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Summary

An early example of a compound decision problem of Robbins (1951) is employed to illustrate
some features of the development of empirical Bayes methods. Our primary objective is to draw
attention to the constructive role that the nonparametric maximum likelihood estimator for mixture
models introduced by Kiefer & Wolfowitz (1956) can play in these developments.
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1 Introduction

Herbert Robbins’s Second Berkeley Symposium paper, Robbins (1951), introduced the
following (deceptively) simple ‘compound decision’ problem, we observe

Yi D �i C ui ; i D 1; � � � ; n; (1)

with ¹uiº i.i.d. standard Gaussian and assume that the �i take values ˙1. The objective was to
estimate the n-vector, � 2 ¹�1; 1ºn subject to `1 loss,

L
�
O�; �

�
D n�1

nX
iD1

ˇ̌̌
O�i � �i

ˇ̌̌
:

Robbins’s visionary 1951 paper can be seen as an exercise in binary classification, but also as
a precursor to the outpouring of recent work on high-dimensional data analysis and multiple
testing. It can also be seen as the birth of empirical Bayes methods.

Our objective in the present note is to use this problem and several variants of it to provide a
glimpse into the evolution of empirical Bayes methods. Much more comprehensive surveys of
empirical Bayes methods and their modern relevance are provided by Zhang (2003) and Efron
(2010); here, we aspire only to tell a more condensed version of the story, but one that highlights
the critical role that the nonparametric maximum likelihood estimator (NPMLE) of Kiefer &
Wolfowitz (1956) can play. Recent developments in convex optimization, as argued in Koenker
& Mizera (2014), have greatly expanded the applicability of the Kiefer–Wolfowitz estimator
and thereby increased the potential scope of nonparametric empirical Bayes methods.

In prior work, Koenker & Mizera (2014), Koenker (2014), Koenker & Gu (2013), and Gu
& Koenker (2014), we have emphasized the role of the Kiefer–Wolfowitz NPMLE in various
estimation problems typically under squared-error loss. In this paper, in contrast, we will stress
its potential usefulness mainly in classification and multiple testing.
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2 The Robbins Solution

Robbins begins by observing that for n D 1, the least favorable version of his problem occurs
when we assume that the �i ’s are drawn as independent Bernoulli’s with probability p D 1=2
that �i D ˙1. He then proceeds to show that this remains true for the general ‘compound
decision’ problem with n � 1. The minimax decision rule is thus

ı1=2.y/ D sgn.y/

and yields constant risk,

R.ı1=2; �/ D EL.ı1=2.Y /; �/ D ˆ.�1/ � 0:1586;

irrespective of p. And yet, something seems wrong with this procedure.
Faced with this problem, suppose we observed a sample with ‘mostly positive’ yi ’s: would

we not want to conclude that p is likely to be greater than 1/2, and having drawn this conclu-
sion, consider modifying our cutoff strategy for estimating the �i ’s? Robbins proposes a new
strategy designed, as he puts it, to ‘lift ourselves by our own bootstraps.’ Exploiting the com-
mon structure of the model, he proposes to estimate p using the method of moments (MoM)
estimator, Op D . NyC1/=2. Given an estimate of p, he suggests plugging it into the decision rule,

ıp.y/ D sgn.y � 1=2 log..1 � p/=p//;

a procedure that follows immediately from the requirement that

P.� D 1jy; p/ D
p'.y � 1/

p'.y � 1/C .1 � p/'.y C 1/
;

exceeds one half, that is, that the posterior median of � be 1. Of course, combining the problems
in this way is not an entirely obvious move, and Robbins himself jokes that it may seem odd if
some coordinates describe oysters in Maryland and others butterflies in Ecuador. Efron (2010)
refers to this paradox as the problem of ‘relevance’ and notes that it featured prominently in
early discussions of Stein shrinkage. Robbins takes a firm stand asserting the irrelevance of
relevance in the context of his original problem.

Robbins’s MoM approach puts us well on the way toward empirical Bayes methodology.
How does it perform compared with the minimax procedure? In Figure 1, we plot empirical
risk for various settings of p, against the constant risk of the minimax rule, and the oracle risk
achievable when p is known. When the sample size is modest, there is a small price to pay
near p D 1=2 for using the somewhat inaccurate MoM Op, but this is compensated in the tails
where the empirical Bayes risk is much lower than that of the minimax risk. Asymptotically,
of course, as Robbins stresses, Op ! p and the small advantage of the minimax rule vanishes,
and the empirical Bayes rule dominates. It is clear that the Robbins solution constituted a direct
challenge to the Wald minimax view of decision theory.

2.1 A Hierarchical Bayes Variation

One way to attenuate the modest disadvantage of the Op rule when p is near 1=2 would be to
employ some form of (Bayesian) shrinkage strategy. For example, we may consider replacing
the MoM Op procedure by a more formal Bayes procedure that concentrates prior mass for p
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Figure 1. Empirical risk of various decision rules for the original Robbins problem. Mean loss is computed over
1000 replications.

near p D 1=2. A natural prior for p would thus be B.a; a/, a beta distribution that becomes
more concentrated near 1/2 as a!1. Given our log likelihood,

`n.pjy/ D

nX
iD1

log.p'.yi � 1/C .1 � p/'.yi C 1//;

adding the log prior,

f .p/ D a log.p/C a log.1 � p/ � logB.a; a/;

has the effect of concentrating the posterior distribution of p toward 1/2. As a side benefit, the
beta prior acts as a log barrier penalty for the unconstrained maximum likelihood estimator and
thus avoids the potential embarrassment of the MoM estimator when Op … Œ0; 1�. In Figure 1,
we have included three variants of this beta prior rule with a 2 ¹1; 10; 50º to illustrate different
degrees of shrinkage. For n D 20, it can be seen that they deliver better performance than the
MoM procedure while sacrificing some of its advantage when p is near 0 or 1. When n is 100,
the differences are almost imperceptible near p D 1=2, but the cost in the tails is still apparent
for the two largest values of a.

