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Abstract. A proposal of van der Vaart (1996) for an adaptive estimator of a
location parameter from a family of normal scale mixtures is explored. Recent
developments in convex optimization have dramatically improved the computational
feasibility of the Kiefer and Wolfowitz (1956) nonparametric maximum likelihood
estimator for general mixture models and yield an effective strategy for estimating
the efficient score function for the location parameter in this setting. The approach
is extended to regression and performance is evaluated with a small simulation
experiment.

1. Introduction

The Princeton Robustness Study, Andrews, Bickel, Hampel, Huber, Rogers, and
Tukey (1972), arguably the most influential simulation experiment ever conducted in
statistics, compared performance of a 68 distinct location estimators focusing almost
exclusively scale mixtures of Gaussian models. While such scale mixtures do not
constitute an enormous class, see for example Efron and Olshen (1978), they are con-
venient for several reasons: their symmetry ensures a well-defined location estimand,
their unimodality affirms Tukey’s dictum that “all distributions are normal in the
middle,” and probably most significantly, conditional normality facilitates some nice
Monte-Carlo tricks that lead to improvements in simulation efficiency.

A prototypical problem is the Tukey contaminated normal location model,

(1) Yi = α + ui

with iid ui from the contaminated normal distribution, Fε,σ(u) = (1 − ε)Φ(u) +
εΦ(u/σ). We would like to estimate the center of symmetry, α, of the distribution
of the Yi’s. Yet we do not know ε, nor the value of σ; how should we proceed? Of
course we could adopt any one of the estimators proposed in the Princeton Study, or
one of the multitude of more recent proposals. But we are feeling greedy, and would
like to have an estimator that is also asymptotically fully efficient.
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2 Adaptive Estimation for Scale Mixtures

The Tukey model is a very special case of a more general Gamma mixture model
in which we have (1), and the u2i ’s are iid with density,

g(v) =

∫ ∞
0

γ(v|θ)dF (θ)

where θ = σ2, and γ is the χ2(1) density with free scale parameter θ,

γ(v|θ) =
1

Γ(1/2)
√

2θ
v−1/2 exp(−v/(2θ))

Our strategy will be to estimate this mixture model nonparametrically and employ
it to construct an adaptive M-estimator for α. This strategy may be viewed as an
example of the general proposal of van der Vaart (1996) for constructing efficient
MLEs for semiparametric models.

2. Empirical Bayes and the Kiefer-Wolfowitz MLE

Given iid observations, V1, · · · , Vn, from the density,

g(v) =

∫ ∞
0

γ(v|θ)dF (θ)

we can estimate F and hence the density g by maximum likelihood. This was first
suggested by Robbins (1951) and then much more explicitly by Kiefer and Wolfowitz
(1956). It is an essential piece of the empirical Bayes approach developed by Robbins
(1956) and many subsequent authors. The initial approach to computing the Kiefer-
Wolfowitz estimator was provided by Laird (1978) employing the EM algorithm,
however EM is excruciatingly slow. Fortunately, there is a better approach that
exploits recent developments in convex optimization.

The Kiefer-Wolfowitz problem can be reformulated as a convex maximum likelihood
problem and solved by standard interior point methods. To accomplish this we define
a grid of values, {0 < v1 < · · · < vm <∞}, and let F denote the set of distributions
with support contained in the interval, [v1, vm]. The problem,

max
f∈F

n∑
i=1

log(
m∑
j=1

γ(Vi, vj)fj),

can be rewritten as,

min{−
n∑
i=1

log(gi) | Af = g, f ∈ S},

where A = (γ(Vi, vj)) and S = {s ∈ Rm|1>s = 1, s ≥ 0}. So fj denotes the estimated

mixing density estimate f̂ at the grid point vj, and gi denotes the estimated mixture
density estimate, ĝ, evaluated at Vi.

This is easily recognized as a convex optimization problem with an additively sep-
arable convex objective function subject to linear equality and inequality constraints,
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hence amenable to modern interior point methods of solution. For this purpose, we
rely on the Mosek system of Andersen (2010) and its R interface, Friberg (2012).
Implementations of all the procedures described here are available in the R package
REBayes, Koenker (2012). For further details on computational aspects see Koenker
and Mizera (2014).

Given a consistent initial estimate of α, for example as provided by the sample
median, the Kiefer-Wolfowitz estimate of the mixing distribution can be used to
construct an estimate of the optimal influence function, ψ̂, that can be used in turn
to produce an asymptotically efficient M-estimator of the location parameter. More
explicitly, we define our estimator, α̂n, as follows:

(1) Preliminary estimate: α̃ = median(Y1, · · · , Yn)

(2) Mixture estimate: f̂ = argmaxf∈F
∑n

i=1 log(
∑m

j=1 γ(Yi − α̃, vj)fj),
(3) Solve for α̂ such that ψ̂(Yi − α) = 0, where ψ̂(u) = (log ĝ(u))′, and ĝ(u) =∫

γ(u, v)dF̂ (v).

