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AbstractThere is an innate human tendency, one might call it the “league table
mentality,” to construct rankings. Schools, hospitals, sports teams, movies, and
myriad other objects are ranked even though their inherent multi-dimensionality
would suggest that – at best – only partial orderings were possible. We consider
a large class of elementary ranking problems in which we observe noisy, scalar
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is naturally formulated in the compound decision framework of Robbins’s (1956)
empirical Bayes theory, but it also exhibits close connections to the recent liter-
ature on multiple testing. The nonparametric maximum likelihood estimator for
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1. INTRODUCTION

In the wake of Wald’s seminal monograph on statistical decision theory there was a growing
awareness that the Neyman-Pearson testing apparatus was inadequate for many important sta-
tistical tasks. Ranking and selection problems featured prominently in this perception. Moti-
vated by a suggestion of Harold Hotelling, Bahadur (1950) studied selection of the best of sev-
eral Gaussian populations. Assuming that sample means were observed for each of K popu-
lations with means, θk and common variance, the problem of selecting the best population,
θ∗ = maxi{θ1, . . . , θK}, was formulated as choosing weights z1, · · · , zK to minimize,

L(θ, z) = θ∗ −
K∑
k=1

zkθk/
K∑
k=1

zk.

Bahadur showed that among “impartial decision rules,” i.e. permutation equivariant rules, it was
uniformly optimal to select only the population with the largest sample mean, that is to choose
z∗i = 1 if X̄i = max{X̄1, · · · , X̄K} and z∗i = 0 otherwise, thereby clearly demonstrating that proce-
dures that did preliminary tests of equality of means and then chose zi > 0 for several or even
all of the populations when tests failed to reject were inadmissible. This finding was reinforced
in Bahadur and Robbins (1950) who focused on the two-sample setting but relaxed the common
variance assumption. In related work, Bechhofer (1954) and Gupta (1956) sought to optimize the
number of selected populations as well as their identities, see Gupta and Panchapakesan (1979)
and Bechhofer et al. (1968) for extensive reviews of subsequent developments.

Goel and Rubin (1977) pioneered the hierarchical Bayesian approach to selection that has
been adopted by numerous authors in the ensuing decades, early on by Berger and Deely (1988)
and Laird and Louis (1989). Portnoy (1982) showed that rankings based on best linear predictors
were optimal in Gaussian multivariate variance components models, but cautioned that depar-
tures from normality could easily disrupt this optimality. A notable feature of the hierarchical
model paradigm is the recognition that sample observations may exhibit heterogeneous preci-
sion; this is typically accounted for by assuming known variances for observed sample means.
As ranking and selection methods became increasingly relevant in genomic applications there
has been renewed interest in loss functions and linkages to the burgeoning literature on multiple
testing. Our perspective is informed by recent developments in the nonparametric estimation of
mixture models and its relevance for a variety of compound decision problems. This approach
seeks to reduce the reliance on Gaussian distributional assumptions that pervades the earlier
literature. As we have argued elsewhere, Gu and Koenker (2016), and Koenker and Gu (2019)
nonparametric empirical Bayes methods offer powerful complementary methods to more con-
ventional parametric hierarchical Bayes for multiple testing and compound decision problems.
Our primary objective in this paper is to elaborate this assertion for ranking and selection appli-
cations. Throughout we try to draw parallels and contrasts with the literature on multiple testing.
We will restrict our attention to settings where we observe a scalar estimate of an unobserved
latent quality measure accompanied by some measure of its precision, thereby evading more
complex multivariate settings, as in Boyd et al. (2012) who employ quantile regression methods.

An important motivation for revived interest in ranking and selection problems in econo-
metrics has been the influential work of Chetty and his collaborators on teacher evaluation and
geographic mobility in the U.S. This has stimulated the important recent work of Mogstad et al.
(2020) proposing new resampling methods for constructing confidence sets for ranking and se-
lection for a finite population. Armstrong et al. (2020) propose an innovative approach to the
construction of confidence intervals for classical, linear shrinkage, empirical Bayes estimators
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of the type used by Chetty. Recent work by Andrews et al. (2020) and Guo and He (2020) pro-
pose new confidence interval constructions for highly ranked individuals or treatments influ-
enced by recent contributions to the “inference after model selection” literature. In contrast to
these inferential approaches we focus instead on the complementary perspective of compound
decision making, constructing decision rules for selecting the best, or worst, populations sub-
ject to control of the expected number of elements selected and among those selected, the ex-
pected proportion of false discoveries. Rather than treating each selection decision in isolation,
the compound decision framework tries to exploit their common structure to produce improved
collective performance. Our approach is thus more closely aligned to that of Kline and Walters
(2021) who study decision rules for assessing employer discrimination from experiments involv-
ing fictitious job applications using closely related GMM methods for binomial mixture models.

Gilraine et al. (2020) study teacher value added estimation employing nonparametric maxi-
mum likelihood methods for estimating Gaussian mixture models as we advocate below. Their
analysis of data from both North Carolina and Los Angeles illustrates the advantages of more
flexible mixture models for latent value added. In contrast to the present work, they focus on
Bayes rules for posterior means that are often used to study teachers’ influence on students’
future outcomes. These more flexible nonparametric empirical Bayes methods improve upon
traditional linear shrinkage rules especially in the tails of the distribution where policy attention
is usually focused. This is a valuable, complementary perspective to the ranking and selection
objectives of the present work.

Before proceeding it is important to acknowledge that despite its universal appeal and appli-
cation there is something inherently futile about many ranking and selection problems as inti-
mated by our title. If the latent measure of true quality is Gaussian, as assumed in virtually all of
the econometric applications of the selection problem, and we wish to select the top ten percent
of individuals given that their true quality is contaminated by Gaussian noise, accurate selection
can be very challenging when the signal to noise ratio is low. We will see that conventional linear
shrinkage as embodied in the classical James-Stein formula can improve performance consider-
ably over naive maximum likelihood (fixed effects) procedures, and some further improvement
is possible by carefully tailoring the decision rules for tail probability loss. However, we find that
even oracle decision rules that incorporate complete knowledge of the precise distributional fea-
tures of the problem may not be able achieve better than about even odds that selected individ-
uals have latent ability above the selection thresholds when measurement error is comparable in
magnitude to Gaussian variability in latent ability. When the latent distribution of ability is heav-
ier tailed then selection becomes somewhat easier, and more refined selection rules are more
advantageous, but as we will show the selection problem still remains quite challenging.

Thus, a secondary objective of the paper is to add another cautionary voice to those who have
already questioned the reliability of existing ranking and selection methods. A critical overview
of the role of ranking and selection in public policy applications is provided by Goldstein and
Spiegelhalter (1996). It is widely acknowledged that league tables as currently employed can be
a pernicious influence on policy, a viewpoint underscored in Gelman and Price (1999). While
much of this criticism can be attributed to inadequate data collection and inherently low signal
to noise ratios, we believe that there is also room for methodological improvements.

