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An Economic Preview/Motivation

Guvenen et al (2015) have estimated models of income dynamics using
very large (10 percent) samples of U.S. Social Security records linked to
W2 data. This reveals quite extreme tail behavior in annual log income
increments. Their density is nicely approximated by the Hellinger concave
(−1/

√
f(x) ∼ concave) estimator of Koenker and Mizera (Annals, 2010).
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A Compound Decision Homework Problem
Suppose you observe a sample {Y1, ...,Yn} and Yi ∼ N(µi, 1) for
i = 1, ...,n, and would like to estimate all of the µi’s under squared error
loss. We might call this “incidental parameters with a vengence.”

Not knowing any better, we assume that the µi are drawn iid-ly from a
distribution F so the Yi have density,

g(y) =

∫
φ(y− µ)dF(µ),

the Bayes rule is then given by Tweedie’s formula:

δ(y) = y+
g′(y)

g(y)

When F is unknown, one can try to estimate g and plug it into the
Bayes rule. This is the point of departure for Robbins’s empirical
Bayes program.
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Stein Rules I

Suppose that the µi’s were iid N(0,σ20), so the Yi’s are iid N(0, 1 + σ20),
the Bayes rule would be,

δ(y) =

(
1 −

1

1 + σ20

)
y.

When σ20 is unknown, S =
∑
Y2i ∼ (1 + σ20)χ

2
n, and recalling (!) that an

inverse χ2n random variable has expectation, (n− 2)−1, we obtain from
Tweedie’s formula the Stein rule in its original form:

δ̂(y) =

(
1 −

n− 2

S

)
y.
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Stein Rules II

More generally, if µi ∼ N(µ0,σ20) we shrink instead toward the prior mean,

δ(y) = µ0 +

(
1 −

1

1 + σ20

)
(y− µ0),

Estimating the prior mean parameter costs us one more degree of
freedom, and we obtain the celebrated James-Stein (1960) estimator,

δ̂(y) = Ȳn +

(
1 −

n− 3

S

)
(y− Ȳn),

with Ȳn = n−1
∑
Yi and S =

∑
(Yi − Ȳn)

2.
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(y− Ȳn),
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Needles and Haystacks

An influential paper by Johnstone and Silverman (2004, Annals) compared
performance of several estimators for the Gaussian Sequence Model,

Yi = µi+ui, µi ∼ (1−ε)δ0+εδµ, µ ∈ {3, 4, 5, 7}, ε ∈ {1/200, 1/20, 1/2}.

Various thesholding procedures were compared including several
parametric empirical Bayes procedures. Performance was judged by

SSE =

n∑
i=1

(µ̂i − µi)
2

on samples of size n = 1000. In this setting the naive MLE µ̂i ≡ Yi has
SSE of 1000.
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Needles and Haystacks
Johnstone and Silverman (2004) compare various thresholding rules with
a parametric empirical Bayes procedure that estimates a prior mass at 0
and a scale parameter for a (non-null) Laplace density.
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Nonparametric Empirical Bayes I

Brown and Greenshtein (Annals, 2009) proposed estimating g by standard
fixed bandwidth kernel methods and they compare performance of their
estimated Bayes rule with various other methods including the various
parametric empirical Bayes methods investigated by Johnstone and
Silverman in their “Needles and Haystacks” (Annals) paper.

A drawback of the kernel approach is that it fails to impose a monotonicity
constraint that should hold for the Gaussian problem, or indeed for any
similar problem in which we have iid observations from a mixture density,

g(y) =

∫
ϕ(y, θ)dF(θ)

with ϕ an exponential family density with natural parameter θ ∈ |R.
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Back to the Homework

When ϕ is an exponential family density we may write,

ϕ(y, θ) = m(y)eyθh(θ)

Quadratic loss implies that the Bayes rule is a conditional mean:

δG(y) = E[Θ|Y = y]

=

∫
θϕ(y, θ)dF(θ)/

∫
ϕ(y, θ)dF(θ)

=

∫
θeyθh(θ)dF(θ)/

∫
eyθh(θ)dF(θ)

=
d

dy
log(

∫
eyθh(θ)dF(θ)

=
d

dy
log(g(y)/m(y))
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Monotonicity of the Bayes Rule

When ϕ is of the exponential family form,

δ′G(y) =
d

dy

[∫
θϕdF∫
ϕdF

]
=

∫
θ2ϕdF∫
ϕdF

−

(∫
θϕdF∫
ϕdF

)2

= E[Θ2|Y = y] − (E[Θ|Y = y])2

= V[Θ|Y = y] > 0,

implying that δG must be monotone.

