
Chapter 1
Frailty, Profile Likelihood and Medfly Mortality

Roger Koenker and Jiaying Gu

Abstract Unobserved heterogeneity is an increasingly common feature of statis-
tical survival analysis where it is often referred to as frailty. Parametric mixture
models are frequently used to capture these effects, but it is sometimes desirable
to consider nonparametric mixture models as well. We illustrate the latter approach
with a reanalysis of the well-known large scale medfly mortality study of Carey,
Liedo, Orozco, and Vaupel (1992). Recent developments in convex optimization are
exploited to expand the applicability of the Kiefer-Wolfowitz nonparametric max-
imum likelihood estimator for mixture models. Some ensuing problems of profile
likelihood are also addressed.

1.1 Introduction

The notion of frailty to describe unobserved heterogeneity of population risks has
become a familiar feature of demographic analysis since Vaupel, Manton, and Stol-
lard (1979), and has gradually spread to other statistical domains. A valuable early
exposition of the impact of frailty in models of treatment evaluation is provided by
Shepard and Zeckhauser (1980). Often, as in the aforementioned sources, paramet-
ric models are posited for the frailty effects, but it is usually difficult to justify such
assumptions given the unobserved nature of the frailty components. Recent progress
in estimation and inference for general, non-parametric mixture models has opened
the way to a more flexible approach. We will illustrate some features of such an ap-
proach with a reanalysis of the influential Carey, Liedo, Orozco, and Vaupel (1992)
study of medfly mortality.
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1.2 Data

In the largest of the three experiments reported in Carey, Liedo, Orozco, and Vaupel
(1992), 1.2 million Mediterranean fruit flies (Ceratitis Capitata) were raised in a
large facility in Mexico,

“...Pupae were sorted into one of five size classes using a pupal sorter. This enabled size
dimorphism to be eliminated as a potential source of sex-specific mortality differences.
Approximately, 7,200 medflies (both sexes) of a given size class were maintained in each
of 167 mesh covered, 15 cm by 60 cm by 90 cm aluminum cages. Adults were given a diet
of sugar and water, ad libitum, and each day dead flies were removed, counted and their sex
determined ...”

The primary objective of the experiment was to study the upper tail of the mortality
distribution, an endeavor that revealed several surprising features.

1.3 Declining Mortality Rates

Prior to this experiment it was an article of faith throughout biology that within
species mortality (hazard) rates were monotonically increasing with age. Indeed it
was commonly suggested that each species had a species specific upper bound for
age rendering the whole notion of investigating the “tail behavior” of the mortal-
ity distribution pointless. In Figure 1.1 we plot raw daily mortality rates from the
experiment and superimpose a smoothed, geometric moving average curve. More
explicitly, let yt denote the number of flies alive (at risk) at the beginning of day
t, then the raw mortality rates plotted in Figure 1.1 are, rt = 1− yt+1/yt , and the
smoothed (geometric) weekly moving average. Contrary to the received wisdom,
mortality rates actually declined after about age 60. This finding provoked an exten-
sive reappraisal of the biology of aging. The observed decline in mortality offered
no consolation to the 99.8 percent of the flies that were already dead by age 60, but
to the remaining, more than 2000 less frail ones, it offered some hope of a prolonged
retirement. The oldest flies in the experiment expired on day 172.

How should we interpret this remarkably long tail? One explanation, suggested
by Vaupel and Carey (1998), was that the population under study was really a mix-
ture of several subpopulations of varying frailties. Rather than assume a particular
parametric form for the mixing distribution, Vaupel and Carey adopted a nonpara-
metric mixture model. While their two page note in Science precluded a detailed
description of their computational methods, we have been able to “reverse engineer”
an approach that closely mimics the results reported in their Figure 1.

