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An Economic Preview/Motivation

Guvenen et al (2015) have estimated models of income dynamics using
very large (10 percent) samples of U.S. Social Security records linked to
W2 data. This reveals quite extreme tail behavior in annual log income
increments. Their density is nicely approximated by the Hellinger concave
(—1/4/f(x) ~ concave) estimator of Koenker and Mizera (Annals, 2010).
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A Compound Decision Homework Problem

Suppose you observe a sample {Y1, ..., Yo} and Y; ~ N(uy, 1) for
i=1,...,n, and would like to estimate all of the p;’s under squared error
loss. We might call this “incidental parameters with a vengence.”
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A Compound Decision Homework Problem

Suppose you observe a sample {Y1, ..., Yn}and Y; ~ N(uy, 1) for

i =1, ..., n, and would like to estimate all of the ;’s under squared error
loss. We might call this “incidental parameters with a vengence.”

@ Not knowing any better, we assume that the p; are drawn iid-ly from a
distribution F so the Y; have density,

9(y) :Jcb(y—u)dF(u),

the Bayes rule is then given by Tweedie’s formula:

S(y) =y +
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A Compound Decision Homework Problem
Suppose you observe a sample {Y1, ..., Yn}and Y; ~ N(uy, 1) for

i =1, ..., n, and would like to estimate all of the ;’s under squared error

loss. We might call this “incidental parameters with a vengence.”

@ Not knowing any better, we assume that the p; are drawn iid-ly from a

distribution F so the Y; have density,

9(y) :Jcb(y—u)dF(u),

the Bayes rule is then given by Tweedie’s formula:

S(y) =y +

@ When F is unknown, one can try to estimate g and plug it into the
Bayes rule. This is the point of departure for Robbins’s empirical
Bayes program.
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Stein Rules |

Suppose that the p;’s were iid N(0, 03), so the Y;’s are iid N(0, 1 + 03),
the Bayes rule would be,

1
6(9): (1_ 1+O_g>y-
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Stein Rules |

Suppose that the p;’s were iid N(0, 03), so the Y;’s are iid N(0, 1 + 03),
the Bayes rule would be,

1
d(y) = (1 - 1+0(2)> Y.

When o3 is unknown, S = 3~ Y2 ~ (1 + 03)x2, and recalling (!) that an
inverse x2 random variable has expectation, (n — 2)~1, we obtain from
Tweedie’s formula the Stein rule in its original form:

Sy) = (1 - n;2> y.
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Stein Rules I

More generally, if 1; ~ N(po, 03) we shrink instead toward the prior mean,

d(y) = uo + (1 )(y—uo),

_1+0'(2)
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Stein Rules I

More generally, if Ly ~ N(po, Gg) we shrink instead toward the prior mean,

d(y) = uo + (1 ) (Y — wo),

_1+0'(2)

Estimating the prior mean parameter costs us one more degree of
freedom, and we obtain the celebrated James-Stein (1960) estimator,

with Vo =n 1Y Yiand S = ¥ (V; — Yn)2.
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Needles and Haystacks

An influential paper by Johnstone and Silverman (2004, Annals) compared
performance of several estimators for the Gaussian Sequence Model,

Yi = i+, i~ (1—e)do+edy, ue (34,57}, ee{1/200,1/20,1/2}.

Various thesholding procedures were compared including several
parametric empirical Bayes procedures. Performance was judged by

n
SSE=) (fi— )

i=1

on samples of size n = 1000. In this setting the naive MLE [i; = Y; has
SSE of 1000.
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Needles and Haystacks

Johnstone and Silverman (2004) compare various thresholding rules with

a parametric empirical Bayes procedure that estimates a prior mass at 0

and a scale parameter for a (non-null) Laplace density.