Section 2 provides a brief overview of compound decision theory and describes nonparamet-
ric methods for estimation of Gaussian mixture models. Section 3 introduces a basic framework
for our approach to ranking and selection in a setting with homogeneous precision of the ob-
served measurements. In Section 4 we introduce heterogeneous precision of known form, and
Section 5 considers settings in which the joint distribution of the observed measurements and
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their precision determines the form of the ranking and selection rules. Optimal ranking and se-
lection rules are derived in each of these sections under the assumption that the form of the
mixing distribution of the unobserved, latent quality of the observations is known. Section 6 in-
troduces feasible ranking and selection rules and conditions under which they attain the same
asymptotic performance as the optimal rules. Section 7 then compares several feasible ranking
and selection methods, some that ignore the compound decision structure of the problem, some
that employ parametric empirical Bayes methods and some that rely on nonparametric empir-
ical Bayes methods. Finally, Section 8 describes an empirical application on evaluating the per-
formance of medical dialysis centers in the United States. Proofs of all formal results are collected
in Online Appendix A.
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2. THE COMPOUND DECISION FRAMEWORK

Robbins (1951) posed a challenge to the nascent minimax decision theory of Wald (1950): Sup-
pose we observe independent Gaussian realizations, Yi ∼ N (θi,1), i = 1, · · · , n with means θi
taking either the value +1 or−1. We are asked to estimate the n-vector θ = (θ1, · · · , θn) subject to
mean absolute error loss,

L(θ̂, θ) = n−1
n∑
i=1

|θ̂i − θi|.

When n= 1 Robbins shows that the minimax decision rule is δ(y) = sgn(y); in the least favorable
variant of the problem malevolent nature chooses ±1 with equal probability, and the optimal
response is to estimate θi = +1 when Yi is positive, and θi = −1 otherwise. Robbins goes on to
show that when n > 1, this rule remains minimax, each coordinate is treated independently as if
viewed in complete isolation. This is also the maximum likelihood estimator, and may be viewed
in econometrics terms as a classical fixed-effects estimator. But is it at all reasonable?

Doesn’t our sample convey information about the relative frequency of±1 that might poten-
tially contradict the pessimistic presumption of the minimax rule? If we happened to know the
unconditional probability, p= P(θi = 1), then the conditional probability that θ = 1 given Yi = y,
is given by,

P(θ = 1|y) =
pϕ(y− 1)

pϕ(y− 1) + (1− p)ϕ(y+ 1)
,

whereϕ denotes the standard Gaussian density. We should guess θ̂i = 1 if this probability exceeds
1/2, giving us the revised decision rule,

δp(y) = sgn(y− 1
2 log((1− p)/p)).

Each observed, yi, is modified by a simple logistic perturbation before computing the sign. Our
observed random sample, y = (y1, · · · , yn), is informative about p. We have the log likelihood,

`n(p|y) =

n∑
i=1

log(pϕ(yi − 1) + (1− p)ϕ(yi + 1)),

which could be augmented by a prior of some form, if desired, to obtain a posterior mean for
p and a plug-in Bayes rule for estimating each of the θi’s. The Bayes risk of this procedure is
substantially less than the minimax risk when p 6= 1/2 and is asymptotically equivalent to the
minimax risk when p = 1/2. This is the first principle of compound decision theory: borrow-
ing strength across an entire ensemble of related decision problems yields improved collective
performance.

What happens when we relax the restriction on the support of the θ’s and allow support on
the whole real line? We now have a general Gaussian mixture setting where the observed Yi’s
have marginal density given by the convolution, f = ϕ ∗G, that is,

f(y) =

∫
ϕ(y− θ)dG(θ),

and instead of merely needing to estimate one probability we need an estimate of an entire dis-
tribution function, G. Kiefer and Wolfowitz (1956), anticipated by an abstract of Robbins (1950),
established that the nonparametric maximum likelihood estimator (NPMLE),

Ĝ= argminG∈G{−
n∑
i=1

log f(yi) | f(yi) =

∫
ϕ(yi − θ)dG(θ)}
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where G is the space of probability measures on R, is a consistent estimator of G. This is an infi-
nite dimensional convex optimization problem with a strictly convex objective subject to linear
constraints. See Lindsay (1995) and Koenker and Mizera (2014) for further details on the geom-
etry and computational aspects of the NPMLE problem. Heckman and Singer (1984) pioneered
this approach in econometrics to argue that more flexible models of heterogeneity were needed
to get reliable estimates of duration dependence in survival models.

A powerful consequence of the seemingly innocuous condition that G must be non-
decreasing is that Ĝmust be atomic, a discrete distribution with fewer than n atoms. A secondary
consequence is that the NPMLE is “self-regularizing,” that is, the number, locations and mass of
the atoms are all determined jointly by the optimization without any recourse to auxiliary tuning
parameters. This is all a consequence of the classical Carathéodory theorem, but until quite re-
cently little was known about the precise growth rate of the number of atoms characterizing the
solutions, although empirical experience suggested it was quite slow. Polyanskiy and Wu (2020)
have recently established that for G with sub-Gaussian tails the cardinality of its support, i.e.
the number of atoms, of Ĝ, grows like O(logn). Thus, without any further penalization, maxi-
mum likelihood automatically selects a highly parsimonious Ĝ. This is in sharp contrast to the
notorious difficulties with maximum likelihood for finite dimensional mixture models, or with
Gaussian deconvolution employing Fourier methods.

Having seen that the upper bound on the complexity of the NPMLE Ĝ was only O(logn),
one might wonder whetherO(logn) mixtures are “complex enough” to adequately represent the
process that generated our observed data. Polyanskiy and Wu (2020) also address this concern:
they note that for any sub-Gaussian G, there exists a discrete distribution, Gk, with k =O(logn)

atoms, such that for fk = ϕ ∗ Gk, the total variation distance, TV (f, fk) = o(1/n), and conse-
quently there is no statistical justification for considering estimators of G whose complexity
grows more rapidly than O(logn). This observation is related to recent literature on generative
adversarial networks, e.g. Athey et al. (2019), that target models and estimators that, when sim-
ulated, successfully mimic observed data.

Other nonparametric maximum likelihood estimators for G are potentially also of interest.
Efron (2016) has proposed an elegant log-spline sieve approach that yields smooth estimates
of G; this has advantages especially from an inferential perspective, at the cost of reintroduc-
ing the task of selecting tuning parameters. An early proposal of Laird and Louis (1991) merged
parametric empirical Bayes estimation ofGwith an EM step that pulled the parametric estimate
back toward the NPMLE.

Given an estimate, Ĝ, it is straightforward to compute posterior distributions for each sam-
ple observation, or for that matter, for out-of-sample observations. In effect, we have estimated
the prior, as in Robbins (1951) binary means problem, but we have ignored the variability of Ĝ
when we adopt plug-in procedures that use it. This may account for the improved performance
of smoothed estimates of G in certain inferential problems, as conjectured in Koenker (2020)
and studied in more detail in Jiang and Zhang (2021). In the sequel we will compare ranking and
selection procedures based on various functionals of these posterior distributions. A leading ex-
ample is the posterior mean, but ranking and selection problems suggest other functionals of
potential interest.