To be more explicit about the beta prior procedure, for the Robbins (1951) setup, we have
.�1; : : : ; �n/, each taking values in ¹1;�1º, with probability p and .1 � p/. We do not know
p, so we assign a prior distribution for p with density function f .p/. The observables are

yi j�i
i id
� N .�i ; 1/. So the posterior for � is

p
�
�i D 1 j yi ; y

.i/
�
D

R
h
�
yi ; y

.i/ j �i D 1
�
pf .p/dp

g
�
yi ; y.i/

�
where y.i/ is the observed sample deleting the i th observation. The denominator is

g.yi ; y
.i// D

Z nY
iD1

.p'.yi � 1/C .1 � p/'.yi C 1//f .p/dp
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and the numerator isZ
h.yi ; y

.i/ j �i D 1/pf .p/dp D
Z
'.yi � 1/f .y.i//pf .p/dp

D '.yi � 1/
Z
p
Y
j¤i

.p'.yj � 1/C.1 � p/'.yj C 1//f .p/dp:

Hence, the posterior probability for �i D 1 given the data is

p.�i D 1 j y1; : : : ; yn/ D
'.yi � 1/ Np

'.yi � 1/ Np C '.yi C 1/.1 � Np/
;

where Np is the posterior mean of p given the data y.i/.

Np D

R
p
Q
j¤i .p'.yj � 1/C .1 � p/'.yj C 1//f .p/dpR Q
j¤i .p'.yj � 1/C .1 � p/'.yj C 1//f .p/dp

:

The Bayes rule under `1 loss leads to O�i D 1 if P.�i D 1 j y1; : : : ; yn/ > 1=2, which gives a
cut-off rule. In the simulation conducted for Figure 1, we have ignored the dependence of Np on
i . It is straightforward to construct a Gibbs sampler for this problem and it is reassuring to find
agreement with the foregoing approach is excellent.

2.2 A Combinatorial Interpretation

A combinatorial interpretation of the foregoing hierarchical approach was already anticipated
by Robbins (1951). He partitions the sample space � of .�1; : : : ; �n/ containing 2n possible
elements into �k with k D 0; 1; : : : ; n. We say � D .�1; : : : ; �n/ 2 �k if exactly k out of
n elements in � equal 1. Each partition �k contains

�
n
k

�
numbers of different � ’s. Let h.�/

be a probability mass function for � , for example, one such h.�/ could attach weights bk D�
n
k

��1
=.n C 1/ to each element in a partition �k . The interpretation of this weighting is that

each element within a partition is treated equally, and each partition is also given equal weight.
The Bayes rule under `1 loss and a particular h.�/ asserts that �i D 1 when

nX
kD0

bk

2
64X
�
C

k;i

L.yI �/ �
X
��
k;i

L.yI �/

3
75 � 0

where �C
k;i
WD ¹� 2 �k; �i D 1º and ��

k;i
WD ¹� 2 �k; �i D �1º and L.yI �/ is the

likelihood of observing y D .y1; : : : ; yn/ given � .
To be more explicit, consider the case n D 3. We have four partitions of�, that is,�C0;1 D ;,

��0;1 D ¹.�1;�1;�1/º; �C1;1 D ¹.1;�1;�1/º, ��1;1 D ¹.�1; 1;�1/; .�1;�1; 1/º; �C2;1 D
¹.1; 1;�1/; .1;�1; 1/º, ��2;1 D ¹.�1; 1; 1/º and �C3;1 D ¹.1; 1; 1/º, �

�
3;1 D ;. Focusing on

i D 1 and abbreviating '˙i D '.yi ˙ 1/, the Bayes rule estimates �1 D 1 if

b3'
C
1 '
C
2 '
C
3 C b2
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2 '
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Returning to the hierarchical Bayes rule, it estimates �1 D 1 ifZ
p3f .p/dp'C1 '

C
2 '
C
3 C

Z
p2.1 � p/f .p/dp

�
'C1 '

C
2 '
�
3 C '

C
1 '
�
2 '
�
3 � '

�
1 '
C
2 '
C
3

�
C

Z
p.1 � p/2f .p/dp

�
'C1 '

�
2 '
�
3 � '

�
1 '
C
2 '
�
3 � '

�
1 '
�
2 '
C
3

�
�

Z
.1 � p/3f .p/dp'�1 '

�
2 '
�
3 � 0

For bk D
�3
k

��1
=4 with k D 0; 1; 2; 3, Robbins’s Bayes rule is equivalent to the hierarchical

Bayes rule with f .p/ D 1, that is, the prior distribution for the proportion p is uniform on
Œ0; 1�. More generally, by induction, we conjecture that the equivalence holds for any n with
bk D

�
n
k

��1
=.nC 1/. Indeed, the factor 1=.nC 1/ indicates that equal weight is associated with

each partition of the sample space, which is nothing but a discretization
h
0; 1
n
; 2
n
; : : : ; k

n
; : : : ; 1

i
of the Œ0; 1� interval of the proportion p. Within each partition, there are

�
n
k

�
elements, and

the weights
�
n
k

��1
again treats them equally. Given this connection, it is easy to generalize to

cases where f .p/ is taken to be the density of B.a; b/. The corresponding bk D
R
pk.1 �

p/n�kf .p/dp D B.a C k; b C n � k/=B.a; b/. To fix ideas, consider a D b D 2, then
bk D

�
n
k

��1 6.kC1/.n�kC1/
.nC1/.nC2/.nC3/ . For n D 3, it approximates the B.2; 2/ prior by probability weights

Œ1=5; 3=10; 3=10; 1=5� at atoms Œ0; 1=3; 2=3; 1�.