Or equivalently that,

K(y) = log ĝ(y) − logm(y)

is convex. Such problems are closely related to recent work on estimating
log-concave densities, e.g. Cule, Samworth and Stewart (JRSSB, 2010),
Koenker and Mizera (Annals, 2010), Seregin and Wellner (Annals, 2010),
Dümbgen, Samworth and Schuhmacher (Annals, 2011).
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Standard Gaussian Case

In our homework problem,

ϕ(y, θ) = φ(y− θ) = K exp{−(y− θ)2/2} = Ke−y
2/2 · eyθ · e−θ2/2

So m(y) = e−y
2/2 and the logarithmic derivative yields our Bayes rule:

δG(y) =
d

dy

[
1

2
y2 + log g(y)

]
= y+

g′(y)

g(y)
.

Estimating g by maximum likelihood subject to the constraint that

K(y) =
1

2
y2 + log ĝ(y)

is convex as discussed in Koenker and Mizera (JASA, 2013).
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Nonparametric Empirical Bayes II

Jiang and Zhang (Annals, 2009) adopt the Kiefer and Wolfowitz (1956)
non-parametric MLE for mixture models using Laird’s (1978) EM
implementation. Let ui : i = 1, ...,m denote a grid on the support of the
sample Yi’s, then the prior (mixing) density f is estimated by the (EM) fixed
point iteration:

f̂
(k+1)
j = n−1

n∑
i=1

f̂
(k)
j φ(Yi − uj)∑m

`=1 f̂
(k)
` φ(Yi − u`)

,

and the implied Bayes rule becomes at convergence:

δ̂(Yi) =

∑m
j=1 ujφ(Yi − uj)f̂j∑m
j=1φ(Yi − uj)f̂j

.
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The Incredible Lethargy of EM-ing
Unfortunately, EM fixed point iterations are notoriously slow and this is
especially apparent in the Kiefer and Wolfowitz setting. Solutions
approximate discrete (point mass) distributions, but EM goes ever so
slowly. (Approximation is controlled by the grid spacing of the ui’s.)
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Accelerating EM via Convex Optimization

There is a large literature on accelerating EM iterations, but none of the
recent developments seem to help very much. However, the
Kiefer-Wolfowitz problem can be reformulated as a convex maximum
likelihood problem and solved by standard interior point methods:

max
f∈F

n∑
i=1

log(
m∑
j=1

φ(yi − uj)fj),

can be rewritten as,

min{−
n∑
i=1

log(gi) | Af = g, f ∈ S},

where A = (φ(yi − uj)) and S = {s ∈ |Rm|1>s = 1, s > 0}. So fj
denotes the estimated mixing density estimate f̂ at the grid point uj, and
gi denotes the estimated mixture density estimate, ĝ, at Yi.
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Interior Point vs. EM
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Interior Point vs. EM

In the foregoing test problem we have n = 200 observations and m = 300
grid points. Timing and accuracy is summarized in this table.

Estimator EM1 EM2 EM3 IP
Iterations 100 10, 000 100, 000 15
Time 1 37 559 1
L(g) - 422 0.9332 1.1120 1.1204 1.1213

Comparison of EM and Interior Point Solutions: Iteration counts, log likelihoods
and CPU times (in seconds) for three EM variants and the interior point solver.

Scaling problem sizes up, the deficiency of EM is even more serious.
Simulation performance of the Bayes Rule is improved over EM
implementation.
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Performance of the MLE Bayes Rule

In the Johnstone and Silverman sweepstakes we have the following
comparison of performance.