If we are asked to estimate the θi’s subject to quadratic loss, and assuming standard Gaussian
noise, the Bayes rule is given by the posterior mean,

δ(y) = E(θ|y) = y+ f ′(y)/f(y). (2.1)

Efron (2011) refers to this as Tweedie’s formula, it appears in Robbins (1956) credited to M.C.K.
Tweedie. Appendix A of Gu and .Koenker (2016) provides an elementary derivation. The nonlin-
ear shrinkage term takes a particularly simple affine form whenG happens to be Gaussian, since
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in this case f is itself also Gaussian and the formula reduces to well-known linear shrinkage
variants of classical Stein rules.

We have focused in this brief overview on compound decision problems for Gaussian loca-
tion mixtures and posterior means, however the NPMLE is adaptable to a wide variety of other
mixture problems and other loss functions that imply other posterior functionals as we will see in
the next section. Efron (2019) and the discussion thereof offers a broader perspective on related
methods. Implementation of several NPMLE options are described in Koenker and Gu (2017)
and are available in the R package REBayes of Koenker and Gu (2015–2021).
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3. HOMOGENEOUS VARIANCES

Suppose that you are given real-valued measurements, yi : i = 1,2, · · · , n of some attribute like
test score performance for students or their teachers, survival rates for hospital surgical proce-
dures, etc., and are told that the measurements are exchangeable and approximately Gaussian
with unknown means θi and known variances σ2i assumed provisionally to take the same value
σ2. Your task, should you decide to accept it, is to choose a group of size not to exceed αn of the
elements with the largest θi’s. One’s first inclination might be to view each yi as the maximum
likelihood estimate for the corresponding θi, and select the αn largest observed values, but the
compound decision framework suggests that it would be better to treat the problems as an en-
semble. A second natural inclination might be to compute posterior means of the θ’s with some
linear or nonlinear shrinkage rule, rank them and select the α best, but we will see that this too
may be questionable.

3.1 Posterior Tail Probability

A natural alternative to ranking by the posterior means is to rank by posterior tail probabilities.
Let θα =G−1(1− α), and define, vα(y) := P(θ ≥ θα|Y = y), then ranking by posterior tail proba-
bility gives the decision rule,

δ(y) = 1{vα(y)≥ λα}

where the threshold λα is chosen so that P(vα(Y ) ≥ λα) = α. This ranking criterion has been
proposed by Henderson and Newton (2016) motivated as a ranking device for a fixed quantile
level α. It can be interpreted in multiple testing terms: 1− vα(y) is the local false discovery rate
of Efron et al. (2001) and Storey (2002), for testing the hypothesis H0 : θ < θα vs. HA : θ ≥ θα. To
see this, let hi be a binary random variable hi = 1{θi ≥ θα}, the loss function for observation i is

L(δi, θi) = λ1{hi = 0, δi = 1) + 1{hi = 1, δi = 0},

for a generic Lagrange multiplier, λ. The compound Bayes risk is,

E[

n∑
i=1

L(δi, θi)] = n[α+

∫
δ(y)[(1− α)λf0(y)− αf1(y)]dy]

where f0(y) = (1 − α)−1
∫ θα
−∞ϕ(y|θ,σ2)dG(θ) and f1(y) = α−1

∫+∞
θα

ϕ(y|θ,σ2)dG(θ), ϕ(y|θ,σ2) =

ϕ((y− θ)/σ)/σ. The Bayes rule for a fixed λ is

δ(yi) = 1
{
vα(yi)≥

λ

1 + λ

}
where vα(y) = αf1(y)/f(y) = P(θ ≥ θα|Y = y), and f(y) = (1 − α)f0(y) + αf1(y). Provided that
vα(y) is monotone in y a unique λ∗ can be found such that P(δ(Y ) = 1) = P(vα(Y ) ≥ λ∗/(1 +

λ∗)) = α.

LEMMA 3.1. For fixed α, assuming Eθ|Y [∇y logϕ(y|θ,σ2)|Y ]<∞, vα(y) is monotone in y and the
sets Ωα := {Y : vα(Y )≥ λα/(1 + λα)} have a nested structure, that is if α1 >α2, then Ωα2 ⊆Ωα1 .

Any implementation of such a Bayes rule requires an estimate of the mixing distribution, G,
or something essentially equivalent that would enable us to compute the local false discovery
rates vα(y) and the cut-off θα. The NPMLE, or perhaps a smoothed version of it, will provide a
natural Ĝ for this task.
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3.2 Posterior Tail Expectation and Other Losses

Rather than assessing loss by simply counting misclassifications we might consider weighting
such misclassifications by the magnitude of θ, for example,

L(δi, θi) =
n∑
i=1

(1− δi)1(θi ≥ θα)θi.

This presumes, of course, that we have centered the distribution G in some reasonable way, per-
haps by forcing the mean or median to be zero. Minimizing with respect to δ subject to the con-
straint that P(δ(Y ) = 1) = α leads to the Lagrangian,

min
δ

∫ ∫
(1− δ(y))1{θ ≥ θα}θϕ(y|θ,σ2)dG(θ)dy+ λ

[∫ ∫
δ(y)ϕ(y|θ,σ2)dG(θ)dy− α

]
which is equivalent to

min
δ

∫ ∫
1{θ ≥ θα}(θ− λ)ϕ(y|θ,σ2)dG(θ)dy

−
∫
δ(y)

[∫
1{θ ≥ θα}(θ− λ)ϕ(y|θ,σ2)dG(θ)−

∫
λ1{θ < θα}ϕ(y|θ,σ2)dG(θ)

]
dy.

Ignoring the first term since it doesn’t depend upon δ, the Oracle Bayes rule, becomes, choose
δ(y) = 1 if, ∫

1{θ ≥ θα}θϕ(y|θ,σ2)dG(θ)∫
ϕ(y|θ,σ2)dG(θ)

≥ λ,

with λ chosen so that P(δ(Y ) = 1) = α. Such criteria are closely related to expected shortfall cri-
teria appearing in the literature on risk assessment. Again, the NPMLE can be employed to con-
struct feasible posterior ranking criteria.

Several other loss functions are considered by Lin et al. (2006) including some based on
global alignment of the ranks. While intuitively appealing, such loss functions are considerably
less tractable than those we consider in the remainder of the paper.

3.3 False Discovery and the α-Level

Although our loss functions yield distinct criteria for ranking, their decision rules lead to the
same selections when the precision of the measurements is homogeneous. When variances are
homogeneous there is a global cut-off, ηα, and a decision rule, δα(Y ) = 1(Y ≥ ηα), determining
a common selection for all decision rules.

LEMMA 3.2. For fixed α and homogeneous variance, posterior mean, posterior tail probability and
posterior tail expectation all yield the same ranking and therefore the same selection.