Number nonzera 50 500

‘Value nonzero 3 4 5 7 3 4 5 T 3 4 5 T
Exponential 3% 32 1v B 24 156 W1 T3 BST BT3 VB3 65E
Cauchy 3r 3% 18 B 1 1% W08 7T 022 BOE B 743
Postmean 3 a2 M 11 20 189 132 8BS B0 BEE  B26 708
Exphard 51l 48 ¥ 11 23 180 130 01 008 008 OB BIT
a=1 3% 32 19 15 213 166 142 135 004 1099 1126 1180
a=04% & 3 11 10 24 158 105 92 B45 BTE BB4  BB4
a=02 38 37 18 y 200 1885 95 69 1061 M0 A5 656
a=01 3 37 18 § 30 2 2 B %6 THE @M 5m
SURE 35 42 42 43 202 209 70 210 0 B2 IS B35 B3S
Adapt 42 B3 73 Y6 417 620 0 210 E8 K5 B35 B3IS
FDR g=001 43 51 2% w2 209 125 E 2568 1392 g 5
FDR g=0.1 40 35 19 18 280 175 113 102 1140 44 651 644
FDR g=04 58 58 53 52 20F 265 2WE 254 019 Bg6 BeD  B&D
Block Thresh 6 72 7 3 444 635 600 203 1018 1276 1065 OE3
NeighBlock 47 B4 51 26 427 h43 430 227 1870 1384 1148 0OV2
NeighCoeff 55 51 38 32 5 343 29 156 1800 1410 1032 BYD
Universal soft 42 83 T3 TE 417 620 T T46 4156 6168 TIST V413
Universal hard 3 oar 18 ¥ ar0 340 183 53 2672 3355 1ETE EO06
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Nonparametric Empirical Bayes |

Brown and Greenshtein (Annals, 2009) proposed estimating g by standard
fixed bandwidth kernel methods and they compare performance of their
estimated Bayes rule with various other methods including the various
parametric empirical Bayes methods investigated by Johnstone and
Silverman in their “Needles and Haystacks” (Annals) paper.
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Nonparametric Empirical Bayes |

Brown and Greenshtein (Annals, 2009) proposed estimating g by standard
fixed bandwidth kernel methods and they compare performance of their
estimated Bayes rule with various other methods including the various
parametric empirical Bayes methods investigated by Johnstone and
Silverman in their “Needles and Haystacks” (Annals) paper.

A drawback of the kernel approach is that it fails to impose a monotonicity
constraint that should hold for the Gaussian problem, or indeed for any
similar problem in which we have iid observations from a mixture density,

o(y) =J<p(y, 0)dF(0)

with @ an exponential family density with natural parameter 6 € R.
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Back to the Homework

When ¢ is an exponential family density we may write,
¢(y,0) = m(y)eV’h(6)
Quadratic loss implies that the Bayes rule is a conditional mean:
dg(y) = E[O|Y =1y]
— [ ewty.e1er@) | iy, e1are

_ Jeeyeh(e)dF(e)/Jeyeh(e)dF(e)

_ 4 Iog(J eY9h(0)dF(6)
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Monotonicity of the Bayes Rule

When o is of the exponential family form,

d [jeq)dF] _ J0%edF (jecde)z

56 (y)

Ty | JedF | [edF Jodr
= E[@?Y =y] — (EO]Y = y])?
=V[elY =y] >0,

implying that d ¢ must be monotone.

Roger Koenker (UIUC) Unobserved Heterogeneity

JHU: 28.10.2015

10/38



Monotonicity of the Bayes Rule

When ¢ is of the exponential family form,

2 2
5L (4) d [IG(de] _ [ 6%dF B (IG(de)

“dy | JedF | JedF  \ [edF
= E[@?Y =y] — (EO]Y = y])?
=V[BlY=y] >0,

implying that 8 ¢ must be monotone. Or equivalently that,

K(y) = log §(y) — logm(y)

is convex. Such problems are closely related to recent work on estimating
log-concave densities, e.g. Cule, Samworth and Stewart (JRSSB, 2010),

Koenker and Mizera (Annals, 2010), Seregin and Wellner (Annals, 2010),
Dimbgen, Samworth and Schuhmacher (Annals, 2011).
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Standard Gaussian Case

In our homework problem,
0(y,0) = by — 0) = Kexp{—(y —0)2/2} = Ke U"/2. V0 . ¢=0%/2

Som(y) = e~Y*/2 and the logarithmic derivative yields our Bayes rule:

Saly) = 5 |39 +oggly)| =y -+ L.