2.3 A Multiple Testing Perspective

The link to the multiple testing literature for the Robbins problem is immediately clear
because estimation of � 2 ¹�1; 1ºn is essentially a testing problem in which we have weighed
false discovery and false non-discovery equally. If we treat � D �1 as the null hypothesis and
� D 1 as the alternative, a p-value procedure based on Ti D 1�ˆ.Yi C 1/ with cutoff ˆ.�1/
the decision rule,

ıp.T / D sgn.ˆ.�1/ � T /

is equivalent to the minimax rule, ı.y/ D sgn.y/. If, instead, we would like to fix the marginal
false discovery rate (mFDR) at some level and optimize marginal false nondiscovery rate
(mFNR) a modified p-value cutoff can be constructed, and this would be equivalent to replacing
our symmetric `1 loss for the estimation/classification problem by an asymmetric linear loss.

A p-value testing procedure that is equivalent to the empirical Bayes rule estimator
described earlier for the Robbins problem can also be constructed. Under the null that Yi �
N .�1; 1/; Ti D 1 �ˆ.Yi C 1/ � U Œ0; 1�, while if Yi � N .1; 1/,

P .Ti < u/ D P .Yi C 1 > ˆ�1.1 � u// D 1 �ˆ.ˆ�1.1 � u/ � 2/:

Thus, under the null, the density of T is f0.t/ � 1, and under the alternative,

f1.t/ D '.ˆ
�1.1 � t / � 2/='.ˆ�1.1 � t //;

and the posterior probability of �i D 1 given ti and assuming for the moment that the
unconditional probability, p D P .�i D 1/ is known, is given by,

P .� D 1jt; p/ D
pf1.t/

pf1.t/C .1 � p/f0.t/
:
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Under symmetric loss we were led to the posterior median so O�i D 1 if P .�i D 1jTi ; p/ > 1=2,
which is equivalent to the p-value rule,

Ti < 1 �ˆ.1C 0:5 log..1 � p/=p//:

Again, we are led back to the problem of estimating p. In these two point mixture problems `1

loss is equivalent to 0 � 1 loss since the median and the mode are identical.
The special structure of the Robbins problem with its two point mixture ensures a strong

equivalence between so-called ‘p-value’ and ‘´-value’ multiple testing methods. However,
when this model is relaxed to allow more general mixtures, this equivalence breaks down as
recent work by Sun & Cai (2007) and Efron (2008a) has pointed out. In particular, when vari-
ances are heterogeneous, the p-value approach also breaks down as Cao et al. (2013) have
recently pointed out. We will return to this point in Section 4.2 in the succeeding text; however,
before doing so, we would like to briefly consider a grouped version of the original Rob-
bins problem, which can be viewed as an extension of the original Robbins problem with an
additional level of hierarchy.

3 A Grouped Robbins Problem

A natural generalization of Robbins’s original problem considers a grouped setting in which

Yij D �ij C uij ; i D 1; � � � ; n; j D 1; � � � ; m;

with ¹uij º i.i.d. standard Gaussian as before, and �ij D 1 with probability pi and �ij D �1
with probability 1�pi , and independent over j D 1; � � � ; m. In this framework, we can consider
‘group specific’ pi that vary within the full sample yielding a nonparametric mixture problem.
In the multiple testing context, this grouped model has been considered by Efron (2008b), Cai
& Sun (2009), and Muralidharan (2010) among others.

Remarkably, Robbins (1951) anticipated formulations like this as well. In the final section of
that paper, Robbins considers a general mixture problem in which we have observations from a
density '.yj�/, with � drawn from a distribution, F , so the observations come from the mixture
density,

gF .y/ D

Z
'.yj�/dF.�/:

He describes a ‘generalized maximum likelihood estimator’ for the mixing distribution F , and
the corresponding Bayes rule for estimating the �s. Robbins mentions an abstract, Robbins
(1950) in which he had announced earlier the finding that ‘under certain conditions this method
is consistent as n!1.’ This abstract is referred to again in Robbins (1956), we have found no
further elaboration of the result by Robbins. A formal treatment seems to have appeared only
with the paper of Kiefer & Wolfowitz (1956), who mention Robbins’ abstract and comment
that they found no further elaboration of these ideas.

Almost another 20 years elapsed before Laird (1978) provided a viable computational method
for such generalized MLEs employing the EM algorithm. Laird’s EM implementation rekin-
dled considerable interest in the general mixture problem, notably in the work of Heckman &
Singer (1984). More recently, Zhang (2003) and Jiang & Zhang (2009) have demonstrated the
effectiveness of the Kiefer–Wolfowitz approach for the classical Gaussian compound decision
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problem, again relying on the EM algorithm for simulation results. Unfortunately, the noto-
riously slow convergence of EM for mixture problems of this type seems to have impeded
further progress.