The marginal false discovery rate for selection in our Gaussian mixture setting is,

mFDR= P(θ < θα|δα(Y ) = 1) = α−1
∫ θα

−∞
Φ((θ− ηα)/σ)dG(θ),
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FDR Wrongly Selected Correctly Selected
20% 40% 50% 60% 80% 20% 40% 50% 60% 80%

σ2 = 1 0.526 0.205 0.414 0.531 0.658 0.990 0.188 0.391 0.504 0.632 0.966

σ2 = 2 0.421 0.146 0.302 0.391 0.486 0.743 0.197 0.394 0.503 0.625 0.951

σ2 = 3 0.361 0.120 0.248 0.320 0.402 0.620 0.197 0.393 0.500 0.618 0.931

σ2 = 4 0.319 0.103 0.212 0.275 0.347 0.540 0.198 0.392 0.495 0.609 0.915

σ2 = 5 0.296 0.093 0.192 0.247 0.313 0.487 0.196 0.383 0.484 0.596 0.897

TABLE 3.1. FDR improves as the signal becomes more dispersed. In settings with standard Gaussian mea-
surement error and Gaussian distribution, G, for the θ’s, the variance of G can be interpreted as a signal-
to-noise ratio. As the variance of G increases selection becomes easier and FDR is reduced. The wrongly
selected units become more concentrated near the selection threshold. Columns 2-6 of the table report
quantiles of the wrongly selected units measured in standard deviations from the threshold. Columns
7-11 report corresponding quantiles for the correctly selected units.

The marginal false non-discovery rate is,

mFNR= P(θ ≥ θα|δα(Y ) = 0) = (1− α)−1
∫ ∞
θα

Φ((ηα − θ)/σ)dG(θ),

Figure 3.1 shows the false discovery rate, and false non-discovery rate for a range of capacity
constraints, α, when the mixing distribution, G, is standard Gaussian and σ2 = 1. In this low sig-
nal to noise ratio case, the cut-off value ηα is the (1−α) quantile ofN (0,2), and it is very difficult
to distinguish the meritorious from the merely lucky. For selecting individuals at the top α quan-
tile, the false discovery rate is alarmingly high especially for smaller α, implying that the selected
set may consist of a very high proportion of false discoveries. When α = 0.10 the proportion of
selected observations with θ below the threshold θα is slightly greater than 50 percent.

When the variance of the θ’s, the signal-to-noise ratio, increases from 1 to 5, the selection
problem becomes somewhat easier. This is reflected not only by the false discovery rate decreas-
ing from above one half to about a third, but is also reflected in results in Table 3.1 that show that
the wrongly selected individuals have their true values of θ clustered closer to the thresholding
value θα measured in terms of standard deviation.
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FIGURE 3.1. False Discovery Rates and False Non-Discovery Rates for a Standard Gaussian Mixing Distri-
bution.
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When σ2 = 1, we have about 50% falsely selected, and the θ’s among the correctly-selected
and the wrongly selected individuals are roughly symmetrically distributed around the thresh-
olding value. In such a case, even oracle decision rules that incorporate complete knowledge of
the precise distributional features of the problem may not be able to achieve better than about
even odds that selected individuals have latent ability above the selection thresholds when mea-
surement error is comparable in magnitude to Gaussian variability in latent ability. As variances
of alpha increases to 5 then selection becomes somewhat easier, only 1/3 among the selected are
falsely selected, and most (80%) of these θ values are within 0.5 standard deviations away from
the selection threshold.

It is perhaps worth stressing that at the margin, near the decision boundary, it will always
be difficult to distinguish true from false discoveries, but FDR measures the proportion of all
selections that are incorrect, not just those near the threshold. Other loss functions that penalize
in a more continuous way may be considered to reflect information in Table 3.1. For example,
losses that weight the classification error by the magnitude of the discrepancy between the latent
effect and the threshold could be considered. Such losses, however, make it more difficult to
incorporate conventional forms of error control.

Thus far we have implicitly assumed that the size of the selected set is predetermined by the
parameter α. Having established a ranking based on a particular loss function, we simply select a
subset of size dαne consisting of the highest ranked observations. In the next subsection we begin
to consider modifying this strategy by constraining the probability of false discoveries. This will
allow the size of the selected set to adapt to the difficulty of the selection task.

3.4 Guarding against false discovery

Recognizing the risk of false “discoveries” among those selected, we will consider an expanded
loss function,

L(δ,θ) =

n∑
i=1

hi(1− δi) + τ1

( n∑
i=1

{
(1− hi)δi − γδi

})
+ τ2

( n∑
i=1

δi − αn
)

(3.1)

where hi = 1{θi ≥ θα}. If we set τ1 to zero, then minimizing the expected loss leads to the
Bayes rule discussed in Section 3.1. On the other hand, if we set τ2 to zero, then minimiz-
ing expected loss leads to a decision rule that is equivalent to a multiple testing problem with
null hypothesis H0i : θi ≤ θα; the goal is to minimize the expected number of over-looked dis-
coveries subject to the constraint that the marginal FDR rate is controlled at level γ, that is,
E[
∑n
i=1(1− hi)δi]/E[

∑n
i=1 δi]≤ γ. When τ1 = 0, the risk can be expressed as,

Eθ|Y
[
L(δ,θ)

]
=

n∑
i=1

(1− δi)vα(Yi) + τ2

( n∑
i=1

δi − αn
)

where vα(yi) = P(θi ≥ θα|Yi = yi). Taking another expectation over Y , and minimizing over both
δ and τ2, leads to the decision rule,

δ∗i =

{
1, if vα(yi)≥ τ∗2
0, if vα(yi)< τ∗2 .

The Lagrange multiplier is chosen so that the constraint P(δi = 1)≤ α holds with equality:

τ∗2 = min{τ2 : P(vα(yi)≥ τ2)≤ α}
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Each selection improves the objective function by vα(yi), but incurs a cost of τ2. Since all se-
lections incur the same cost, we may rank according to vα(yi), selecting units until the capacity
constraint αn is achieved. Selection of the last unit may need to be randomized to exactly satisfy
the constraint, as we note below.

When τ2 = 0 the focus shifts to the marginal FDR, the ratio of the expected number of false
discoveries, to the expected number of selections. This is slightly different from the original FDR
as defined in Benjamini and Hochberg (1995). However, when n is large the two concepts are
asymptotically equivalent as shown by Genovese and Wasserman (2002). Our objective becomes,

Eθ|Y
[
L(δ,θ)

]
=

n∑
i=1

(1− δi)vα(Yi) + τ1

( n∑
i=1

{δi(1− vα(Yi))− γδi}
)
.

Taking expectations again over Y and minimizing over both δ and τ1 yields,

δ∗i =

{
1, if vα(yi)> τ∗1 (1− vα(yi)− γ)

0, if vα(yi)≤ τ∗1 (1− vα(yi)− γ)

and the Lagrange multiplier takes a value τ∗1 to make the marginal FDR constraint hold with
equality.