The first question is: What are we mixing? Here we follow Vaupel and Carey
and consider both Gompertz and Weibull mixtures. The Gompertz model assumes
that log hazard is linear in age, while the Weibull model assumes that log hazard
is linear in log age. Figure 1.2 illustrates raw log-hazard rates plotted against age,
and superimposed are two estimates of the baseline model. The dashed red line rep-
resents the estimated baseline Gompertz model fit to the data for the first 15 days
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Fig. 1.1 Raw Daily Medfly Mortality Rates and Moving Average Smooth

of the experiment by weighted least squares with weights given by the relative fre-
quencies of the daily counts. It appears that the first day is an outlier in this plot,
however since few flies died on the first day it exerts little influence on the fitted
line. The blue solid curve represents the baseline Weibull fit based on the first 20
days of the experiment. How many observations to use to estimate the parameters
of the baseline model is obviously somewhat debatable, in this respect the prob-
lem is somewhat similar to the notorious controversies over how to choose k in the
Hill estimator of the Pareto exponent. We won’t indulge in further speculation about
these choices, but simply remark that our k selection yields baseline Gompertz haz-
ard of h(t) = 0.002exp(0.24t), while Vaupel and Carey use h(t) = 0.003exp(0.3t),
and for the Weibull model we obtain h(t) = 0.0004t1.85, against Vaupel and Carey’s
h(t) = 0.001t2. The intercept in these models is not crucial, since the estimated
mixture distribution is scale equivariant it simply fixes a normalization. The shape
parameter is more important, but in both cases our approach of fitting the left tail
of the distribution yields rather similar estimates to those employed by Vaupel and
Carey. An intriguing, open theoretical and practical question remains: can likeli-
hood methods be brought to bear to estimate these shape parameters. We will return
to this question when we consider profile likelihoods.

Given our estimated baseline models it is now time to address the problem of
estimating the mixing, or frailty, distribution. There is a long history and exten-
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Fig. 1.2 Estimated Baseline Gompertz and Weibull Hazard Models: Linear (Gompertz) and log
linear (Weibull) fits to the initial k observations of raw daily log mortality rates.

sive literature on this subject, Lindsay (1995) provides a thorough overview. Kiefer
and Wolfowitz (1956) demonstrated that such mixture models were consistently es-
timable under weak conditions by maximum likelihood. If we write the baseline
density as ϕ(x,θ) and the mixture density as,

g(x) =
∫

ϕ(x,θ)dF(θ),

then given iid observations, x1, · · · ,xn from g, we wish to solve

max
F∈F

n

∑
i=1

log(g(xi)).

Following Laird (1978), the EM algorithm, or a variant of it, has been employed
to solve such problems. However, EM is notoriously slow to converge. Koenker
and Mizera (2011) proposed an alternative computational strategy based on convex
optimization. Let, t0 < t1 < · · · < tm denote a grid of values for the potential mass
points of the distribution F , and let fi denote the mass associated with the ith grid
interval. Then, we can rewrite the MLE problem as,

max
f∈Rm
{∑ log(g(xi)) | g = A f , ∑ fi∆ ti = 1, f ≥ 0},
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where A denotes the n by m matrix with typical element, ϕ(xi, t j), and g denote the
n vector with typical element g(xi). This is a garden variety convex optimization
problem that can be efficiently solved by modern interior point methods. We em-
ploy Mosek, Andersen (2010), for this purpose. The R package, REBayes, Koenker
(2012), implements a variety of related problems, all of the computational results
reported here were carried out in this environment.
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Fig. 1.3 Estimated Mixing Distributions for the Gompertz (left) and Weibull (right) Models

