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Abstract. Renewed interest in Stein shrinkage and empirical Bayes methods more gen-
erally has prompted new work on confidence intervals for empirical Bayes estimates. Bruce
Hansen’s cogent discussion of Armstrong et al. (2020) in a recent Chamberlain Seminar
aroused my curiosity about performance of posterior empirical Bayes intervals based on the
nonparametric maximum likelihood methods of Robbins (1950) and Kiefer and Wolfowitz
(1956). This note describes some further simulation evidence based on the implementation
of this approach in Koenker and Gu (2015), and closely related methods of Efron (2019).
While the “minimalist” approach based on posterior percentile intervals contructed from
the NPMLE of Kiefer-Wolfowitz perform poorly, the smoother G modeling approach of
Efron is found to possess good “robustness of validity” and “robustness of efficiency.”

1. Introduction

Consider a family of mixture models of the form,

f(y) =

∫
ϕ(y|θ)dG(θ),

where ϕ denotes a known parametric “base” model and G denotes an unknown, nonpara-
metric mixing distribution. Such models are fundemental in empirical Bayes compound
decision settings where we have the (exchangeable) hierarchical structure,

Yi ∼ ϕ(y|θi); θi ∼ G.

When θ is a location parameter, so ϕ(y|θi) = ϕ(y − θi) this is a conventional deconvo-
lution problem usually evoking characteristic function methods, however recent work has
emphasized the applicability of maximum likelihood methods. An authoritative overview
of this approach is provided in Efron (2019) and the discussion thereof.

When the mixing distribution, G, is Gaussian, familiar Bayesian computations yield the
James-Stein shrinkage formulas for (compound) squared error loss. This is the parametric
empirical Bayes setting explored in Armstrong et al. (2020). In this note I want to very
briefly explore two nonparametric approaches for confidence interval construction. We will
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see that the mimimalist NPMLE methods of Kiefer and Wolfowitz while well suited to point
estimation are not so well adapted to interval estimation. This conclusion complements the
recent simulation findings and discussion of Jiang (2019), who considers several smoothed
versions of the NPMLE.

2. The Kiefer-Wolfowitz NPMLE

In Koenker and Mizera (2014) we have advocated the Kiefer-Wolfowitz NPMLE approach
to estimating G and constructing estimates of the θi’s for compound decision problems. In
sharp contrast to finite dimensional mixture problems with highly multimodel likelihoods,
discrete formulations of the general nonparametric mixture problem are strictly convex and
therefore admit unique solutions. Consider a grid t0, t1, · · · , tm with associated masses
{g ∈ Rm|gi > 0,

∑m
i=1 gi∆ti = 1}, we can approximate the log likelihood by,

`(G) =

n∑
i=1

log fi

where the n vector f = Ag and A is the n by m matrix with typical element ϕ(yi, tj). As

is well known from Laird (1978) or Lindsay (1983) the NPMLE, Ĝ, has p 6 n positive mass
points, while in practice this p is usually closer to logn than n. Interior point methods for
solving such problems are considerably more efficient than earlier EM approaches greatly
facilitating the study of their performance in simulation experiments. Unfortunately, little
is known about their statistical efficiency from a theoretical perspective beyond the basic
consistency results of Kiefer and Wolfowitz (1956) and Pfanzagl (1988).

Given an estimator for G, the usual Bayesian machinery can be invoked to produce point
estimates with respect to various loss functions. In particular, we have Tweedie’s formula,
see e.g. Efron (2011), for ϕ standard Gaussian,

θ̂i = yi + f
′(yi)/f(yi)

as a (nonlinear) shrinkage formula that can be implemented by plugging in Ĝ for G. Had
we known G this is just the posterior mean, the Bayes rule with respect to (compound)
quadratic loss. Other loss functions produce other point estimates, so quantile loss yields
posterior quantiles. This raises the natural question: are these posterior quantile estimates
good for anything. In particular, could they be used to construct confidence intervals for
the θ̂i’s? Before putting this to the test, let me briefly describe an alternative approach
due to Efron.

