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Abstract. A nonparametric mixture model approach to empirical Bayes com-
pound decisions for the Gaussian location model is compared with a parametric
empirical Bayes approach recently suggested by Martin and Walker and several
recent more formal Bayes procedures.

Martin and Walker (2013) have recently proposed a parametric empirical Bayes
procedure for the classical Gaussian compound decision problem in which, Yi ∼
N (θi, 1), i = 1, 2, · · · , n and we wish to estimate θ ∈ Rn subject to squared er-
ror loss. I was curious to compare this procedure with the nonparametric empirical
Bayes procedure recently introduced by Jiang and Zhang (2009) and further explored
in Koenker and Mizera (2013). The latter approach is based on the nonparametric
maximum likelihood estimator for mixture models of Kiefer and Wolfowitz (1956).
The interior point computational approach suggested in Koenker and Mizera (2013)
for the Kiefer-Wolfowitz MLE makes it feasible to study its performance much more
easily.

1. Four Experiments

To this end, I initially adopted a slightly expanded variant of the simulation design
of Martin and Walker: sample size is n = 200, with 1000 replications, θ = θa ∈
{1, 3, 5, 7} for s entries, and 0 otherwise, and s ∈ {10, 20, 40, 80} The default settings
for the EBMW procedure including their Gibbs parameters are maintained. Table 1
reports the results of the experiment. For each replication we compute the sum of
squared errors for the n observations, these are then averaged over the 1000 replica-
tions and rounded to integers, following standard practice as introduced in Johnstone
and Silverman (2004).

s = 10 s = 20 s = 40 s = 80
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

EBMW 10 56 22 13 20 98 36 25 40 162 62 48 79 249 106 92
EBKM 13 36 15 7 21 52 19 7 32 74 25 8 44 94 29 8

Table 1. MSE based on 1000 replications

As a second experiment I considered an expanded version of the second experiment
described in Martin and Walker. This experiment employs a design used by Castillo
and van der Vaart (2012). The setup is very similar to the first experiment, except that
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n = 500, s ∈ {25, 50, 100} and θa takes five possible values: {1, 2, · · · , 5}. The first 8
rows of Table 2 are taken directly from Table 1 of Castillo and van der Vaart (2012),
with identifiers as described there; the ninth row is taken from Martin and Walker
(2013), each based on 100 replications. In the tenth through twelfth rows we report
results for a slightly expanded version of the design including θa ∈ {1, 2} for both the
EBMW procedure and the EBKM procedure, both based on 1000 replications. In this
table I have also added the performance of the monotone Bayes rule estimator, EBMR,
introduced in Koenker and Mizera (2013). It performs slightly worse than EBKM,
the Kiefer-Wolfowitz procedure, but considerably better than the other procedures,
except in the first column of the table where the Martin and Walker estimator is the
(narrow) winner. It might be initially surprising to see that the EBKM and EBMR
estimators have MSE < s for s = 50 and s = 100 when θa = 5. However, when
the signal is sufficiently separated from the zeros, the Kiefer-Wolfowitz estimator of
the mixing distribution quite accurately estimates the two mass points and thus the
Bayes rule provides not only shrinkage toward zero, but also toward this estimate of
θa.

s = 25 s = 50 s = 100
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
EBMW 142 98 53 240 160 93 399 262 151
EBMW 25 94 143 103 54 50 183 244 165 91 99 347 404 258 155
EBMR 30 77 89 65 35 50 123 136 92 48 79 185 193 127 62
EBKM 27 71 80 57 30 46 113 122 81 40 74 171 174 112 53

Table 2. MSE based on 1000 replications

Given the foregoing results, I was curious to see whether the improvement of the
empirical Bayes (Kiefer-Wolfowitz) approach over the methods of Martin and Walker
would persist if I replaced the point mass signals with more diffuse signals. So as
a third experiment I maintained all the features of the second experiment except
that the non-zero elements of the θ vector were now generated as standard Gaussians
centered at the θa values, rather than as point masses at those values. Since the
Kiefer-Wolfowitz MLE produces a small number of point masses my expectation was
that this would make things more difficult for EBKM. The results of this experiment
are reported in Table 3. As expected, this variant of the problem is more challenging,
but the gap in relative performance persists.
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s = 25 s = 50 s = 100
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

EBMW 47 99 117 91 59 108 195 198 169 112 145 281 329 259 173
EBKM 43 69 76 64 45 79 121 123 111 78 104 165 186 165 121

Table 3. MSE based on 1000 replications

Finally, I thought it might be interesting to compare EBKM with the procedures
suggested in Bhattacharya, Pati, Pillai, and Dunson (2012). In their simulation
setting, n = 1000, and θa is 10 for the first 10 coordinates, θa ∈ {2, 3, · · · , 7} for the
next 90 coordinates, and zero for the remaining 900. They consider four methods:
the Bayesian Lasso (BL), two variants of their Dirichlet-Laplace priors with different
prior strength (DL(α)), and the horseshoe prior of Carvalho, Polson, and Scott (2009).
Results in Table 4 are again substantially better than those reported by Bhattacharya
et al. The first four rows of the table are taken from Bhattacharya, Pati, Pillai, and
Dunson (2012) and are based on 100 replications; the last two rows are based on 1000
replications as in the previous tables. Again the empirical Bayes (Kiefer-Wolfowitz)
procedure substantially outperforms the others and this advantage increases with
degree of separation of the signal from the zeros.