Estimator k = 5 k = 50 k = 500
3 4 5 7 3 4 5 7 3 4 5 7

δ̂MLE−IP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂MLE−EM 37 33 21 11 162 111 56 14 458 285 130 18

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Here MLE-EM is Jiang and Zhang’s (2009) Bayes rule with their suggested
100 EM iterations. It does somewhat better than the shape constrained
estimator, but the interior point version MLE-IP does even better.
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The Castillo and van der Vaart Experiment
The setup is quite similar to the first earlier ones,

Yi = µi + ui, i = 1, · · ·n

the µi are most zero, but s of them take one of the values from the set
{1, 2, · · · , 5}. The sample size is n = 500, and s ∈ {25, 50, 100}. The first 8
rows of the Table are taken directly from Table 1 of Castillo and van der
Vaart (2012).

s = 25 s = 50 s = 100
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
EBMR 30 77 89 65 35 50 123 136 92 48 79 185 193 127 62
EBKM 27 71 80 57 30 46 113 122 81 40 74 171 174 112 53

MSE based on 1000 replications
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But How Does It Work in Theory?

For the Gaussian location mixture problem empirical Bayes rules based on
the Kiefer-Wolfowitz estimator are adaptively minimax.

Theorem: Jiang and Zhang (2009) For the normal location mixture
problem, with a (complicated) weak pth moment restriction on Θ, the
approximate non-parametric MLE, θ̂ = δ̂F̂n(Y) is adaptively minimax, i.e.

supθ En,θLn(θ̂, θ)

infθ̃ supθ∈Θ En,θLn(θ̃, θ)
→ 1.

The weak pth moment condition encompasses a broad class of both
deterministic and stochastic classes Θ. Relatively little is still known about
the KWMLE beyond the original consistency result: no rates, no limiting
distributions.
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Econometric Motivation: Duration Modeling

Heckman and Singer (1984) employed the Kiefer-Wolfowitz MLE to study
durations Ti of single spell unemployment data with (Weibull) density:

f(t | xi,α,β, θi) = αt
α−1ex

′
iβθi exp(−tαex

′
iβθi), θi ∼ H

Conclusions:
1 Neglecting heterogeneity in θi leads to misinterpretation of “duration

dependence.”
2 Common parameters in the model (α,β) are sensitive to parametric

assumptions imposed on H(θ).
3 EM is painful.
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Econometric Motivation: Panel Data

Model:
yit = αi +

√
θiuit, uit ∼ N(0, 1)

Neyman and Scott (1948) showed that in the “fixed effect” model with
θi ≡ θ0, the MLE of θ0 is inconsistent.

Kiefer and Wolfowitz (1956) then showed that consistency of θ̂0 could be
restored if we (simply!) replaced the fixed effect assumption by an iid
αi ∼ G0 assumption, and proceeded with the MLE. Indeed, both θ0 and
G0 are consistently estimable.
Using annual income data from the PSID, I’d like to now show how to
extend these methods to incorporate:

random scale
√
θi,

additional covariates and dynamics,

bivariate heterogeneity in (α, θ),

forecasting and prediction.
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A Toy Example
Model

yit = αi +
√
θiuit, t = 1, · · · ,mi, 1, · · · ,n, uit ∼ N(0, 1)

αi ∼
1
3(δ−0.5 + δ1 + δ3) ⊥⊥ θi ∼ 1

3(δ0.5 + δ2 + δ4)
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The Data

PSID sample used by Meghir and Pistaferri (2004) Browning, Ejrnæs
and Alvarez (2010), Hospido (2012), . . .

2069 individuals between age 25-55 with at least 9 consecutive
records,

Further reduced to 938 individuals with records starting at age 25,

Preliminary estimation of observable effects: quadratic age, race,
education, region, marital status to obtain log earning residuals, yit.
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QQ Plots of Partial Differences
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Scatter Plots of Partial Differences
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The Mixture Model

yit = ρyit−1 + αi(1 − ρ) +
√
θiεit, εit ∼ N(0, 1), (αi, θi) ∼ H

We can re-write the model as

yit − ρyit−1 := zit | αi, θi ∼ N((1 − ρ)αi, θi)