When both constraints are incorporated we must balance the power gain from more selec-
tions and the cost that occurs from both the capacity constraint and FDR control. The Bayes rule
solves,

min
δ

E
[ n∑
i=1

(1− δi)vα(yi)
]

+ τ1

(
E
[ n∑
i=1

{
(1− vα(yi))δi − γδi

}])
+ τ2

(
E
[ n∑
i=1

δi

]
− αn

)
.

Given the discrete nature of the decision function, this problem appears to take the form of a
classical knapsack problem, however following the approach of Basu et al. (2018) we will con-
sider a relaxed version of the problem in which units are selected sequentially until one or the
other constraint would be violated, with the final selection randomized to satisfy the constraint
exactly.
Remark. Given the Lagrangian form of our loss function it is natural to consider an optimiza-
tion perspective for the selection problem. Minimizing the expectation of the loss defined in
(3.1) is equivalent to minimizing P[δi = 0, θi ≥ θα] subject to the constraint that P[δi = 1, θi <

θα]/P[δi = 1]≤ γ and P[δi = 1]≤ α. So we are looking for a thresholding rule that minimizes the
expected number of missed discoveries subject to the capacity constraint and the constraint
that the marginal FDR rate of the decision rule is below level γ. This minimization problem is
also easily seen, from a testing perspective, to be equivalent to maximizing power of the decision
rule δ, P[δi = 1|θi ≥ θα], subject to the same two constraints.

PROPOSITION 3.3. For any pair, (α,γ) such that γ < 1− α, the optimal Bayes rule takes the form,
δ∗i = 1{vα(yi)≥ λ∗(α,γ)}where λ∗(α,γ) = vα(t∗) with t∗ = max{t∗1, t∗2},

t∗1 = min
{
t :

∫ θα

−∞
Φ̃((t− θ)/σ)dG(θ)∫ +∞

−∞
Φ̃((t− θ)/σ)dG(θ)

− γ ≤ 0
}
,

t∗2 = min
{
t :

∫ +∞

−∞
Φ̃((t− θ)/σ)dG(θ)− α≤ 0

}
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and Φ̃ denoting the survival function of a standard normal random variable.

Remark. The optimal cutoff t∗ depends on the data generating process and also the choice of
α and γ. When data is noisy, the FDR control constraint may be binding before the capacity
constraint is reached, and consequently the selected set may be strictly smaller than the pre-
specified α proportion. On the other hand, when the signal is strong, the FDR control constraint
is unlikely to bind before the capacity constraint is reached.

We have seen that when variances are homogeneous, the optimal selection rule thresholds
on Y , so it is clear then that any ranking that is based on a monotone transformation of Y will
lead to an equivalent selected set. We should also stress that we have focused on a null hypothesis
that depends on α, while the multiple testing literature, for example Efron et al. (2001), Sun and
Cai (2007) and Basu et al. (2018), typically focuses on the null hypothesis of H0i : θi = 0. When
variances are homogeneous, it doesn’t matter whether we use an α dependent null or the con-
ventional zero null, because the transformation based on the conventional null, P(θ > 0|Y = y),
is also a monotone function of Y , and therefore yields an equivalent decision rule. However,
when variances are heterogeneous, this invariance no longer holds; different transformations of
the pair (y,σ) lead to distinct decision rules that lead to distinct performance, and using the con-
ventional null hypothesis is no longer advisable for the ranking and selection problem as we will
show in the next section.
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4. HETEROGENEOUS KNOWN VARIANCES

The homogeneous variance assumption of the preceding section is unsustainable in most appli-
cations. Batting averages are accompanied by a number of “at bats” and mean test score perfor-
mances are accompanied by student sample sizes. In this section we will consider the expanded
model,

Yi ∼N (θi, σ
2
i ), and θi ∼G, σi ∼H, σi ⊥⊥ θi

We will assume that we observe σi, an assumption that will be relaxed in the next section.

4.1 Posterior Tail Probability

With the same alternative hypothesis as HA : θ ≥ θα, it is natural to consider the posterior tail
probability again, now as a function of the pair, (yi, σi),

vα(yi, σi) = P(θi ≥ θα|yi, σi) =

∫ +∞

θα

ϕ(yi|θ,σ2i )dG(θ)∫ +∞

−∞
ϕ(yi|θ,σ2i )dG(θ)

.

Solving the same decision problem with the loss function specified in (3.1), we have the con-
ditional risk,

Eθ|Y ,σ
[
L(δ,θ)

]
=

n∑
i=1

(1− δi)vα(Yi, σi) + τ1

( n∑
i=1

{δi(1− vα(Yi, σi))− γδi}
)

+ τ2

( n∑
i=1

δi − αn
)
.

Taking another expectation with respect to the joint distribution of the (Yi, σi)’s, the Bayes rule
solves

min
δ

E
[ n∑
i=1

(1− δi)vα(yi, σi)
]

+ τ1

(
E
[ n∑
i=1

{
(1− vα(yi, σi))δi − γδi

}])
+ τ2

(
E
[ n∑
i=1

δi

]
− αn

)
The optimal selection rule can again be characterized as a thresholding rule on vα(yi, σi).

PROPOSITION 4.1. For a pre-specified pair (α,γ) such that γ < 1−α, the Bayes rule takes the form,
δ∗(y,σ) = 1{vα(y,σ)≥ λ∗(α,γ)}where λ∗(α,γ) = max{λ∗1(α,γ), λ∗2(α)},

λ∗1(α,γ) = min
{
λ :

∫ ∫ θα

−∞
Φ̃((tα(λ,σ)− θ)/σ)dG(θ)dH(σ)∫ ∫ +∞

−∞
Φ̃((tα(λ,σ)− θ)/σ)dG(θ)dH(σ)

− γ ≤ 0
}

λ∗2(α) = min
{
λ :

∫ ∫ +∞

−∞
Φ̃((tα(λ,σ)− θ)/σ)dG(θ)dH(σ)− α≤ 0

}
and tα(λ,σ) defined as vα(tα(λ,σ), σ) = λ for all λ ∈ [0,1].

Remark. Note that although the thresholding value λ∗ does not depend on the value of σ, the
ranking does depend on σ. One way to see this is that since vα(y,σ) is monotone in y for all σ > 0,
the optimal rule is equivalent to 1{yi > tα(λ∗, σ)}, where tα(λ,σ) is a function of σ. For a fixed
value of λ∗, the selection region for Y depends on σ in a nonlinear way. Comparing individuals i
and j, it may be the case that yi > yj , but yj belongs to the selection region while yi does not. An
example to illustrate this appears below. It should also be emphasized that when variances are
heterogeneous, different loss functions need not lead to equivalent selections.
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4.2 The Conventional Null Hypothesis

The posterior tail probability criterion is motivated by viewing the ranking and selection prob-
lems as hypothesis testing while allowing the null hypothesis to be α dependent. The particular
construction of the null hypothesis turns out to be critical for the ranking exercise. In this sub-
section we present a simple example to illustrate that tail probability based on the conventional
null hypothesis of zero effect does not lead to a powerful ranking device. Consider data generated
from a three component normal mixture model,

