poor estimates of the mixing distribution produce
such good performance for their associated Bayes rules?
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Discrete Approximations and Entropy

The mixing density may be poor, but the mixture density is still quite good:

Lemma: (Zhang) Let gF(y) =
∫
φ(y− u)dF(u), then for any F there

exists a discrete Fm, with support [−M− a,M+ a] and at most
m = (2b6a2c+ 1)d2M/a+ 2e+ 1 atoms such that

‖gF − gFm‖∞,M 6 φ(a)(1 + φ(0)).

The existence of such parsimonious discrete approximations yield a good
entropy bound (covering number) for the class of distributions and thus a
large deviation inequality for the Hellinger error of the (generalized) MLE.
This in turn yields strong bounds on the ”regret” for the associated Bayes
rules relative to the Oracle bound.
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Adaptive Minimaxity

For their approximate MLE-EM Bayes rules Jiang and Zhang prove:

Theorem: For the normal mixture problem, with a (complicated) weak pth
moment restriction on Θ, the approximate non-parametric MLE,
θ̂ = δ̂F̂n(Y) is adaptively minimax, i.e.

supθ En,θLn(θ̂, θ)

infθ̃ supθ∈Θ En,θLn(θ̃, θ)
→ 1.

The weak pth moment condition encompasses a much broader class of
both deterministic and stochastic classes Θ.
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Conclusions and Extensions

Empirical Bayes methods, employing maximum likelihood, offer some
advantages over other thresholding and kernel methods,

Kernel based empirical Bayes rules can be improved with shape
constrained MLEs and are computationally very efficient, but

Kiefer-Wolfowitz type non-parametric MLEs, while computationally
somewhat more demanding, perform even better, especially after
replacing EM by interior point computational methods. For large
sample sizes, further binning is needed to make the interior point
methods practical.

There are many opportunities for linking such methods to various
semi-parametric estimation problems a la Heckman and Singer
(1983) and van der Vaart (1996).
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