3. Efron’s NPMLE

Efron (2016) has proposed an alternative approach to estimating G that expresses its
log derivative by a regression spline,

g(y|θ) = exp{

p∑
j=1

θjψj(y) −ψ0(θ)},
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as in the pure density estimation methods of Stone (1990) and Barron and Shue (1991).
We can maintain the same discretization for the support of G, and set,

g = (gj) = (g(tj|θ)),

so the log likelihood can be expressed as above, except that now we are estimating a finite
dimensional parameter θ of predetermined dimension. Efron suggests natural splines for
the ψj functions and the penalization,

`n(Gθ) + λ‖θ‖

by the Euclidean norm of the vector θ, thereby shrinking θ toward the origin and Ĝ toward
the uniform distribution. A virtue of the Efron approach over the Kiefer-Wolfowitz form
of the NPMLE is that it produces smooth Ĝ’s that are better suited to inference. Their
downside, as we have stressed in our contributed discussion, Koenker and Gu (2019), is the
need to choose tuning parameters for the dimension of the basis expansion and the penalty
parameter λ.

A striking feature of both the Efron and Kiefer-Wolfowitz proposals is that neither
depend upon the mixture model being a formal convolution. Of course when θ is a location
parameter so ϕ(y|θ) = ϕ(y− θ) then classical deconvolution methods are also applicable.
Efron compares the performance of his procedure with the kernel deconvolution method
of Stefanski and Carroll (1990), and concludes that the latter is “too variable in the tails.”
This is confirmed in the comparisons reported in our contributed discussion of Efron (2019).

4. Some Simulation Evidence

We consider three simulation settings: the two proposed by Hansen, and one bonus
setting proposed by an astute reader of the first draft who shall remain anonymous. All
settings are special cases of the standard Gaussian sequence model,

Yi = θi + ui,

with ui ∼ N(0, 1) and θi ∼ G. In the first setting G is also Gaussian with mean 0, and
constant variance, V . This is obviously a favorable setting for the linear shrinkage Stein
rule. There is almost no “signal” we are just observing Gaussians with variance 1+V , when
V is large there will be a few observations that are sufficient “unusual” that they would be
unlikely to come from the standard Gaussian, but especially when V is small this setting
is quite challenging for any NPMLE. The second setting is can be viewed as more typical
of genomic Gaussian sequence models: G = 0.90δ0 + 0.10δa, where δx is the usual Dirac
δ-function with mass 1 at the point x. In the former setting there are four values of V
that are considered, {0.1, 0.5, 1, 2}, while in the latter setting a =

√
10V for one element of

same set of V ’s. The procedure proposed by Armstrong et al. (2020) is now included in
the simulation comparisons as implemented in their R package “ebci”.

In our third bonus setting G is gamma with shape parameter 6
√
V and rate parameter

3. The corresponding densities for these G distributions are depicted in Figure 1.
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In Table 1 I report observed coverage for posterior [0.025, 0.975] intervals based on the
Kiefer-Wolfowitz NPMLE on the left and the Efron NPMLE as well as the AKP-M pro-
cedure. For the Efron intervals I’m using the default 5 degrees of freedom natural spline
basis expansion and λ = 0.1. It is painfully apparent that the using the Kiefer-Wolfowitz
Ĝ produces severe under coverage in this setting, while the default Efron procedure is quite
reliable. To explore this a bit further we report mean length of the intervals in Table 2,
and root mean squared error of the posterior means in Table 3. It is evident from these
tables that the under coverage of the KW intervals is due to their length; the KW posterior
mean estimates are slightly more accurate than the point estimates delivered by the Efron
posterior means. The discrete nature of the KW estimate, Ĝ inevitably produces intervals
that are sensitive to the mass points of the Ĝ, and can result in wildly optimistic inter-
vals. The Armstrong et al (AKP-M) intervals have good coverage except for the V = 0.1
case where they are seriously uncovering. In contrast the Efron intervals are quite reliable
throughout and at the same time considerably shorter than the AKP-M intervals except
in the situations in which the latter undercover.