Yi|σi ∼ 0.85N (−1, σ2i ) + 0.1N (0.5, σ2i ) + 0.05N (5, σ2i ), σi ∼ U [0.5,4] (4.1)

Instead of transforming the data by vα, we consider the transformation,

T(yi, σ
2
i ) = P(θi > 0|yi, σ2i ) =

∫ +∞

0
ϕ(yi|θ,σ2i )dG(θ)∫ +∞

−∞
ϕ(yi|θ,σ2i )dG(θ)

and rank individuals accordingly. This transformation corresponds to the procedure proposed in
Sun and McLain (2012), and is motivated for multiple testing problems under the conventional
null hypothesis H0 : θ ≤ 0. The decision rule δTi = 1{T(yi, σi)≥ λ} then chooses the cutoff value
λ that respects both the capacity constraint and the FDR control constraint for selecting the top
α proportion.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
5

10
15

σ

T
hr
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ho

ld

zeroNull
tailNull

FIGURE 4.1. Selection boundaries based on the model (4.1) with α = 0.05 and γ = 0.1. The solid black
curve corresponds to the boundary of the selection region based on transformation vα. The dash red
curve corresponds to the boundary of the selection region based on transformation T . Density of σ is
assumed to be uniform on the interval [0.5,4].

Figure 4.1 compares the selection region for the two ranking procedures with α = 5% and
marginal FDR control at level 10%. The solid black line corresponds to the selection boundary
using ranking based on transformation vα and the dashed red line corresponds to the selection
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boundary using ranking based on the transformation T. The black highlighted area below the
black selection boundary corresponds to a region where the ranking method based on T will
select but the ranking method based on vα does not. On the other hand, the blue highlighted
area corresponds to a region selected by vα, but not for T. The transformation T ranks those in
the black region higher than those in the blue region because although they have a relatively
smaller mean effect y, their associated variances are also smaller indicating stronger evidence
that such individuals have a positive θ than those located in the blue area. However, our task is to
find individuals with true effects, θi, in the upper tail. For α= 5%, we aim to select all individuals
with θ = 5, individuals in the black region present strong evidence that their true effect can not
be too large because their observed effect y is small and their associated variance is also small,
while those in the blue region, although their observed mean effects are associated with larger
variances offer reasonable evidence that their associated true effect θmay be large. This evidence
is not apparent in transformation T, but is captured in the transformation vα.

Indeed, the average power of ranking based on the two different transformation vα and T
differ significantly. Defining the power of the selection rule as β(δ) := P(θi ≥ θα, δi = 1)/P(θi ≥
θα), the proportion of true top α cases selected based on decision rule δ, then β(δT) = 39% and
β(δ∗) = 69%. Thus, although much of the literature relies on ranking and selection rules based on
some form of posterior means and conventional hypothesis testing apparatus we would caution
that such methods can be quite misleading and inefficient.

4.3 Nestedness of Selection Sets

If we were to relax the capacity constraint to allow a larger proportion, α1 > α0 be be selected,
while maintaining our initial false discovery control, we would expect that members selected un-
der the more stringent capacity constraint should remain selected under the relaxed constraint.
We now discuss sufficient conditions under which we obtain this nestedness of the selection sets
when using the posterior tail probability rule. This is a natural condition in applications like our
analysis of ranking and selection of dialysis centers especially because we would like to assign
“letter grades” to several several subgroups of the centers.

The optimal Bayes rule defines the selection set for each pair of (α,γ) as

Ωα,γ := {(y,σ) : vα(y,σ)≥ λ∗(α,γ)}

and when σ is known, vα(y,σ) is monotone in y as shown in Lemma 3.2 for each fixed σ, hence
the selection set can also be represented as

Ωα,γ = {(y,σ) : y ≥ tα(λ∗(α,γ), σ)}

It is also convenient for later discussion to define

ΩFDRα,γ : = {(y,σ) : vα(y,σ)≥ λ∗1(α,γ)}= {(y,σ) : y ≥ tα(λ∗1(α,γ), σ)}

ΩCα := {(y,σ) : vα(y,σ)≥ λ∗2(α)}= {(y,σ) : y ≥ tα(λ∗2(α), σ)}

which are respectively the selection sets when the false discovery rate constraint or the capacity
constraint is binding. It is easy to see that Ωα,γ = ΩFDRα,γ ∩ΩCα .

LEMMA 4.2. Let the density function of vα(yi, σi) be denoted as fv(v;α) and let

λ∗1(α,γ) = min
{
λ :

∫ ∫ θα

−∞
Φ̃((tα(λ,σ)− θ)/σ)dG(θ)dH(σ)∫ ∫ +∞

−∞
Φ̃((tα(λ,σ)− θ)/σ)dG(θ)dH(σ)

− γ ≤ 0
}
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with tα(λ,σ) defined as vα(tα(λ,σ), σ) = λ and Φ̃ be the survival function of the standard normal
random variable. If ∇α log fv(v;α) is non-decreasing in v, then for fixed γ, if α1 > α2, we have
λ∗1(α1, γ)≤ λ∗1(α2, γ).

Remark. The density function fv(v;α) can be viewed as a function of v indexed by the param-
eter α. An explicit form for fv(v;α) appears in Section 4.4 for the normal-normal model). The
condition imposed in Lemma 4.2 is equivalent to a monotone likelihood ratio condition, that is
that the likelihood ratio fv(v;α1)/fv(v;α2) is non-decreasing in v if α1 >α2.

COROLLARY 4.3. If the condition in Lemma 4.2 holds, then ΩFDRα2,γ ⊆ΩFDRα1,γ for any α1 >α2.

Remark. The condition in Lemma 4.2 is sufficient but not necessary for nestedness of ΩFDRα,γ .
Even when λ∗1(α1, γ) > λ∗1(α2, γ), we can still have tα1(λ∗1(α1, γ), σ) < tα2(λ∗1(α2, γ), σ) because
the function vα(Y,σ) depends on α, as does its inverse function tα.

LEMMA 4.4. Let λ∗2(α) be defined as in Proposition 4.1. If for any α1 > α2, tα1(λ∗2(α1), σ) ≤
tα2(λ∗2(α2), σ) for each σ, then ΩCα2

⊆ΩCα1
.

Remark. The monotonicity here coincides with the condition in Theorem 3 of Henderson and
Newton (2016), who demonstrate that it holds when G is Gaussian. However, it need not hold as
shown in our counter-example in Online Appendix C.

LEMMA 4.5. If ∇α log fv(v;α) is non-decreasing in v and the condition in Lemma 4.4 holds, then
for a fixed γ, the selection region has a nested structure: if α1 >α2 then Ωα2,γ ⊆Ωα1,γ .