Recent developments in convex optimization have, however, dramatically reduced the com-
putational effort required for the Kiefer–Wolfowitz MLE. Motivated by the Jiang & Zhang
(2009) results, Koenker & Mizera (2014) describe implementations for binomial and Gaus-
sian location mixtures that employ modern interior point methods drastically improving both
accuracy and speed over prior EM methods. Gu & Koenker (2014) describe several exten-
sions of this approach to longitudinal models. In our longitudinal Robbins setting, denoting
gi D g.yi1; � � � ; yim/, we can formulate the variational problem as follows:

max
F 2F

8<
:

nX
iD1

loggi j
Z 1

0

mY
jD1

.p'.yij � 1/C .1 � p/'.yij C 1//dF.p/ D gi ; i D 1; � � � ; n

9=
;

As noted by Laird and elaborated by Lindsay (1995) solutions, OF , in the space, F , of distri-
bution functions are discrete with k � n mass points. The problem is strictly convex because
we are maximizing a sum of strictly convex functions subject to linear equality and inequality
constraints, so solutions are unique. Uniqueness is all the more remarkable given the notorious
multimodality of finite mixture models.

We can discretize the problem by letting p take values ¹p1; � � � ; pKº on a relatively fine grid
of Œ0; 1�, and write,

max
f

´
nX
iD1

log.gi / j Af D g; f 2 S
μ

where gi D g.yi1; � � � ; y1m/; A denotes the n by K matrix with typical element

Aik D

mY
jD1

.pk'.yij � 1/C .1 � pk/'.yij C 1//

and f is an K-vector in the K � 1 dimensional simplex, S . It proves convenient to solve the
dual problem,

min
�

´
nX
iD1

�i j A
>� � n1K ; � � 0

μ

where 1K denotes an K vector of ones. Our implementation of the estimator relies on the open
source R package REBayes, Koenker (2012), which relies in turn on the convex optimization
package Rmosek, Friberg (2012) and Andersen (2010).

The crucial advantage of the group structure is that it permits the groups to have different
pi ’s and the Kiefer–Wolfowitz procedure enables us to estimate the points of support and the
associated mass of these points. Within groups, the decision rule operates as we have described
earlier in Section 2, but the proposed compound decision rules borrow strength across groups
to produce improved estimates of the group specific mixture probabilities and thereby better
estimates of the �ij ’s. We consider three variants of the compound decision procedure for the
grouped setting, each adapted to the application specific problem dimensionsm and n. For small
m, say m < 15, the exact likelihood can be used labeled as “Robbins” in Table 1. However,
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Table 1. Mean absolute error of several methods of estimation relative to
oracle performance.

n m Minimax MoM ECF CLT Bin Robbins

200 5 1.668 1.599 1.472 1.357 1.344 1.343

200 10 1.300 1.290 1.224 1.043 1.043 1.043

200 100 1.305 1.036 1.048 1.011 1.011

We compare three variants of the Bayes rule constructed from the Kiefer-
Wolfowitz MLE procedure with the minimax procedure, the Robbins’s
method of moments (MoM) procedure and an empirical characteristic func-
tion (ECF) approach suggested by Jin and Cai (2007). Performance is
measured by mean absolute error relative to the oracle performance of the
procedure described in the text. The exact likelihood procedure labeled Rob-
bins in the table is computationally prohibitive when m is large, accounting
for missing entry of the table, but in those cases the approximate likelihood
methods labeled CLT and Bin are adequate substitutes.

for larger m, this becomes numerically unstable and we propose using Nyi D m�1
Pm
jD1 yij

as an ‘almost’ sufficient statistic for the ensemble .yi1; � � � ; yim/. Two variants of the latter
approach are considered, one that simply adopts the normal approximation for Nyi � N .2pi �
1; 1 C 4pi .1 � pi /=m/, labeled CLT in Table 1, the second that employs a normal-binomial
mixture density labeled Bin in Table 1 that represents the exact likelihood of the Nyi ’s for the
present problem. The normal approximation is expected to be adequate for m	 30, while the
normal-binomial model offers a useful intermediate approach.

We would now like to compare performance of the empirical Bayes rules corresponding to
these procedures for several instances of the grouped Robbins problem. In addition to our three
variants based on the Kiefer–Wolfowitz procedure, we consider four other estimators of the
�ij ’s:


 The original (naive) minimax procedure: O�ij D sgn.yij /;

 A within group Robbins MoM procedure with O�ij D sgn

�
yij �

1
2 log ..1 � Opi / = Opi / for

Opi D . Nyi C 1/ =2;

 An empirical characteristic function procedure proposed by Cai & Sun (2009) employing a

group specific Opi proposed by Jin (2008);

 An oracle procedure based on the Bayes rule O�ij D sgn

�
yij �

1
2 log ..1 � pi /=pi /

�
with

known pi ’s.

We will focus on a simple special case in which P .�ij D 1/ � pi �
1
4ı0:1 C

3
4ı0:3, so

unconditionally there is a 0.75 probability of a �ij D �1, the notional ‘null’ case, versus a 0.25
probability of the alternative, �ij D 1. The number of groups, n, and the number of members
of each group, m, are crucial in determining relative performance.

As can be seen from the Table, the three Kiefer–Wolfowitz Bayes rule procedures perform
well relative to the prior proposals. As long as m is moderately large they also perform nearly
as well as the oracle procedure. Not surprisingly, settings with smallm provide the all-knowing
oracle with more of an advantage, but we would stress that even in those cases, there is benefit
in the NPMLE methods when compared with earlier proposed procedures.

Having restricted attention to the original Robbins problem with only two known values of
� until now, it is finally time to relax this condition and consider what can be done in models
with more general mixtures. Chekhov’s well known maxim of dramatic economy maintains that

International Statistical Review (2015), 0, 0, 1–21
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On a Problem of Robbins 9

if there is a gun in the first act it should be fired in the final act. We have seen the Kiefer–
Wolfowitz nonparametric MLE in the context of the grouped version of the Robbins problem,
let us see what it can do in more general mixture settings.