Theorem 1. (van der Vaart (1996)) For the Gaussian scale mixture model (1) with
F supported on [v1, vm], the estimator α̂ is asymptotically efficient, that is,

√
n(α̂n −

α) ; N (0, 1/I(g)), where I(g) is the Fisher information for location of the density,
g(u) =

∫
γ(u, v)dF (v).

This result depends crucially on the orthogonality of the score function for the
location parameter with that of the score of the (nuisance) mixing distribution and
relies obviously on the symmetry inherent in the scale mixture model. In this way
it is closely related to earlier literature on adaptation by Stein (1956), Stone (1975),
Bickel (1982) and others. But it is also much more specialized since it covers a much
smaller class of models. The restriction on the domain of F could presumably be
relaxed by letting v1 → 0 and vm → ∞ (slowly) as n → ∞. From the argument
for the foregoing result in van der Vaart it is clear that the location model can be
immediately extended to linear regression which will be considered in the next section.

3. Some Simulation Evidence

To explore the practical benefits of such an estimator we consider two simple sim-
ulation settings: the first corresponds to our prototypical Tukey model in which the
scale mixture is composed of only two mass points, and the other is a smooth mixture
in which scale is generated as

√
χ2
3/3, so the Yi’s are marginally Student t on three

degrees of freedom. We will consider the simple bivariate linear regression model,

Yi = β0 + xiβ1 + ui

where the ui’s are iid from the scale mixture of Gaussian model described in the
previous section. The xi’s are generated iidly from the standard Gaussian distribution,
so intercept and slope estimators for the model have the same asymptotic variance.
The usual median regression (least absolute error) estimator will be used as an initial
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n LAE LSE Adaptive
100 1.756 1.726 1.308
200 1.805 1.665 1.279
400 1.823 1.750 1.284
800 1.838 1.753 1.304
∞ 1.803 1.800 1.256

Table 1. MSE scaled by sample size, n, for Tukey scale mixture of normals

estimator for our adaptive estimator and we will compare performance of both with
the ubiquitous least squares estimator.

3.1. Some Implementation Details. Our implementation of the Kiefer-Wolfowitz
estimator requires several decisions about the grid v1, · · · , vm. For scale mixtures
of the type considered here it is natural to adopt an equally spaced grid on a log
scale. I have used m = 300 points with v1 = log(max{0.1,min{r1, · · · , rn}}) and
vm = log(max{r1, · · · , rn}). Bounding the support of the mixing distribution away
from zero seems to be important, but a corresponding upper bound on the support
has not proven to be necessary.

Given an estimate of the mixing distribution, F̂ , the score function for the efficient
M-estimator is easily calculated to be,

ψ̂(u) = (− log ĝ(u))′ =

∫
uϕ(u/σ)/σ3dF̂ (σ)∫
ϕ(u/σ)/σdF̂ (σ)

.

We compute this estimate again on a relatively fine grid, and pass a spline repre-
sentation of the score function to a slightly modified version of the robust regression
function, rlm() of the R package MASS, Venables and Ripley (2002), where the final
M-estimate is computed using iteratively reweighted least squares.

3.2. Simulation Results. For the Tukey scale mixture model (1) with ε = 0.1 and
σ = 3 mean and median regression have essentially the same asymptotic variance
of about 1.80, while the efficient (MLE) estimator has asymptotic variance of about
1.25. In Table 1 we see that the simulation performance of the three estimators is
in close accord with these theoretical predictions. We report the combined mean
squared error for intercept and slope parameters scaled by the sample size so that
each row of the table is comparable to the asymptotic variance reported in the last
row.

It seems entirely plausible that the proposed procedure, based as it is on the Kiefer-
Wolfowitz nonparametric estimate of the mixing distribution, would do better with
discrete mixture models for scale like the Tukey model than for continuous mixtures
like the Student t(3) model chosen as our second test case. Kiefer-Wolfowitz delivers
a discrete mixing distribution usually with only a few mass points. Nevertheless,
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n LAE LSE Adaptive
100 1.893 2.880 1.684
200 1.845 2.873 1.579
400 1.807 2.915 1.540
800 1.765 2.946 1.524
∞ 1.851 3.000 1.500

Table 2. MSE scaled by sample size, n, for Student t(3) mixture of normals

in Table 2 we see that the proposed adaptive estimator performs quite well for the
Student t(3) case achieving close to full asymptotic efficiency for sample sizes 400 and
800.

4. Conclusions

Various extensions naturally suggest themselves. One could replace the Gaussian
mixture model with an alternative; van der Vaart (1996) suggests the logistic as a
possibility. As long as one maintains the symmetry of the base distribution adaptivity
is still tenable, but symmetry, while an article of faith in much of the robustness liter-
ature, may be hard to justify. Of course, if we are only interested in slope parameters
in the regression setting and are willing to maintain the iid error assumption, then
symmetry can be relaxed as Bickel (1982) has noted.

The challenge of achieving full asymptotic efficiency while retaining some form of
robustness has been a continuing theme of the literature. Various styles of ψ-function
carpentry designed to attenuate the influence of outliers may improve performance
in small to modest sample sizes. Nothing, so far, has been mentioned about the evil
influence of outlying design observations; this too could be considered in further work.
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