In Figure 1.3 we plot the two mixing distributions estimated by the Kiefer-
Wolfowitz maximum likelihood procedure. Note that the vertical axis in these plots
is the cube root of the density to exaggerate the smaller mass points that are nearly
invisible on the original f (θ) scale. The Kiefer-Wolfowitz estimator is known to
deliver a discrete distribution, here represented by a “density” with a small number
of “almost” point masses. The Weibull model is considerably more parsimonious
in this respect with only six distinct points of support. The implied hazard func-
tions for the two estimated mixture densities are shown in Figure 4, superimposed
over the raw mortality rates. Fewer mass points in the Weibull model translates
to much smoother behavior of the hazard function, but this is ultimately traceable
back to the forms of the base density, the Gompertz being more sharply peaked and
consequently generating a rougher mixture. In both cases the mixing parameter θ

functions as a scale parameter, but the mixing distribution is estimated on the logθ

scale, so we can interpret the mixing as convolution as with the familiar kernel den-
sity estimator.
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Fig. 1.4 Hazard Functions for the Estimated Gompertz and Weibull Models

1.4 Gender Crossover

An obvious source of observed heterogeneity is gender differences. Again, the
Carey et al experiment revealed some surprising new facts. When we repeat our
prior exercise fitting separate baseline Weibull models for males and females we
obtain the results appearing in Figure 5. The Weibull model fits considerably better
in both of these plots than in the previous aggregated plot, and considerably better
than the corresponding Gompertz plots, so we will restrict attention henceforth to
the Weibull model. Given the baseline models the Kiefer-Wolfowitz estimates of the
mixture model yields the gender specific hazard functions of Figure 6. Several fea-
tures of this plot are worth noting. Until about age 20 female mortality is higher than
that of males, but after age 20 female mortality is substantially below male mortality.
This crossover of the hazard functions clearly contradicts the proportional hazard as-
sumption that is frequently made in survival analysis. The second crossover of the
estimated hazard curves at about age 75 probably shouldn’t be taken too seriously,
but the initial crossing is quite precisely estimated and induces a crossing of the es-
timated gender specific survival functions at about age 36. It is impossible to resist
noting that this pattern reverses the typical finding for human populations for which
males are more frail than females with a possible crossover only at very advanced
ages.
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Fig. 1.5 Gender Specific of Baseline Weibull Models: Weighted least squares fitting of the initial
k observations on daily mortality rates. The percentage of the sample population dead by day k is
given in parentheses. The estimated shape parameter of the baseline Weibull model is α .

1.5 Profile Likelihood and Covariate Effects

If nonparametric maximum likelihood estimation of frailty effects were restricted to
univariate survival models it would still be a very valuable addition to the statistical
repertoire, but it would be much more useful if it could be extended to semipara-
metric applications including covariate effects. Of course we already have the pro-
portional hazard model for this purpose, however frailty offers another valuable per-
spective. Factorization of the likelihood makes the proportional hazard assumption
especially convenient from a computational viewpoint; the Weibull mixture model
has no comparable factorization, nevertheless it is possible to employ a profile like-
lihood formulation to elaborate the model to include covariate effects.

From the beginning a controversial aspect of the Carey experiment was the effect
of cage density. Critics claimed that flies raised in more crowded cages would be
more likely to die earlier. Carey, Curtsinger, and Vaupel (1993) responded that the
cage density was quite low after 60 days, only 16 flies per cage, on average, survived
beyond this age, so it seemed difficult to attribute differences in mortality rates in
elderly medflies to differences in crowding. To investigate whether differences in
initial cage density had a significant impact on mortality we considered a model in
which it entered as as a linear multiplicative scale shift in the Weibull model, that is
the baseline Weibull scale becomes θ0 exp(diβ ) where di denotes initial cage den-



8 Roger Koenker and Jiaying Gu

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Day

H
az

ar
d

●
●●●●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

Male
Female

●
●●

●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●●●
●●●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Male
Female

Fig. 1.6 Gender Specific of Hazard Functions for the Weibull Mixture Model: Raw daily mortality
rates are plotted in black for males and red for females, superimposed are the estimated hazard
functions for the Weibull mixture models using the baseline models shown in Figure 1.6.

