
On a Problem of Robbins:
Or How I Learned to Stop Worrying and Love (Empirical) Bayes

Roger Koenker

University of Illinois, Urbana-Champaign

Hong Kong: 23 May 2014

Roger Koenker (UIUC) Problem of Robbins HKUST: 23.5.2014 1 / 24



On a Problem of Robbins:
Or How I Learned to Stop Worrying and Love (Empirical) Bayes

Roger Koenker

University of Illinois, Urbana-Champaign

Hong Kong: 23 May 2014

Roger Koenker (UIUC) Problem of Robbins HKUST: 23.5.2014 2 / 24



Outline

Prologue or Provocation?
I Partial Identification and Gaussian Moment Matching
I Moment Equalities and Inequalities
I Discrete Distributions and their Aliases

Robbins’s (1951) Compound Decision Problem
I Minimax Rules and their Discontents
I Mixture Models and the Kiefer-Wolfowitz GMLE
I Applications to Classification and Multiple Testing

Roger Koenker (UIUC) Problem of Robbins HKUST: 23.5.2014 3 / 24



Where are we when we are “in the moment?”
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McCullagh's (1994) Almost Gaussian Density

f(x) = ϕ(x)(1 + 1
2 sin(2πx))

Densities f and ϕ have identical even moments, odd moments up to 9 are nearly zero.
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Cumulants Too
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Kf(t) = 0.5t2 + log(1 + exp(π2 − 2)sin(2πt) 2)
Kϕ(t) = 0.5t2

(Kϕ(t) − Kf(t)) × 108

Cumulant Generating Functions Are Almost Identical

|Kf(t) − Kϕ(t)| < ε = 10−8
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But the Characteristic Function Reveals All
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Characteristic Function Differences are Purely Imaginary

Real parts are identical, only the imaginary part is informative.
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Momentary Bounds for Distribution Functions
The McCullagh example raises the question: If F and G have the same first
2p moments how big can |F(x) −G(x)| be? Lindsay and Basak (2000),
building on prior work of Akhiezer, offer the answer for continuous G,

1
2wp(x) 6 sup

F∈Fp

|F(x) −G(x)| 6 wp(x),

where wp(x) = (vp(x)
>H−1

p vp(x))
−1, vp(x) = (1, x, x2, · · · , xp) and Hp

is the Hankel matrix,

Hp =


1 m1 · · · mp
m1 m2 · · · mp+1

...
...

mp mp+1 · · · m2p


with mk =

∫
xkdG(x), but Lindsay comments that finding such F’s is

“numerically challenging.”
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How Challenging Is It? Two Approaches

20th Century Brute Force (Method of Moment Spaces)

min{c>w | Aw = m, w ∈ S}

where A = (xji), i = 1, · · · ,n, j = 1, · · · , 2p and {xi} constitute a
fairly fine equally spaced grid on, say [−8, 8].

19th Century Finesse (Gaussian Quadrature)

F(x) =
∑
i=1

wiδxi(x)

where xi are the roots of a Hermite polynomial of order, 2p+ 1, and
the wi are given by the standard formulae for Gaussian quadrature. If
not “known to Gauss” probably “obvious to Jacobi.”
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The Akhiezer-Lindsay Bound is Sharp
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Lindsay Bound and Approximation

Theorem: The Akhiezer-Lindsay bound is attained by the discrete
“Gaussian quadrature” density.
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The Moral Take-away

Downside
I Moments are informative about the tails of distributions, but not much

else,
I Higher moments relevant for large deviation results,
I For distributions with unbounded support, moments aren’t estimable,

i.e. are not identified, Bahadur and Savage (1956).

Upside
I Discrete distributions effectively encode seemingly more complex

continuous distributions, cf. Sims’s rational inattention.
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The Robbins (1951) Compound Decision Problem

Suppose we observe, y = (y1, · · · ,yn) from,

Yi = θi + ui, θi ∈ {−1, 1}, ui ∼ N(0, 1)

and we would like to estimate θ ∈ {−1, 1}n under loss,

L(θ̂i, θi) = n
−1

n∑
i=1

|θ̂i − θi|.