4.4 Examples

In this section we consider several examples beginning with the simplest classical case in which
the θi constitute a random sample from the standard Gaussian distribution. This Gaussian as-
sumption on the form of the mixing distribution G underlies almost all of the empirical Bayes
literature in applied economics; it is precisely what justifies the linear shrinkage rules that are
typically employed.
Example. [Gaussian G] Consider the normal-normal model, where y|θ,σ2 ∼ N (θ,σ2) and θ ∼
N (0, σ2θ) and σ ∼ H with density function h(σ). The marginal distribution of y given σ2 is
N (0, σ2 + σ2θ) and the joint density of (y,σ) takes the form,

f(y,σ) =
1√

2π(σ2 + σ2θ)
exp

{
− y2

2(σ2 + σ2θ)

}
h(σ).

Given the normal conjugacy, the posterior distribution of θ|y,σ2 follows N (ρy, ρσ2) where ρ =

σ2θ/(σ
2
θ + σ2). The random variable v is thus a transformation of the pair (Y,σ2), defined as,

v = ψ(y,σ2) := P(θ ≥ θα|y,σ2) = Φ((ρy− θα)/
√
ρσ2).

For fixed σ2, ψ is monotone increasing in y and ψ−1(v) = θα/ρ+
√
σ2/ρΦ−1(v) with∇vψ−1(v) =√

σ2/ρ/ϕ(Φ−1(v)). The joint density of v and σ is thus,

g(v,σ) = f(ψ−1(v), σ)|∇vψ−1(v)|

=
1√

2π(σ2 + σ2θ)
exp

{
−

(θα/ρ+
√
σ2/ρΦ−1(v))2

2(σ2 + σ2θ)

} √
σ2/ρ

ϕ(Φ−1(v))
h(σ).
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Integrating out σ we have the marginal density of v,

fv(v;α) =

∫
1√

2π(σ2 + σ2θ)
exp

{
−

(θα/ρ+
√
σ2/ρΦ−1(v))2

2(σ2 + σ2θ)

} √
σ2/ρ

ϕ(Φ−1(ṽ))
dH(σ)

The capacity constraint is P(v ≥ λ∗2) = α, with cut-off value, λ∗2, satisfying,

α= P(v ≥ λ∗2) = 1−
∫

Φ
(
θα

√
σ2 + σ2θ

σ2θ
−Φ−1(1− λ∗2)

√
σ2/σ2θ

)
dH(σ).

To find λ∗1, we can use the formula provided in Proposition 4.1. A more direct approach is to rec-
ognize, see Section 6, that the FDR control constraint is defined as γ = E[(1− v)1{v ≥ λ∗1}]/P(v ≥
λ∗1), where the cut-off value λ∗1 is defined through

γ =

∫ 1

λ∗1

(1− v)fv(v;α)dv/

∫ 1

λ∗1

fv(v;α)dv.

Let λ∗ = max{λ∗1, λ∗2}, the selection region is then {(y,σ) : y ≥ tα(λ∗, σ)} with

tα(λ∗, σ) = θα/ρ−Φ−1(1− λ∗)
√
σ2/ρ.

Suppose we use the posterior mean of θ as a ranking device, so δPMi = 1{yρ ≥ ω∗} for some
suitably chosen ω∗ that guarantees both capacity and FDR control. For the capacity constraint,
the thresholding value solves,

1− α=

∫
P(yρ < ω∗2)dH(σ)

=

∫
Φ
(
ω∗2/(σ

2
θ

√
σ2θ + σ2)

)
dH(σ),

while FDR control requires a thresholding value that solves,

γ =

∫
P(y ≥ ω∗1/ρ, θ < θα)dH(σ)/

∫
P(y ≥ ω∗1/ρ)dH(σ)

=

∫ ∫
[ω∗

1/ρ,+∞)
(1− α)f0(y)dydH(σ)/

∫
1−Φ

(
ω∗1/(σ

2
θ

√
σ2θ + σ2

)
dH(σ),

with

f0(y) =
1

1− α
1√

2π(σ2θ + σ2)
exp

{
− y2

2(σ2θ + σ2)

}
Φ
( (θα − yρ)√

ρσ2

)
,

denoting the density of y under the null θ < θα. Setting ω∗ = max{ω∗1 , ω∗2}, the selection region is
then {(y,σ) : y ≥ ω∗/ρ}.

Figure 4.2 plots the selection boundaries for both constraints with θ ∼ N (0,1) and σ ∼
U [0.5,1]. With α = 0.05 and γ = 0.2, the FDR constraint is binding, but not the capacity con-
straint. In this example, if we only impose the capacity constraint to be 5 percent, even an Oracle
totally aware of G, will face a false discovery rate of nearly 52 percent. In other words more than
half of those selected to be in the right tail will be individuals with θ < θα rather than from the
intended θ ≥ θα group. This fact motivates our more explicit incorporation of FDR into the se-
lection constraints. We may recall that in the homogeneous variance Gaussian setting we saw in
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FIGURE 4.2. The left panel plots the selection boundaries for the normal-normal model with σ2θ = 1 and
α= 0.05 and γ = 0.2. The density of σ is assumed to be uniform on the range [0.5,1]. Selected units must
have (yi, σi) above the curves. The red curves correspond to the selection region boundaries with FDR
controlled at level 0.2; solid lines for posterior mean ranking and dash line for posterior tail probability
ranking. The black curves correspond to the selection boundaries with capacity control at level 0.05. The
middle and right panels illustrate the selected set from a realized sample of size 10,000. The grey circles
correspond to individuals selected by both the posterior tail probability rule and the posterior mean rule.
The green crosses depict individuals selected by the posterior mean rule but not the tail probability and
the red crosses indicate individuals selected by the tail probability rule, but not by the posterior mean
rule.

Figure 3.1 that FDR was also very high whenα is set at 0.05. Figure 4.2 also depicts the selected set
with a realized sample of 10,000 from the normal-normal model. With capacity constraint alone,
the posterior mean criteria favours individuals with smaller variances. When the FDR constraint
is implemented, with γ = 0.2, it becomes the binding constraint in this setting, both criteria be-
come more stringent and only a much smaller set of individuals are selected, and there is less
conflict in the selections. The corresponding selected sets are plotted in the right panel of Figure
4.2. When the variance parameter σ2θ in G is not observed, we can estimate it via the MLE based
on the marginal likelihood of Y . This leads to a generalized James-Stein estimator of the type
proposed in Efron and Morris (1973).
Example. [DiscreteG] Suppose θ ∼ 0.85δ−1 +0.1δ2 +0.05δ5. Then the marginal density of y given
σ2 takes the form,

f(y|σ2) =

∫
ϕ(y|θ,σ2)dG(θ)

=
(

0.85ϕ(y|1, σ2) + 0.1ϕ(y|2, σ2) + 0.05ϕ(y|5, σ2)).

And the random variable v is a transformation of the pair (y,σ2), defined as,

v = ψ(y,σ2) := P(θ ≥ θα|y,σ2) =

∫ +∞

θα

ϕ(y|θ,σ2)dG(θ)∫ ∞
−∞

ϕ(y|θ,σ2)dG(θ)

.