sity. To estimate the density effect parameter, β , we simply evaluated the profiled
likelihood on a grid of values on the interval [−1,1], yielding Figure 1.7. This ex-
ercise yields a point estimate of about β̂ = −0.5 that is quite precise, at least if we
are to believe the confidence bounds implied by the classical Wilks, 2 logλ ; χ2

1 ,
theory. Leaving the reliability of such intervals to future investigation, we conclude
simply that the negative estimated coefficient implies that higher density shifts the
survival distribution to the right, thus prolonging lifetimes, and directly contradict-
ing the conjecture of the Carey critics. This finding is confirmed by other methods,
see for example Koenker and Geling (2001) where similar results are reported for
both the Cox model and several quantile regression models.

The success of profile likelihood in a few cases prompts one to wonder how far
similar methods can be extended to other semiparametric mixture settings. There is
a considerable literature on this topic, pioneered by Lindsay. When profiling leads
to fully adaptive estimation of structural parameters, not only do we get efficient
estimates of those parameters, as a by-product we also get valid inference from the
profiled likelihood ratio statistic, see Murphy and Van der Vaart (2000). The latter
bonus is sometimes referred to as the Wilks phenomenon, see e.g. Fan, Zhang, and
Zhang (2001).

But profiling is not always so perceptive; sometimes it can lead the unwary to-
ward disaster. To illustrate this less benign side of profile likelihood for mixture
models we would like to briefly reconsider estimation of the Weibull shape param-
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Fig. 1.7 Profile Likelihood for the Initial Cage Density Effect in the Weibull Mixture Model

eter, α based on the medfly data. In Figure 1.8 we show the profile likelihood for α

based on the male medfly data. Based on our earlier results we know that α ≈ 2.8 fits
the initial portion of the log hazard plot quite well. What does the profile likelihood
have to say about it? The message is a bit confusing: the profile likelihood increases
sharply up to about α = 2.8, and then dramatically flattens out. In fact, closer ex-
amination reveals that the profile likelihood continues to increase beyond this value,
but very, very gradually. Indeed, as α → ∞, the profile likelihood also tends to in-
finity. To understand this better it is helpful to consider how the estimated mixture
distribution responds to changes in α . For small α , the estimated mixture distribu-
tion has only a single mass point, and this single mass point persists for a while,
by the time we get to α between 2.5 and 3.0 though we have 5 or 6 mass points as
in Figure 1.3. As α becomes larger we get more and more mass points, eventually
yielding positive mass corresponding to virtually all the distinct observed values.
This is reminiscent of the familiar Dirac catastrophe produced by kernel density
bandwidths chosen by maximum likelihood. Indeed, the situation is quite similar,
as α becomes large the effective bandwidth of the baseline Weibull model becomes
narrower and more mass points are needed in the mixture distribution to mimic the
density of the observed data.

So profile likelihood has failed us. Now what? There is a familiar litany of cir-
cumstances in which naive adherence to the principle of maximum likelihood leads
to absurd results: various Gaussian examples in which driving variance parameters
to zero yields unbounded likelihood at unlikely places in parameter space, estima-
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Fig. 1.8 Profile Likelihood for the Initial Cage Density Effect in the Weibull Mixture Model

tion of the threshhold parameter of the three parameter lognormal distribution, and
many others. One approach that has proven successful in such situations is the maxi-
mum product spacing methods introduced by Cheng and Amin (1983) and Ranneby
(1984). Roeder (1990) describes an application of this approach in astronomy that
although based on Gaussian assumptions is qualitatively quite similar to our Weibull
problem.