4 The Robbins Problem with Unknown � ’s

A focus of all empirical Bayes compound decision problems, no matter what loss function
is used, is estimation of the mixing distribution we have denoted F . When the support of � is
restricted to ¹�1; 1º this requires only the estimation of a single probability, p, while in our
grouped version of the original Robbins problem we need a distribution that assigns mass to
p’s in Œ0; 1� corresponding to the various groups. In this section we consider the more general
case of estimating a mixing distribution, F for a real valued � with general support. This opens
the way to consideration of composite testing problems.

Once we abandon the assumption that there are only two known points of support for the
mixing distribution of � , we are faced with what appears to be a general Gaussian deconvolution
problem. We observe i.i.d. Y1; Y2; � � � ; Yn from the mixture density,

g.y/ D

Z
'.y � �/dF.�/;

but rather than focus on the notoriously difficult problem of estimating the distribution F , we
will instead continue to focus on the prediction of the �i ’s given the data. For prediction, it
suffices to find the posterior of each �i given the Yi ’s. If we maintain our `1 loss criterion, our
O�i should be the median of this posterior. Replacing `1 by `2 loss would lead us to posterior
means instead of medians. For `2 loss, the Bayes rule, or posterior mean, is given by Robbins
(1956) as,

ı.y/ D y C g0.y/=g.y/:

Efron (2011) refers to this expression as the Tweedie formula. Tukey (1974) provides an earlier
attribution to Arthur Eddington appearing in Dyson (1926). If we were so fortunate as to know
the mixing distribution F , we would, having seen Yi D y, and adhering to the Bayes rule,
predict O�i D ı.y/. Knowing F seems a bit implausible, but because we only need g, the
marginal density of the Yi ’s, it is tempting to simply plug-in a reasonable estimator of g and use,

Oı.y/ D y C Og0.y/= Og.y/:

In the Gaussian case, and more generally in other exponential family settings, we should
be aware that the Bayes rule must be monotone in y whatever F might be. This constraint
restricts the class of reasonable estimators of g: Koenker & Mizera (2014) describe two general
approaches to this problem both involving a penalized maximum likelihood strategy. The first
imposes the monotonicity constraint directly by maximizing the log likelihood,

`.g/ D

nX
iD1

logg.Yi /

subject to a convexity constraint on the function,

K.y/ D 1
2y

2 C logg.y/:

International Statistical Review (2015), 0, 0, 1–21
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



10 J. GU & R. KOENKER

The convexity constraint can be formulated as a cone constraint in a discretized version of
the problem and solved by interior point methods. In more general settings, especially those
involving multiple testing with composite null and alternatives, we may require more explicit
estimation of F . This leads us back to Robbins and the Kiefer–Wolfowitz MLE.

In variational form the Kiefer–Wolfowitz estimator solves,

max
F 2F

´
nX
iD1

logg.Yi / j g.y/ D
Z
'.y � �/dF.�/

μ

where F denotes the set of distributions on R. In this form, it looks very much like we are
back to deconvolution, Efron (2014) refers to such mixture problems as Bayesian deconvolu-
tion, and adopts a parametric specification of the mixing distribution F . Rather than relying on
a selection of a parametric model or empirical characteristic function methods, Koenker & Miz-
era (2014) propose a simple discretization that yields yet another convex optimization problem.
Taking a relatively fine, equally spaced grid for the support of F , say ¹t1; � � � ; tmº contain-
ing the empirical support of the sample, we can write an approximate version the variational
problem as,

min
f

´
�

nX
iD1

loggi j g D Af; f 2 Sm
μ

where gi D g.Yi / denotes the i th element of the n vector g, A denotes the n by m matrix
with typical element, Aij D '.yi � tj / and Sm D ¹s 2 Rm j s � 0; 1>s D 1º denotes the
.m � 1/ dimensional simplex in Rm. This problem is evidently convex, a convex objective to
be minimized subject to linear equality and inequality constraints, and again the problem can
be efficiently solved by interior point methods. Accuracy of the solution can be controlled by
refining the grid and convergence tolerance of the optimization algorithm.

Problems with sample sizes up to a few thousand andm around 300 can be accurately solved
in less than a second or two, while earlier EM methods require several minutes to achieve an
even less reliable solution. For larger sample sizes, we have found it expedient to bin the Yi ’s
to further accelerate the estimation process. For observations with Gaussian tail behavior, we
have found that binning large samples into a few hundred bins substantially reduces cpu effort
without materially sacrificing accuracy.

4.1 Estimation

There is an extensive recent literature on variants of the Robbins problem that assume that
the model (1) holds, with F assigning �i D 0 with high probability, the ‘haystack,’ and with
lesser probability a few needles, O�i ¤ 0, are hidden in this ‘haystack.’ An influential early
paper in this line is Johnstone & Silverman (2004) that compares a variety of hard and soft
thresholding procedures with several parametric empirical Bayes procedures. Under squared
error loss we can compare the non-parametric shape constrained estimator and the Kiefer–
Wolfowitz estimator of g described earlier to construct estimates of the �i ’s using Tweedie’s
formula. The same methods are immediately relevant for testing problems when considering
composite null and alternative hypotheses.