Fixing ρ, we reduce the dimension via sufficient statistics

α̂i = 1
Ti

∑Ti
t=1 zit, α̂i | αi, θi ∼ N(αi, θi/mi)

si = 1
Ti−1

∑Ti
t=1(zit − α̂i)

2, si | θi ∼ γ((Ti − 1)/2, 2θi/(Ti − 1))

The likelihood factors:

L(zi1, . . . ziTi | ρ) ∝
∫ ∫
f(α̂i | α, θ)︸ ︷︷ ︸

N

γ(si | θ)︸ ︷︷ ︸
Γ

dHρ(α, θ)

︸ ︷︷ ︸
gi

Roger Koenker (UIUC) Unobserved Heterogeneity JHU: 28.10.2015 26 / 38



Estimation

For fixed ρ the Kiefer-Wolfowitz MLE is

Ĥρ = argmax
H∈H

n∑
i=1

log

∫ ∫
f(α̂i | α, θ)γ(si | θ)dH(α, θ)

Given Ĥρ we can estimate ρ by profile likelihood,

ρ̂ = argmax
ρ

n∑
i=1

log

∫ ∫
f(α̂i | α, θ)γ(si | θ)dĤρ(α, θ)

Note that α̂i and si implicitly depend upon ρ via the partial differencing.

Identification for H follows from a uniqueness of the characteristic
function argument.

Identification of ρ follows from the quadratic approximation of profile
likelihood.
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The Heterogeneity Distribution Ĥρ̂ and ρ̂
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Only mild persistence of yit once heterogeneity of scale is accounted for,

Nice quadratic approximation of profile likelihood, e.g. Murphy and van der
Vaart (1995), van der Vaart (1996), gives a narrow Wilks confidence interval.

Some negative dependence in H(α, θ), but no apparent parametric
approximation.
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Forecasting Income Trajectories

A financial advisor, who has witnessed many individual earning paths,
wishes to forecast future income paths for a new client with earning history
Y0 = {yt : t = 1, . . . , T0}.

1 Draw one pair (α, θ) from the posterior p(α, θ | Y0),
2 Simulate Y1 = {yt : t = T0 + 1, . . . , T }

yT0+s = α+ ρ̂yT0+s−1+
√
θus, s = 1, · · · , T − T0, and us ∼ N(0, 1),

m times to obtain m paths, Y1, then
3 Repeat steps 1 and 2 M times.

Construct quantile prediction bands from the mM trajectories.
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Prediction Bands for Two Individuals
The advisor updates the (estimated) prior, Ĥ, based on the first 9 years of
income data, for ages 25-34, and then forecasts earnings to age 50.
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Prediction Bands for Two (More) Individuals

Pointwise bands don’t always cover!
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Uniform Prediction Bands for Two (More) Individuals

Uniform bands are safer!
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Estimation of Random Effects

Estimation of {(αi, θi) : i = 1, · · · ,n} brings us back to the Tweedie
(Eddington) formulae. Shrinkage rules of this type play an important role in
insurance rating, e.g. Bühlmann on “Credibility Theory,” see also
Goldberger (1962) on Best Linear Unbiased Prediction aka BLUP.

Recall
α̂i | αi, θi ∼ N(αi, θi/Ti)
si | θi ∼ γ((Ti − 1)/2, 2θi/(Ti − 1))

Under L2 loss,
min
δ

E(α,θ)‖δ(y) − α‖2

The Bayes rule is

δi = E(α | α̂i, si) =

∫
θ

E(α | α̂i, θ)f(θ | α̂i, si)dθ
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The Garlic Plot
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Bayes Rule for α given various s
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Reprise: An Economic Preview/Motivation
Simulating 2500 trajectories for each of our 938 PSID subjects we obtain a
marginal distribution for annual log income increments that looks very
similar to that obtained by Guvenen et al (2015).
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Conclusions

More efficient computation of the Kiefer-Wolfowitz MLE opens the
way to a variety of nonparametric mixture models of unobserved
heterogeneity,

Profile likelihood provides an attractive strategy for both estimation
and testing in such models,

Bivariate nonparametric heterogeneity in location and scale is a
flexible framework for longitudinal data,

Empirical Bayes provides natural forecasting and prediction
apparatus.
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