Log product spacings optimization can be viewed as a discretization of classical
maximum likelihood. Let G(x,θ) denote the distribution function of a parametric
model for a scalar random variable, X . Given a sample, X1, · · · ,Xn of identical copies
of X , let

∆Gi(θ) = G(X(i),θ)−G(X(i−1),θ),

for i = 1, . . . ,n+1 with X(0) =−∞ and X(n+1) =+∞ and X(i) : i = 1, · · · ,n denoting
the order statistics of the original sample. Since G(X ,θ0) is uniform when evaluated
at the true parameter, θ0 of the model, the ∆Gi(θ0) constitute a sample of uniform
spacings for which there is an extensive theory. Considering

Rn(θ) =
1√

n+1

n+1

∑
i=1

(log(∆Gi(θ)(n+1))+ γ)/(π2/6−1)1/2

with γ ≈ 0.577216, the Euler constant, we have a normalized sum that satisfies
a central limit theorem with a standard normal limiting distribution. Maximizing
Rn(θ) with respect to θ requires computing the Kiefer-Wolfowitz mixture distribu-
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tion, Ĝ(x,θ), at each θ to obtain the profile log product spacing objective function.
The function Rn(θ) behaves like the usual log-likelihood; this is to be expected since
the summands can be viewed as difference quotient approximations of g(x̃i,θ) for
x̃i ∈ (X(i−1),X(i)). However, by avoiding the direct evaluation of densities we cir-
cumvent the pathological behavior of the log likelihood.

An important feature of the maximum product spacing method noted by Roeder
(1990), is that for given θ , it selects an Ĝ(x,θ) that is asymptotically equivalent to
the mixture distribution estimated by nonparametric maximum likelihood that we
have focused on thus far. For θ taking various values, we get a profiled objective
function similar to the profiled nonparametric likelihood. Yet unlike the problem-
atic profiled likelihood, the limiting form of Rn(θ) yields an estimating function
centered at zero for the true parameter and a simple confidence interval construction
for the structural parameter. Further details regarding the maximum product spacing
method can be found in Roeder (1990), Roeder (1992) and Ekström (2008).

We have seen already that an α parameter that fits the left tail of the survival dis-
tribution can be estimated well by a simple regression of log hazards on log event
times using data from the first few days of the experiment. This assumes that flies
that only survive for the first k days are all from a homogeneous parametric survival
model. When we move on to the semiparametric mixture model using all the obser-
vations, a natural question becomes how reasonable is it to assume a global value
for α while allowing scale heterogeneity with frailty. We employ a first-order form
of the log-product-spacing method and find that the test strongly rejects the mixture
models with α = 2.85. However, when we use only the observations surviving up
to 50 days, a subsample that actually contains 99.5% of the full sample, we obtain
a test statistic of only 0.33 and the model is not rejected. Similar conclusions are
drawn when we estimate gender specific models. The message seems to be that the
Weibull semiparametric mixture model fits the majority of the data quite well, but
fails to perform adequately for the extreme right tail.

This conclusion may simply reassert that estimating a fixed shape parameter in
the Weibull mixture model is an extremely difficult task; this is indeed the impres-
sion one gets from the prior literature. Hahn (1994) shows that the information ma-
trix is singular for mixed Weibull proportional hazard model. When there are no
covariates, the score function for α is identically zero, hence also the Fisher infor-
mation. This means that the Weibull parameter can not be estimated at a root-n rate.
Various estimation strategies for α are nevertheless available, for example Honoré
(1990) Honoré (1997) and Ishwaran (1996). We would like to highlight what seems
to be a somewhat neglected paper by Ishwaran (1999) discussing the information
loss phenomenon for a class of semi parametric mixture models. Ishwaran shows
that for the Weibull mixture model, there is information loss for α’s bigger than the
true value α0, so that with α > α0, one can find a mixing distribution that produces
a model that is arbitrarily close to the true model in the sense of Hellinger distance.
This corresponds to the flat region in our profile likelihood. On the other hand, as he
notes, it is curious that the same information loss phenomenon does not occur for
α’s that are smaller than α0. Whether one could take advantage of this asymmetric
behavior for estimation of α is left for future investigations.
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Honoré B (1990) Simple estimation of a duration model with unobserved heterogeneity. Econo-
metrica 58:453–473
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