Table 2, reproduced from Koenker & Mizera (2014), reports mean squared error results from
a small simulation experiment following the design of Johnstone & Silverman (2004). In each
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Table 2. Comparison of several procedures for the Johnstone and Silverman ‘Needles and Haystack’ design.

k = 5 k = 50 k = 500

Estimator � D3 � D4 � D5 � D7 � D3 � D4 � D5 � D7 � D3 � D4 � D5 � D7

OıM 37 34 21 11 173 121 63 16 488 310 145 22

OıKW 33 30 16 8 153 107 51 11 454 276 127 18

J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

The best of the 18 procedures considered by Johnstone and Silverman for each column of the table is reported in the last row of
the table. The first row reports performance of the Tweedie formula estimator based on the monotonized Bayes rule maximum
likelihood estimator (MLE), and the second row reports the Tweedie estimator based on the Kiefer–Wolfowitz MLE. Each
table entry reports sum of squared errors over the sample of n D 1000 observations averaged over 1000 replications for the
first two rows. The last row is taken directly from the table of Johnstone and Silverman. As a benchmark, the naive MLE,
Oı.y/ D y, would have expected loss of 1000 in all settings.

cell of the table, we report a sum of squared errors over the n D 1000 observations, aver-
aged over 1000 replications, for the OıM , the monotone Bayes rule estimator described at the
beginning of Section 4, and Kiefer–Wolfowitz MLE. The last row of the table reports the per-
formance of the best of the 18 procedures considered by Johnstone & Silverman (2004). Cells
of the table differ in the number of non-zero �i ’s, denoted by k, and the value of the non-zeros,
denoted � in the table headings. Some further simulation evidence involving similar models is
presented in Koenker (2014).

When the non-null �i ’s are truly rare, so k D 5, the parametric empirical Bayes procedures
of Johnstone & Silverman (2004) are quite effective, but when the proportion of non-null �i is
larger the Kiefer–Wolfowitz method is clearly superior. One explanation for this is that all of
the Johnstone and Silverman procedures are good at shrinking the observed yi ’s toward zero,
but not so good at shrinking toward the non-null value �A. In two point mixture problems like
those of the Johnstone and Silverman design, the Kiefer–Wolfowitz estimator is remarkably
good at identifying that there are two points of support and estimating their locations. Hence,
the Tweedie formula based on the Kiefer–Wolfowitz estimator is, at least when the sample size
is reasonably large, quite good at shrinking the non-null yi ’s toward an accurate estimate of �A.
When we spread out the non-null �i ’s, this advantage is attenuated, and we will explore this
further in the next subsection. It may also be worth noting that the Kiefer–Wolfowitz Bayes
rule places no special significance on likelihood that �i D 0, it simply estimates a few points
of support for the mixing distribution and one of these estimated points of support is generally
close enough to zero to produce good performance.

4.2 Classification and Multiple Testing

Suppose, instead of estimating the �i ’s we were only required to ‘classify’ them, that is, given
the Yi ’s, we must decide whether their associated �i ’s belong to a specified set A, or not. The
set A is interpreted in such a way that �i 2 A are deemed ‘uninteresting,’ while �i … A ‘merit
further investigation.’ Typically, A contains zero. This brings us quite close to the realm of
multiple testing with composite null and alternative. We will consider a heterogeneous Gaussian
framework introduced by Sun & McLain (2012),

Yi D �i C �i ; �i � N
�
0; �2

i

�
; �i � G.�/;
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12 J. GU & R. KOENKER

with �i ’s known constants. Let Hi D 0 if �i 2 A, and Hi D 1, otherwise, and denote our
decision rule ı D ı.yj�/ taking values 0 or 1, with the loss function,

L.ı;H/ D

8<
:

1 � � if ı D 1; andH D 0;
0 otherwise;
� if ı D 0; andH D 1:

Thus, 1 � � and � denote the relative costs of type I and type II error, respectively. We will
assume that the Hi are i.i.d. Bernoulli with probability p, so,

¹Yi jH; �º � .1 �Hi /F0 CHiF1;

where F0 and F1 have densities

f0.yj�/ D .1 � p/
�1
Z
A

'..y � �/=�/=�dG.�/;

and

f1.yj�/ D p
�1
Z
Ac
'..y � �/=�/=�dG.�/:

The marginal density of the Yi ’s is given by f .yj�/ D .1 � p/f0.yj�/C pf1.yj�/. Expected
loss, or Bayes risk, is

R.ı/ D .1 � �/P .ı D 1;H D 0/C �P .ı D 0;H D 1/

D .1 � p/.1 � �/
Z
ıdF0 C �p.1 �

Z
ıdF1/

D �p C

Z
ıŒ.1 � p/.1 � �/f0 � �pf1�dy:

Minimizing R, we obtain a likelihood ratio criterion, which after transformation can be
formulated in terms of local false discovery rate,

Lfdr.yj�/ D .1 � p/f0.yj�/=f .yj�/;

rejecting when Lfdr is sufficiently small, so

ı.yj�/ D I.Lfdr.yj�/ < 	/:

Thus, our objective is to find a cutoff value 	˛ for the ordered Lfdr values so that the marginal
false discovery rate, mFDR, is controlled at a prescribed value of ˛. The mFDR has a nice
Bayesian interpretation, for example, Storey (2002), as a multiple testing analogue of the Type
I error in classical hypothesis testing,

mFDR.	/ D P¹� 2 AjLfdr.yj�/ < 	º

D
P¹� 2 A;Lfdr.yj�/ < 	º

P¹Lfdr.yj�/ < 	º

D

R R
I.Lfdr.yj�/ < 	/Lfdr.yj�/f .yj�/f .�/d�dyR R

I.Lfdr.yj�/ < 	/f .yj�/f .�/d�dy

International Statistical Review (2015), 0, 0, 1–21
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



On a Problem of Robbins 13

mFDR can therefore be estimated by the empirical analogue,

1mFDR D

Pm
iD1 I

�
bLfdr.yj�/ < 	

�
bLfdr.yj�/Pm

iD1 I
�
bLfdr.yj�/ < 	

� ;

and justifies the data driven procedure for choosing 	, for example, Sun & Cai (2007) and Sun
& McLain (2012), as the kth order statistic of the bLfdr where,

k D max

8<
:i ji�1

iX
jD1

bLfdr.j /.yj�/ < ˛

9=
; ;