In Tables 4 to 6 we report parallel results for (outlier) Setting 2 of the simulation ex-
periment. The Kiefer-Wolfowitz intervals are again consistently too short under covering
the true parameters. The AKP-M intervals coverage is again quite good except when the
outliers are relatively close to the null mass point at θ = 0. However, the lengths of
the AKM-P intervals are considerably wider than than the corresponding Efron intervals
despite the fact that the Efron intervals tend to be unnecessarily conservative. KW poste-
rior means are slightly more accurate than the Efron point estimates as in Setting 1 and
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Figure 1. Four gamma densities for the third (bonus) simulation setting.
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Kiefer-Wolfowitz Efron AKP-M
n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.411 0.433 0.490 0.554 0.954 0.956 0.952 0.951 0.668 0.714 0.800 0.871
V = 0.5 0.611 0.663 0.721 0.750 0.912 0.926 0.912 0.908 0.947 0.965 0.974 0.975

V = 1 0.655 0.710 0.758 0.789 0.924 0.935 0.928 0.904 0.972 0.977 0.978 0.978
V = 2 0.672 0.721 0.774 0.799 0.929 0.938 0.941 0.925 0.975 0.978 0.978 0.978

Table 1. Simulation Setting 1: Observed coverage proportion in 1000 trials
for intended nominal coverage 0.95

Kiefer-Wolfowitz Efron AKP-M

n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.645 0.640 0.680 0.734 1.481 1.387 1.305 1.275 1.095 1.018 1.045 1.097

V = 0.5 1.392 1.490 1.612 1.670 2.186 2.208 2.167 2.155 2.528 2.569 2.618 2.613
V = 1 1.810 1.952 2.086 2.172 2.667 2.715 2.694 2.629 3.208 3.240 3.253 3.257

V = 2 2.156 2.301 2.463 2.542 3.084 3.130 3.158 3.113 3.720 3.730 3.735 3.738

Table 2. Simulation Setting 1: Observed interval length in 1000 trials for
intended nominal coverage 0.95

Kiefer-Wolfowitz Efron AKP-M
n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.130 0.112 0.102 0.097 0.346 0.325 0.313 0.308 0.288 0.236 0.159 0.109
V = 0.5 0.385 0.362 0.349 0.343 0.608 0.594 0.592 0.589 0.347 0.339 0.337 0.335

V = 1 0.564 0.539 0.522 0.512 0.734 0.722 0.721 0.727 0.511 0.504 0.504 0.502

V = 2 0.751 0.715 0.691 0.682 0.843 0.828 0.824 0.835 0.682 0.668 0.667 0.668

Table 3. Simulation Setting 1: Observed root mean squared error in 1000
trials of posterior mean

Kiefer-Wolfowitz Efron AKP-M

n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.418 0.472 0.544 0.598 0.938 0.932 0.924 0.921 0.701 0.758 0.848 0.888

V = 0.5 0.459 0.485 0.539 0.521 0.967 0.973 0.978 0.981 0.930 0.933 0.930 0.930
V = 1 0.392 0.367 0.426 0.452 0.982 0.987 0.990 0.988 0.949 0.950 0.951 0.953

V = 2 0.340 0.338 0.371 0.381 0.992 0.995 0.998 0.997 0.964 0.964 0.967 0.967

Table 4. Simulation Setting 2: Observed coverage proportion in 1000 trials
for intended nominal coverage 0.95

they are considerably more accurate than the point estimates delivered by linear shrinkage
underlying the AKP-M procedure.

In Tables 7 to 9 we report parallel results for Setting 3 of the simulation experiment.
The KW intervals are still poor in terms of coverage but now both the Efron and AKP-M
intervals perform well in terms of coverage. But the AKP-M intervals are much too wide.
The Efron smoothing of the MLE performs well in this asymmetric setting producing
somewhat better RMSE performance than the Kiefer-Wolfowitz estimator.
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Kiefer-Wolfowitz Efron AKP-M
n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.579 0.607 0.649 0.668 1.444 1.373 1.286 1.256 1.067 1.052 1.051 1.108
V = 0.5 1.036 1.058 1.069 1.032 1.943 1.914 1.849 1.839 2.517 2.581 2.605 2.618

V = 1 0.913 0.849 0.828 0.803 2.022 1.938 1.836 1.795 3.229 3.243 3.248 3.260
V = 2 0.564 0.521 0.480 0.433 1.881 1.749 1.607 1.522 3.734 3.732 3.739 3.740