2 3 4 5 6 7
BL 299 386 424 450 474 493
DL(1/n) 307 354 271 205 183 169
DL(1/2) 368 679 671 374 214 160
HS 268 316 267 213 193 177
EBMW 324 439 306 175 130 123
EBKM 207 225 151 78 45 38

Table 4. MSE based on 100 replications for the first four rows and on
1000 replications for the last two rows

In contrast to all the other procedures considered above, the Bayes rule that emerges
from the Kiefer-Wolfowitz estimator of the mixing distribution, i.e. EBKM, places
no special significance on the notion of “sparsity,” or at least none on the special
status of the number zero. All of the other procedures purport to know that most
of the θi’s are zero, and the simulation designs justify the confidence placed on this
“prior” knowledge. For Kiefer-Wolfowitz zero is just another number, indeed the
Kiefer-Wolfowitz estimator of the mixing distribution is equivariant to shifts of sample
location. Thus, if we were to shift our simulations from mixtures θi ∼ αδ0 + (1 −
α)δθa to αδb + (1 − α)δb+θa , we would obtain the same MSE’s for EBKM while the
other procedures would suffer increased losses for any b 6= 0. Of course, zero, is
a natural hypothesis in many applications and it would be entirely reasonable to
consider informative priors/penalties that nudged the Kiefer-Wolfowitz MLE back
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toward zero. A further advantage, however, of the original Kiefer-Wolfowitz approach
is that it requires no preliminary tuning parameter elicitation/selection. It may be
objected that the discretization of the convex optimization problem underlying the
Kiefer-Wolfowitz method requires a choice of a grid for mass points of the mixing
distribution, and the optimization itself requires a convergence tolerance. But in my
experience these choices are quite benign, a few hundred equally spaced grid values
and a convergence tolerance like ε = 10−9 ensure highly accurate solutions to what
is, after all, a convex problem.

It is perhaps also worth noting in view of recent discussions of the tradeoff between
computational difficulty and statistical efficiency that although the first of the forego-
ing experiments was conducted with R code made available by Ryan Martin, I found
that the Gibbs procedure as provided could be significantly speeded up by a bit of
vectorization. Thus, in the remaining experiments results for the EBMW estimator
are based on the vectorized version. The EBKM procedure employs the default GLmix
function from the REBayes package, Koenker (2013), for the R language R Core Team
(2013). Code to reproduce the experimental results reported above is available from
http://www.econ.uiuc.edu/~roger/research/ebayes/ebayes.html.

2. Some Oracle Comparisons

It would be natural to wonder at this point whether the results reported above
are too good to be true. An obvious benchmark would be the performance of the
Bayes rule based on the unknown mixing distribution function F . In the simulations
settings we have already considered there are a fixed number of non-zero observations,
but for the oracle comparisons we consider priors with a multinomial number of non-
zeros with expected frequencies equal to the fixed frequencies imposed in the earlier
simulations.

In Tables 5, 6 and 8 below the oracle knows exactly the value of θa and the expected
number of θi 6= 0; a smarter oracle might be assumed to know the θa and the actual
number of θi 6= 0, but this formulation yields essentially similar results. In Table 7
where, like Table 3, the non-null θi’s are normally distributed around a θa, the oracle
is assumed to know only the mean, θa.

Using this modified schema for each of our previous simulation designs we report
in Tables A5-8 a comparison of performance of the EBKM estimator with the oracle
estimator based on the known F distribution corresponding to each of the designs in
Tables 1-4. Not surprisingly, the performance of the EBKM estimator is quite similar
to its performance with fixed proportions. The oracle estimator is consistently better,
but only by a relatively small margin. These results strongly support the convergence
result for relative Bayes risk established in Jiang and Zhang (2009).
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s = 10 s = 20 s = 40 s = 80
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

Oracle 11 35 10 1 15 45 14 1 24 60 17 1 37 84 24 2
EBKM 15 40 15 6 20 51 20 7 28 66 23 7 42 90 30 9

Table 5. MSE based on 1000 replications

s = 25 s = 50 s = 100
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Oracle 9 25 29 19 9 16 43 46 30 14 27 66 68 43 19
EBKM 10 28 32 22 11 19 46 49 33 17 30 69 71 46 22

Table 6. MSE based on 1000 replications

s = 25 s = 50 s = 100
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Oracle 36 60 69 59 41 64 100 112 97 70 109 161 178 154 114
EBKM 41 66 76 66 49 70 107 120 105 78 116 169 187 163 124

Table 7. MSE based on 1000 replications

2 3 4 5 6 7
Oracle 171 189 126 62 33 27
EBKM 180 198 135 71 42 37

Table 8. MSE 1000 replications

3. Envoi

A reviewer has noted that the theory developed by Jiang and Zhang (2009) for
the adaptive minimaxity of the Bayes risk of Kiefer-Wolfowitz procedures excludes
settings for `p classes with p = 0. For these “nearly black” classes – to use the
terminology of Johnstone and Silverman (2004) – with,

`0(η) = {θ = (θ1, · · · , θn) | n−1

n∑
i=1

I(θi 6= 0) < η}

and typifying the experimental settings employed here, little is presently known. I
would like to think that the foregoing experimental results might encourage others to
explore these questions further.
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