Heterogeneity of variances introduces some potential anomalies in this mFDR criterion. To
illustrate this, Cao et al. (2013) consider an example with observations from the mixture density,

f .y/ D .1 � p/'.y/C p'..y � 
/=�/=�

with p D 0:1; 
 D 2:5, and � D 0:5. For this seemingly one-sided testing problem, Lfdr.yj�/
is however not monotone in x and mFDR thresholding leads to a closed interval rejection region
for the Yi . More importantly, it is no longer possible to achieve certain levels of mFDR. For
example, in the model earlier, Lfdr.yj�/ > 0:06 so any mFDR level below this is unachievable.
This is hardly surprising given that it is obviously difficult to distinguish the two components of
this mixture; inevitably any collection of rejections will be marred by a substantial number of
‘non-discoveries’ because the two components of the mixture overlap substantially. It is worth
mentioning that the p-value approach for thresholding the one-sided p-values P¹N .0; 1/ > Yiº
is ill-behaved in that it fails to satisfy the monotone likelihood ratio condition illustrated in Cao
et al. (2013) and thresholding procedures controlling false discovery rate exactly at level ˛ may
no longer be optimal in the sense of minimizing false non-discovery rate.

In the foregoing discussion, we have assumed that the non-null value of � was known, and
fixed in repeated sampling, however, it is plausible that in many applications, the Yi may have
distinct �i ’s, as long as these are still known, we can consider procedures that control overall
mFDR by pooling the resulting Lfdr statistics and computing a universal cutoff. It might seem
that controlling the mFDR level for each � value has some appeal, but in some circumstances
if overall false discovery rate control is all that is desired, better power, that is, better false
non-discovery rate, may be achieved by a universal cutoff. When the �i are unknown, there
may be an opportunity to estimate their distribution and integrate them out, but we will not
pursue this here.

4.3 Implementation of the Oracle Rules

The oracular setting of the previous subsection provides a useful benchmark for the more
pragmatic procedures we will now consider. Most existing implementations of false discovery
control for these models rely on some form of deconvolution method based on the empirical
characteristic function. Given the success of the Kiefer–Wolfowitz MLE in closely related prob-
lems, it seems worthwhile to explore its performance in the multiple testing arena. We will focus
attention on simulation settings employed by Sun & McLain (2012); their composite null and
non-null behavior arising from a mixture of beta densities provides an especially challenging
environment for Kiefer–Wolfowitz methods that would seem to favor discrete alternatives.
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14 J. GU & R. KOENKER

4.3.1 Some Simulation Evidence: Sun and McLain Model 1

In their initial simulation settings, Sun and McLain consider models with non-null density,

f .�/ D qˇ.�; 3; 3/C .1 � q/ Q̌.�; 3; b/;

where ˇ.�; a; b/ denotes a ˇ density with parameters a and b, and Q̌.�; a; b/ denotes a reversed
ˇ density supported on Œ0; 2� and Œ�2; 0�, respectively. We illustrate a family of these densities
for b 2 ¹1; 2; 3; 4; 5º in Figure 2. Observations Yi W i D 1; � � � ; n are generated as

Yi D �i C ui

with ui i.i.d. N .0; �2/. With probability ! D 0:2; �i is drawn from the density f , and with
probability 1 � !, we have �i D 0. The composite null hypothesis is �i 2 A � Œ�1; 1�.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

f(
x)

x

Figure 2. Sun and McLain ˇ model of the non-null density.

Table 3. Realised false discovery rate and false non-discovery rates: Sun-McLain Model 1 with ! D 0:2 and
500 replications.

FDR FNR

b D 1 b D 2 b D 3 b D 4 b D 5 b D 1 b D 2 b D 3 b D 4 b D 5

n D 500
OR 0.0723 0.0695 0.0893 0.0909 0.0878 0.124 0.152 0.161 0.162 0.158
KW 0.1026 0.1091 0.1100 0.1139 0.1132 0.122 0.150 0.160 0.161 0.157
SM 0.1108 0.1059 0.1039 0.0950 0.0944 0.122 0.148 0.158 0.160 0.157

n D 1000
OR 0.0922 0.0887 0.0937 0.0913 0.0962 0.123 0.151 0.161 0.161 0.158
KW 0.1020 0.1024 0.1069 0.1026 0.1064 0.122 0.151 0.161 0.162 0.159
SM 0.1318 0.1240 0.1158 0.1042 0.1048 0.120 0.147 0.157 0.158 0.156

n D 5000
OR 0.0993 0.0989 0.0996 0.0974 0.1005 0.121 0.150 0.161 0.161 0.156
KW 0.0958 0.1002 0.0986 0.0962 0.0977 0.122 0.151 0.162 0.162 0.158
SM 0.1494 0.1410 0.1312 0.1216 0.1185 0.118 0.145 0.155 0.156 0.152

n D 10000
OR 0.0972 0.1003 0.0990 0.0996 0.0997 0.122 0.150 0.160 0.160 0.157
KW 0.0949 0.0992 0.0963 0.0936 0.0951 0.122 0.151 0.162 0.162 0.158
SM 0.1501 0.1444 0.1319 0.1228 0.1177 0.118 0.145 0.155 0.156 0.153

International Statistical Review (2015), 0, 0, 1–21
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



On a Problem of Robbins 15

We compare performance of an oracle (OR) who is aware of all of this with the empirical
characteristic function approach of Sun and McLain (SM) and our Kiefer–Wolfowitz (KW)
approach for four different sample sizes: 500, 1000, 5000, 10,000; 500 replications are done
for each experimental setting.