Table 5. Simulation Setting 2: Observed interval length in 1000 trials for
intended nominal coverage 0.95

Kiefer-Wolfowitz Efron AKP-M

n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.118 0.102 0.091 0.087 0.332 0.315 0.299 0.294 0.288 0.238 0.149 0.110

V = 0.5 0.285 0.261 0.242 0.236 0.534 0.517 0.504 0.498 0.348 0.341 0.336 0.335
V = 1 0.281 0.249 0.235 0.228 0.530 0.511 0.499 0.495 0.511 0.507 0.503 0.501

V = 2 0.159 0.135 0.118 0.115 0.404 0.377 0.360 0.355 0.677 0.672 0.667 0.669

Table 6. Simulation Setting 2: Observed root mean squared error in 1000
trials of posterior mean

Kiefer-Wolfowitz Efron AKP-M
n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.467 0.520 0.591 0.625 0.933 0.941 0.938 0.938 0.954 0.970 0.974 0.976

V = 0.5 0.581 0.620 0.689 0.716 0.913 0.927 0.919 0.934 0.977 0.979 0.978 0.979

V = 1 0.616 0.670 0.720 0.749 0.921 0.932 0.920 0.932 0.976 0.976 0.976 0.976
V = 2 0.642 0.694 0.746 0.772 0.922 0.936 0.928 0.932 0.973 0.972 0.972 0.972

Table 7. Simulation Setting 3: Observed coverage proportion in 1000 trials
for intended nominal coverage 0.95

Kiefer-Wolfowitz Efron AKP-M

n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.858 0.928 1.023 1.077 1.667 1.633 1.585 1.582 2.725 2.777 2.802 2.810
V = 0.5 1.309 1.385 1.514 1.557 2.107 2.111 2.078 2.127 3.839 3.842 3.849 3.851

V = 1 1.518 1.640 1.747 1.808 2.355 2.385 2.345 2.376 4.076 4.078 4.079 4.079

V = 2 1.733 1.858 1.991 2.049 2.594 2.639 2.622 2.628 4.176 4.177 4.177 4.177

Table 8. Simulation Setting 3: Observed interval length in 1000 trials for
intended nominal coverage 0.95

Kiefer-Wolfowitz Efron AKP-M

n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000 n=100 n=200 n=500 n=1000

V = 0.1 0.212 0.194 0.182 0.177 0.202 0.188 0.179 0.176 0.393 0.386 0.382 0.380
V = 0.5 0.360 0.340 0.324 0.320 0.348 0.332 0.326 0.320 0.721 0.715 0.712 0.714
V = 1 0.438 0.422 0.406 0.397 0.424 0.412 0.410 0.400 0.827 0.826 0.825 0.823

V = 2 0.532 0.510 0.493 0.483 0.513 0.497 0.496 0.488 0.901 0.906 0.907 0.900

Table 9. Simulation Setting 3: Observed root mean squared error in 1000
trials of posterior mean
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5. Conclusion

Viewed in retrospect it is hardly surprising that the Kiefer-Wolfowitz posterior inter-
vals perform poorly. Their discrete character of the estimated posterior makes it almost
impossible for them to adapt to a desired α level. What is more surprising about the
foregoing exercise is the excellent performance of the Efron intervals. It might have been
expected that since they do not account for variability in Ĝ, they too might under cover,
but they are actually a little too conservative in all three settings of the experiment. It
is tempting to suggest that the performance of the KW intervals could be ameliorated by
some judicious smoothing of the KW Ĝ. But this would draw us back into the contested
territory of tuning parameter selection and our four page limit has already been exceeded.
Like his son’s predictions about the length of the Iraq war, let’s just concede that Jack
Wolfowitz’s intervals are just too short. The main take away from the experiments is that
nonparametric G modeling not only produces good performance for point estimation and
prediction, but it is also capable of delivering reliable estimates of the precision of such
estimates. In contrast linear shrinkage and associated “least favorable” confidence interval
procedures, as least as currently implemented in Armstrong et al. (2020) and the associated
R package, has room for improvement on both of George Box’s (1953) goals of “robustness
of validity” and “robustness of efficiency.”
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