Robbins notes that for n = 1 the minimax procedure is,

δ1/2(y) = sgn(y),

and he shows that this rule remains minimax for n > 1.
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Let’s be Bayesian

Lacking further information we may be willing to assume that the Yi are
exchangeable, and thus that the θi are iid Bernoulli (p). The minimax
principle presumes that malevolent nature has chosen p = 1/2.

Robbins observes that if we knew p,

P(θ = 1|y,p) =
pϕ(y− 1)

pϕ(y− 1) + (1 − p)ϕ(y+ 1)

we should guess θ̂i = 1 if this probability exceeds 1/2, or equivalently,

δp(y) = sgn(y− 1
2 log((1 − p)/p))

But we don’t know p.
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Hierarchical Bayes Methods
We have the log likelihood,

`n(p|y) =

n∑
i=1

log(pϕ(yi − 1) + (1 − p)ϕ(yi + 1))

a symmetric beta prior is convenient,

logπ(p) = a log(p) + a log(1 − p) − logB(a,a).

The posterior for θi is,

p(θi = 1 | y1, . . . ,yn) =
ϕ(yi − 1)p̄i

ϕ(yi − 1)p̄i +ϕ(yi + 1)(1 − p̄i)
,

where p̄ is the posterior mean of p given the data y.

p̄i =

∫
p
∏
j6=i(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))π(p)dp∫∏
j6=i(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))π(p)dp

.

and we have a plug-in cutoff Bayes rule,

δp̄i(yi) = sgn(yi − 1
2 log((1 − p̄i)/p̄i)).
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Empirical Risk for Several Decision Rules
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Sample Size n =  100

Mean absolute loss over 1000 replications.
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A Grouped Robbins Problem

Suppose we now have a panel structure, n groups each with J members

Yij = θij + uij, i = 1, · · · ,n, j = 1, · · · , J,

with θij ∈ {−1, 1} and uij ∼ N(0, 1). Each group is allowed its own pi, but
– preserving exchangeability – drawn from a distribution G, so marginally,

Yi ∼ f(y|p) =

∫1

0

J∏
j=1

(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))dG(p).

Robbins (1951), anticipating Kiefer and Wolfowitz (1956), proposed that G
could be estimated (nonparametrically) by maximum likelihood.
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Generalized MLE’s for Mixture Models

When the number of groups, n, is small we can proceed as before with
group specific MLE’s. But for larger n it is preferable to “borrow strength”
across groups and estimate the mixing distribution, G, from all the data.
There are two options:

Parametric Random Effects: Assume G takes some parametric form
and estimate its “hyperparameters.” This is the traditional hierarchical
Bayes option.

Nonparametric Random Effects: Try to estimate G nonparametrically.
This is the Robbins (1951) and Kiefer and Wolfowitz (1956) empirical
Bayes option.
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Kiefer and Wolfowitz Generalized MLE’s for Mixture
Models

Generic Problem

Yi|θ ∼ f(y|θ), θ ∼ G, Yi ∼ h(y) =

∫
f(y|θ)dG(θ)

max
G∈G

{

n∑
i=1

logh(yi) | h(y) =

∫
f(y|θ)dG(θ)}

Generic Solutions
I Objective is strictly convex and constraints are polyhedral, so solutions

are unique.
I Constraints are implemented on a fairly fine grid, so solutions are

discrete with only a few mass points.
I Rather than impose a prior for G, we estimate it, quelle horreur.
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The Grouped Robbins Problem

In the grouped Robbins problem with a mixture over the pi’s we solve,

max{
n∑
i=1

log(hi) | Ap = h,p ∈ S}

where hi = h(yi1, · · · ,hiJ), A denotes the n by m matrix with typical
element

Aik =

J∏
j=1

(pkϕ(yij − 1) + (1 − pk)ϕ(yij + 1))

and p is an m-vector, constituting a grid on [0, 1], and living on the m− 1
dimensional simplex, S.
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Some Simulation Evidence

As a simple example suppose that we have n = 200 groups with
J ∈ {5, 10, 100} observations per group, and the group pi are iid with
P(θij = 1) ≡ pi ∼ 1