Estimating g by maximum likelihood subject to the constraint that

1 .
K(y) = 5142 + log §(y)

is convex as discussed in Koenker and Mizera (JASA, 2013).
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Nonparametric Empirical Bayes Il

Jiang and Zhang (Annals, 2009) adopt the Kiefer and Wolfowitz (1956)
non-parametric MLE for mixture models using Laird’s (1978) EM
implementation. Let u; : i =1, ..., m denote a grid on the support of the

sample Y;’s, then the prior (mixing) density f is estimated by the (EM) fixed
point iteration:

A(k)
f‘(k—o—l) . nil ke fj d)(Yl - u)')
. = i ,
: i) N fé T (Y: —ug)
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Nonparametric Empirical Bayes Il

Jiang and Zhang (Annals, 2009) adopt the Kiefer and Wolfowitz (1956)

non-parametric MLE for mixture models using Laird’s (1978) EM

implementation. Let u; : i =1, ..., m denote a grid on the support of the
sample Y;’s, then the prior (mixing) density f is estimated by the (EM) fixed

point iteration:

A(k)
f‘(k—o—l) . Tlil s fj d)(Yl - LL)')
. = vy ,
: Y ey —w)

and the implied Bayes rule becomes at convergence:

ijlujd)( _u])
S d(Y: — )

d(Vi) =
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The Incredible Lethargy of EM-ing

Unfortunately, EM fixed point iterations are notoriously slow and this is
especially apparent in the Kiefer and Wolfowitz setting. Solutions
approximate discrete (point mass) distributions, but EM goes ever so
slowly. (Approximation is controlled by the grid spacing of the u;’s.)

—— GMLEBEM: m=10°
—— GMLEBEM: m=10"
< - —— GMLEBEM: m=10°

f(x)

-2 0 2 4
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Accelerating EM via Convex Optimization

There is a large literature on accelerating EM iterations, but none of the
recent developments seem to help very much. However, the

Kiefer-Wolfowitz problem can be reformulated as a convex maximum
likelihood problem and solved by standard interior point methods:

can be rewritten as,

n
min{— ) log(gi) | Af=g, f € 8},
i=1

where A = (¢(y; —uj)) and § ={s € R™1"s=1, s >0}. So f;
denotes the estimated mixing density estimate f at the grid point u;, and
gi denotes the estimated mixture density estimate, g, at Y;.
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Interior Point vs. EM

g(x)
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|
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GMLEBIP

GMLEBEM: m=10?
GMLEBEM: m=10"
GMLEBEM: m=10°
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Interior Point vs. EM

In the foregoing test problem we have n = 200 observations and m = 300
grid points. Timing and accuracy is summarized in this table.

Estimator EM1 EM2 EMS3 IP
lterations 100 10,000 100,000 15
Time 1 37 559 1

L(g)-422 0.9332 1.1120 1.1204 1.1213

Comparison of EM and Interior Point Solutions: lteration counts, log likelihoods
and CPU times (in seconds) for three EM variants and the interior point solver.

Scaling problem sizes up, the deficiency of EM is even more serious.
Simulation performance of the Bayes Rule is improved over EM
implementation.
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Performance of the MLE Bayes Rule

In the Johnstone and Silverman sweepstakes we have the following
comparison of performance.

Estimator k=5 k =50 k =500

3 4 5 7 3 4 5 7 3 4 5 7
OMLE—_IP 33 30 16 8 153 107 51 11 454 276 127 18
SMLEfEM 37 33 21 11 162 111 56 14 458 285 130 18
5 37 34 21 11 173 121 63 16 488 310 145 22
51_15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Here MLE-EM is Jiang and Zhang'’s (2009) Bayes rule with their suggested
100 EM iterations. It does somewhat better than the shape constrained
estimator, but the interior point version MLE-IP does even better.
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The Castillo and van der Vaart Experiment
The setup is quite similar to the first earlier ones,

Yi=w+u,i=1--n

the w; are most zero, but s of them take one of the values from the set
{1,2,---,5}. The sample size is n = 500, and s € {25, 50, 100}. The first 8
rows of the Table are taken directly from Table 1 of Castillo and van der

Vaart (2012).

s=25 s =50 s =100

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 204 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
EBMR 30 7 89 65 35 50 123 136 92 48 79 185 193 127 62
EBKM 27 71 80 57 30 46 113 122 81 40 74 171 174 112 53

MSE based on 1000 replications
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But How Does It Work in Theory?