Given the Ti D 1Lfdr i ’s, we need a threshold. This is performed precisely as mentioned
earlier for all three methods, given their respective Ti ’s. In Table 3, we report results of the
experiment for both FDR control and achieved FNR. It will be seen that the KW procedure
has some what better FDR control than the SM procedure especially for the b D 1 setting that
places quite a substantial amount of non-null mass in the interval Œ�1; 1�. FNR performance is
quite comparable for all three methods.

4.3.2 Some Simulation Evidence: Sun and McLain Model 2

In our second simulation setting, again drawn from Sun & McLain (2012), Section 5.2, we
have a similar non-null density,

f .�/ D qˇ.�; 2; 2/C .1 � q/ Q̌.�; 2; 2/;

where ˇ.�; a; b/ denotes a ˇ density with parameters a and b, and Q̌.�; a; b/ denotes a reversed ˇ
density supported on Œ0:5; 3:5� and Œ�3:5;�0:5�, respectively. The mixture proportion, q D 0:5
throughout, but we vary ! from 0.05 to 0.35. In Figure 3, we illustrate a single realization
of this experiment, with n D 5000 and ! D 0:2. The shaded rectangle is the null region,
A, the solid (red) curves indicate the beta mixture non-null density known to the oracle, the
dashed (green) curves depict the Sun and McLain empirical characteristic function estimate of
the non-null density, and the dark spikes represent the mass points estimated by the NPMLE.
The ‘rug’ plot below the x-axis shows the locations of the Yi observations that correspond to

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

g(
y)

y

Figure 3. One realization of Sun-McLain Model 2. The non-null density is composed of two symmetric, rescaled beta den-
sities supported on ¹.�3:5;�0:5/ [ .0:5; 3:5/º as shown by the solid (red) curve. The rejection region A appears as the
shaded rectangle, the Sun and McLain estimate of the non-null density appears as the dashed (green) curve, and the non-
parametric maximum likelihood estimator estimate of the mixing distribution, including the mass point near zero representing
the null distribution, appears as the set of (black) spikes. The sample size for this realization is n D 5000 and ! D 0:2.
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16 J. GU & R. KOENKER

�i … A, that is observations that should be rejected. Both the oracle and the NPMLE are a
bit conservative in this example, but the discrete non-null distribution delivered by the Kiefer–
Wolfowitz procedure does a remarkably good job of mimicking the smooth density generating
the alternative.

In Figure 4, we report FDR and FNR results for three distinct sample sizes: 1000, 5000,
and 10000; replications are again 500 for each instance. Again, we see that the KW procedure

Figure 4. False discovery rate and false non-discovery rate comparison for Sun-McLain Model 2 with symmetric non-null
density and homogeneous scale.
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controls FDR somewhat better than SM, and the results for FNR are almost indistinguishable
for the three procedures. Repeating this exercise for an asymmetric version of the non-null
density with

f .�/ D qˇ.�; 5; 2/C .1 � q/ Q̌.�; 5; 2/;

and q D 0:3, yields very similar results depicted in Figure 5.

Figure 5. False discovery rate and false non-discovery rate comparison for Sun-McLain Model 2 with asymmetric non-null
density and homogeneous scale.
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Figure 6. False discovery rate and false non-discovery rate comparison for Sun-McLain Model 3 with symmetric non-null
density and heterogeneous scale.

4.3.3 Some Simulation Evidence: Sun and McLain Model 3

Finally, we conclude our simulation exercise with the Sun and McLain model of their
Section 5.3 that involves heterogeneous scale parameters. The non-null densities are the same
as in the previous subsection, but now, instead of a fixed � D 2=

p
10, we have � 2°

1=
p

10; 2=
p

10; 3=
p

10
±

with equal probability. Results are shown in Figures 6 and 7, for the
symmetric and asymmetric cases, respectively. In this setting of the simulation binning of the
observations is carried out separately for each distinct realization of the scale parameter.
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Figure 7. False discovery rate and false non-discovery rate comparison for Sun-McLain Model 3 with asymmetric non-null
density and heterogeneous scale.

4.3.4 Discussion

The overall message of our FDR-FNR simulations is that even in composite null settings with
non-null densities that spread alternative mass over a wide region, the Kiefer–Wolfowitz Lfdr
procedure is highly effective. One might expect that the discrete mixing distributions delivered
by the Kiefer–Wolfowitz MLE would have difficulties in such environments, but their FDR
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20 J. GU & R. KOENKER

performance is at least comparable with Sun and McLain’s empirical characteristic function
approach, and sometimes considerably better. False non-discovery rates are essentially similar
for both methods and very close to what is achievable by the oracle.

5 Conclusion

Robbins (1951) presented a challenge to the emerging Wald minimax view of decision
theory. Robbins showed that exploiting multiple instances of related problems could lead to
dramatic improvements over minimax risk. This insight underlay much of Robbins subsequent
empirical Bayes work and still offers tremendous potential for constructive future develop-
ments. Nonparametric maximum likelihood estimation of mixture models, as we have argued,
can play an essential role in many facets of these developments as both data and computa-
tional resources improve. While we have focused mainly on Gaussian mixture models where
deconvolution methods are also applicable, we would like to stress that the nonparametric MLE
methods we have described, as foreseen by Robbins and introduced by Kiefer and Wolfowitz,
are broadly applicable to the full range of mixture models with parametric base distribution, as
illustrated by the binomial mixture of Section 3. This point is also stressed by Efron (2014).
In repeated measurement, or longitudinal data settings there is some scope for nonparametric
estimation of the base distribution and this is an interesting avenue for future research.
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