4δ0.1 +
3
4δ0.3. We compare risk performance for

estimating the θij relative to an oracle rule for:

(Wald) minimax rule,

Robbins method of moments rule applied separately to each group,

Empirical characteristic function, ECF, rule of Jin and Cai (2007),

GMLE empirical Bayes rule based on Robbins, Kiefer and Wolfowitz.

n J Minimax MoM ECF GMLE
200 5 1.668 1.599 1.472 1.357
200 10 1.300 1.290 1.224 1.043
200 100 1.305 1.036 1.048 1.011
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Free the θ’s: The Gaussian Sequence Model

Restricting the θij’s to live in {−1, 1} seems a bit cruel, why not let them
roam free? Suppose that,

Yi = θi + ui, θi ∼ G, ui ∼ N(0, 1)

so marginally Yi ∼ f(y) =
∫
ϕ(y− θ)dG(θ). Under squared error loss

Robbins (1956) shows that the optimal Bayes rule estimator of the θ’s is
given by,

δ(y) = y+ f ′(y)/f(y).

Efron (2011) calls this Tweedie’s formula; it provides a general shrinkage
strategy for Gaussian noise models, encompassing various parametric
Stein rule procedures. When G is known we’re good to go, otherwise we
need to estimate our prior, G.
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Needless [sic] and Haystacks
It is commonly assumed that G contains a large mass point concentrated
at zero, the haystack, and a smaller mass well separated from zero, i.e.
the needles. Castillo and van der Vaart (2012) compare several Bayes and
empirical Bayes procedures in this setting.

s = 25 s = 50 s = 100
3 4 5 3 4 5 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
GMLE 80 57 30 122 81 40 174 112 53

Mean squared error of several estimators considered by Castillo and van der Vaart
and the GMLE procedure of Robbins. Sample size n = 500 throughout, with s
non-null observations concentrated at θ ∈ {3, 4, 5}. Based on 100 replications for
the first eight Castillo and van der Vaart procedures, and 1000 replications for the
GMLE.
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Multiple Testing
Suppose instead of estimating the θi’s we only are required to classify
them:

H0: θi ∈ A so Yi is regarded as uninteresting
H1: θi /∈ A so Yi is regarded as interesting

Given Y1, · · · , Yn we need a decision rule, δ(Yi) = 1 if we think Yi is
interesting and δ(Yi) = 0 otherwise, subject to asymmetric loss,

L(δ,H) =


1 − τ if δ = 1, and H = 0, Type I error,

0 otherwise,

τ if δ = 0, and H = 1, Type II error.

Assume the Hi are Bernoulli(p) so, Yi|Hi ∼ (1 −Hi)F0 +HiF1 where

dF0 = f0 = (1 − p)−1

∫
A

ϕ(y− θ)dG(θ),

dF1 = f1 = p−1

∫
Ac
ϕ(y− θ)dG(θ),
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FDR and the New Deal on Testing

The local false discovery rate, Lfdr, is given by,

Ti = (1 − p)f0(Yi)/f(Yi)

where f(y) = (1 − p)f0(y) + pf1(y) and it is conventional to reject Hi = 0
when δi = I(Ti < cα = T(k)) = 1 where,

k = argmin{k|k−1
k∑
i=1

T(i) < α}

This approach has a nice interpretation in terms of Bayes factors, Efron
(2010), and as shown by Genovese and Wasserman (2002)

Mfdr =
E
∑
i(1 −Hi)δi
E
∑
i δi

= FDR+Op(n
−1/2)
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Can’t Find the Oracle?

Implementation requires estimation of the quantities, p, f0 and f. and
has generally led to deconvolution methods using empirical
characteristic functions, e.g. Jin and Cai (2007) and Cai and Sun
(2009).

In mixture model settings where deconvolution is appropriate, the
Kiefer-Wolfowitz GMLE is an attractive alternative,

GLME mixing distributions are discrete, but this may be a feature, not
a bug, in some applications,

Empirical Bayes methods coupled with GMLE computational
techniques provide powerful tools for addressing a wide variety of
estimation and testing problems involving unobserved heterogeneity.

R package REBayes available from CRAN.
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