For the Gaussian location mixture problem empirical Bayes rules based on
the Kiefer-Wolfowitz estimator are adaptively minimax.

Theorem: Jiang and Zhang (2009) For the normal location mixture
problem, with a (complicated) weak pth moment restriction on ©, the
approximate non-parametric MLE, 0 = 6?H(Y) is adaptively minimayx, i.e.

supg En oLn ( 0)
infgsupgece En,oln (6,0)

— 1.

The weak pth moment condition encompasses a broad class of both
deterministic and stochastic classes ©. Relatively little is still known about
the KWMLE beyond the original consistency result: no rates, no limiting
distributions.
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Econometric Motivation: Duration Modeling

Heckman and Singer (1984) employed the Kiefer-Wolfowitz MLE to study
durations T; of single spell unemployment data with (Weibull) density:

f(t]xq, o B, 01) = at* e xiBp, exp(—t (36) 0; ~H

Conclusions:

@ Neglecting heterogeneity in 0; leads to misinterpretation of “duration
dependence.”

@ Common parameters in the model («, B) are sensitive to parametric
assumptions imposed on H(0).

© EM is painful.
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Econometric Motivation: Panel Data

Model:
Yit = i + v/ 0Oiuie,  uie ~N(0,1)

Neyman and Scott (1948) showed that in the “fixed effect” model with
0; = 09, the MLE of 0 is inconsistent.
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Econometric Motivation: Panel Data

Model:
Vit = o +/0iuig,  wie ~ N(0,1)
Neyman and Scott (1948) showed that in the “fixed effect” model with
0; = 0p, the MLE of 0y is inconsistent.
Kiefer and Wolfowitz (1956) then showed that consistency of 64 could be
restored if we (simply!) replaced the fixed effect assumption by an iid

i ~ Go assumption, and proceeded with the MLE. Indeed, both 8¢ and
G are consistently estimable.
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Econometric Motivation: Panel Data

Model:
Yit = o + /0w,  wie ~N(0,1)

Neyman and Scott (1948) showed that in the “fixed effect” model with
0; = 0p, the MLE of 0y is inconsistent.
Kiefer and Wolfowitz (1956) then showed that consistency of 8y could be
restored if we (simply!) replaced the fixed effect assumption by an iid
i ~ Go assumption, and proceeded with the MLE. Indeed, both 8¢ and
G are consistently estimable.
Using annual income data from the PSID, I'd like to now show how to
extend these methods to incorporate:

@ random scale /0,

@ additional covariates and dynamics,

@ bivariate heterogeneity in («, 6),

@ forecasting and prediction.
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A Toy Example
Model

ylt:(x"|-+ Velultl t:]‘l vmly 11 ynv ultNN(Ovl)

o~ 3(8_05+ 814 83) L 05 ~ (805 + 52 + d4)
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A Toy Example
Model

yit:(Xi-i—\/eiuit, t:].,'~- , My, 1,'“ ,n, uit~N(0,1)

o~ 3(8_05+ 814 83) L 05 ~ (805 + 52 + d4)

Mean Mixing Distribution Variance Mixing Distribution Mixture Distribution Bayes Rule
<
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The Data

@ PSID sample used by Meghir and Pistaferri (2004) Browning, Ejrnzes
and Alvarez (2010), Hospido (2012), ...

@ 2069 individuals between age 25-55 with at least 9 consecutive
records,

@ Further reduced to 938 individuals with records starting at age 25,

@ Preliminary estimation of observable effects: quadratic age, race,
education, region, marital status to obtain log earning residuals, yi.
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QQ Plots of Partial Differences
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Scatter Plots of Partial Differences
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The Mixture Model

Vit = pYi—1 + o (1 —p) + v/Oieir, e ~N(0,1), (o;,0;) ~H
@ We can re-write the model as
Yit — PYit—1 = Zit | &g, 01 ~ N((1 — p)ay, 04)
@ Fixing p, we reduce the dimension via sufficient statistics
& = T% Z;ri:l zit, & o, 01 ~ N, 01/my)
sio= Ty Xiby(ze— &% sil 00~ y((Ti—1)/2,20¢/(Ti — 1))
@ The likelihood factors:

Lz, ... zim, | 0) o ”f(&i | o 0) v(si | 8) dH, (<, 0)
N r

gi
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Estimation

For fixed p the Kiefer-Wolfowitz MLE is

n

A

Hop = argmax ) |og”f(&i | o, 0)y(si | ©)dH(«x, 0)
Hed i

Given ﬂp we can estimate p by profile likelihood,

n
p = argmax ) |og“f(aci | &, 8)y(si | 8)dF, (e, 6)
Pz

Note that &; and s; implicitly depend upon p via the partial differencing.

@ Identification for H follows from a uniqueness of the characteristic
function argument.

@ Identification of p follows from the quadratic approximation of profile
likelihood.
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The Heterogeneity Distribution ﬂ@ and p

Profile Likelihood

25+
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@ Only mild persistence of yi+ once heterogeneity of scale is accounted for,

@ Nice quadratic approximation of profile likelihood, e.g. Murphy and van der
Vaart (1995), van der Vaart (1996), gives a narrow Wilks confidence interval.

@ Some negative dependence in H(«, 0), but no apparent parametric
approximation.
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Forecasting Income Trajectories

A financial advisor, who has witnessed many individual earning paths,
wishes to forecast future income paths for a new client with earning history

HoZ{ytit:].,...,To}.
@ Draw one pair («, 0) from the posterior p(«, 6 | Yo),
Q Simulate Y; ={yt:t=To+1,..., T}

YTots = oc+f)yT0+s_1+\/§us, s=1,---,T—Tp, and us ~ N(0,1),

m times to obtain m paths, Y1, then

© Repeat steps 1 and 2 M times.
Construct quantile prediction bands from the mM trajectories.
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Prediction Bands for Two Individuals

The advisor updates the (estimated) prior, A, based on the first 9 years of
income data, for ages 25-34, and then forecasts earnings to age 50.

PSID ID Number 21 PSID ID Number 59
~ ~ 4
- -
> o 4 > o
- ] -
1 1
o o
T T T T T T T T
30 35 40 45 30 35 40 45
Age Age
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Prediction Bands for Two (More) Individuals

Pointwise bands don’t always cover!

PSID ID Number 44 PSID ID Number 1

N N

- W -

> o > o

- | - |

1 1

Y Y
T T T T T T T T
30 35 40 45 30 35 40 45

Age Age
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Uniform Prediction Bands for Two (More) Individuals

Uniform bands are safer!

PSID ID Number 44 PSID ID Number 1

o o
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- | - |

1 1
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Age Age
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Estimation of Random Effects

Estimation of {(«{,0;): 1=1,---,n} brings us back to the Tweedie
(Eddington) formulae. Shrinkage rules of this type play an important role in
insurance rating, e.g. Bihlmann on “Credibility Theory,” see also
Goldberger (1962) on Best Linear Unbiased Prediction aka BLUP.
@ Recall A
&i | o, 03 ~N(e, 01/Ti)
si | 0; ~y((Ti —1)/2,20:/(Ti — 1))
@ Under L5 loss,
min E(q,0)[|3(y) — «|*

@ The Bayes rule is

51 = E((X | 661, Si) = J E(OL | 6(1',, e)f(e | 6(1, Si)de
0
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The Garlic Plot
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Bayes Rule for « given various s
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Reprise: An Economic Preview/Motivation

Simulating 2500 trajectories for each of our 938 PSID subjects we obtain a
marginal distribution for annual log income increments that looks very
similar to that obtained by Guvenen et al (2015).
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x ~ log income annual increments x ~ log income annual increments
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Conclusions

@ More efficient computation of the Kiefer-Wolfowitz MLE opens the
way to a variety of nonparametric mixture models of unobserved
heterogeneity,

@ Profile likelihood provides an attractive strategy for both estimation
and testing in such models,

@ Bivariate nonparametric heterogeneity in location and scale is a
flexible framework for longitudinal data,

@ Empirical Bayes provides natural forecasting and prediction
apparatus.
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