The capacity constraint leads to a thresholding rule on v such that P(v ≥ λ∗2) = α, while the FDR
control leads to a cutoff value, λ∗1 defined through γ = E[(1 − v)1{v ≥ λ∗1}]/P(v ≥ λ∗1). Let λ∗ =
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max{λ∗1, λ∗2}, the selection region is then defined by {(y,σ) : y ≥ tα(λ∗, σ)}, and can be found
easily numerically.
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FIGURE 4.3. The left panel plots the selection boundaries for the normal-discrete model with
θ ∼ G = 0.85δ−1 + 0.1δ2 + 0.05δ5 and α = 0.05 and γ = 0.2. The density of σ is uniform on the range
[0.5,4]. The red curves correspond to the selection region with FDR controlled at level 0.2, solid lines for
posterior mean ranking and dashed lines for posterior tail probability ranking. The black curves corre-
spond to the selection region with capacity control at level 0.05. The other panels are structured as in the
previous figure.

Figure 4.3 plots the selection boundaries for both constraints when θ follows this discrete
distribution. We again set α = 0.05 and γ = 0.2, so we would like to select all the individuals
associated with the largest effect size, {θ = 5}, while controlling the FDR rate below 20%. The
red curves again correspond to FDR control with the two ranking procedure, while the black
curves correspond to capacity control. For the two regions to overlap with α fixed at 0.05, we
must be willing to tolerate γ ≈ 37%. In this case, we see that the posterior probability ranking
procedure prefers individuals with larger variances, while the posterior mean ranking procedure
prefers smaller variances. Based on a realized sample of 10,000, Figure 4.3 again shows the se-
lected observations and once more we see that the posterior mean criteria favours individuals
with smaller variances, both under the capacity constraint and the FDR constraint. In contrast
to the normal-normal setting, now the FDR constraint is much less severe and allows us to select
considerably more individuals.
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5. HETEROGENEOUS UNKNOWN VARIANCES

Assuming that the σi’s are known, up to a common scale parameter, may be plausible in some
applications such as baseball batting averages, but it is frequently more plausible to adopt the
view that we are simply confronted with estimates of scale available perhaps from longitudinal
data. In such cases we need to consider the pairs, (yi, Si) as potentially jointly dependent random
variables arising from the longitudinal model,

Yit = θi + σiεit, εit ∼iid N (0,1), (θi, σ
2
i )∼G,

with sufficient statistics, Yi = T−1i

∑Ti
t=1 Yit and Si = (Ti − 1)−1

∑Ti
t=1(Yit − Yi)

2, for (θi, σ
2
i ).

Conditional on (θi, σ
2
i ), we have Yi|θi, σ2i ∼ N (θi, σ

2
i /Ti) and Si|σ2i is distributed as Gamma

with shape parameter ri = (Ti − 1)/2, scale parameter, σ2i /ri, and density function denoted as
Γ(Si|ri, σ2i /ri).

Given the loss function (3.1) and defining θα as α= P(θi ≥ θα) =
∫ ∫+∞

θα
dG(θ,σ2), the condi-

tional risk is,

Eθ|Y ,S
[
L(δ,θ)

]
=

n∑
i=1

(1− δi)vα(Yi, Si)

+ τ1

( n∑
i=1

{δi(1− vα(Yi, Si))− γδi}
)

+ τ2

( n∑
i=1

δi − αn
)

with

vα(yi, si) = P(θi ≥ θα|Yi = yi, Si = si)

=

∫ ∫ +∞

θα

Γ(si|ri, σ2i /ri)ϕ(yi|θ,σ2/Ti)dG(θ,σ2)∫ ∫
Γ(si|ri, σ2i /ri)ϕ(yi|θ,σ2/Ti)dG(θ,σ2)

.

Taking expectations with respect to (Y,S), the Bayes rule solves,

min
δ

E
[ n∑
i=1

(1− δi)vα(yi, si)
]

+ τ1

(
E
[ n∑
i=1

{
(1− vα(yi, si))δi − γδi

}])
+ τ2

(
E
[ n∑
i=1

δi

]
− αn

)
.

Before characterizing the Bayes rule any further, we should observe that when variances
σ2 are not directly observed, the tail probability vα(Y,S) may no longer have the monotonicity
property we have described above.

LEMMA 5.1. Consider the transformation vα(Y,S) = P(θ ≥ θα|Y,S], then for fixed S = s, the func-
tion vα(Y, s) may not be monotone in Y ; and for fixed Y = y, the function vα(y,S) may not be
monotone in S.

PROPOSITION 5.2. For pre-specified (α,γ) such that γ < 1 − α, the Bayes selection rule takes the
form

δ∗i = 1{vα(Y,S)≥ λ∗(α,γ)}

where λ∗(α,γ) = max{λ∗1(α,γ), λ∗2(α)}with

λ∗1(α,γ) = min
{
λ : E

[
(1− vα(Y,S)− γ)1{vα(Y,S)≥ λ}

]
≤ 0
}
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and

λ∗2(α) = min
{
λ : P(vα(Y,S)≥ λ)− α≤ 0

}
Based on the Bayes rule, the selected set is defined as

Ωα,γ = {(Y,S) : vα(Y,S)≥ λ∗(α,γ)}.

Remark. Note that for each prespecified pair (α,γ), Ωα,γ is just the λ∗(α,γ)-superlevel set of the
function vα(Y,S). For anyα1 >α2, nestedness of the selected sets would mean that the λ∗(α2, γ)-
superlevel set of the function vα2 must be a subset of the λ∗(α1, γ)-superlevel set of the function
vα1 . The construction and the form of the optimal selection rule may appear to be very similar
to the case where σ2i is observed. However, the crucial difference is that we no longer require
the independence between θ and σ2 in this section. In contrast, when σ2i is assumed to be di-
rectly observed, the independence assumption is critical for all the derivations. For instance, the
non-null proportion, defined as P(θi ≥ θα), must change for different values of σi if we allow the
distribution of θ to depend on σ.

5.1 A Conjugate Gaussian Example

Suppose we have balanced panel data yi1, . . . , yiT ∼ N (θ,σ2) with sample means Yi = 1
T

∑
t yit

and sample variances Si = 1
T−1

∑
t(yit − Yi)2. Further, suppose that G(θ,σ2) takes the normal-

inverse-chi-squared form, NIX(θ0, κ0, ν0, σ
2
0) =N (θ|θ0, σ2/κ0)χ−2(σ2|ν0, σ20). Integrating out σ2,

the marginal distribution of θ becomes a Student t distribution,

θ− θ0
σ0/
√
κ0
∼ tν0

where tν0 is the t-distribution with degree of freedom ν0. Therefore, the 1− α quantile of θ, de-
noted θα is simply,

θα = θ0 +
σ0√
κ0
F−1tν0

(1− α)

where F−1tν0
denotes the quantile function of tν0 .

Conjugacy of the distribution G implies that the posterior distribution of (θ,σ2|Y,S) follows
NIX(θT , κT , νT , σ

2
T ) =N (θ|θT , σ2T /κT )χ−2(σ2|νT , σ2T ) with

νT = ν0 + T

κT = κ0 + T

θT =
κ0θ0 + TY

κT

σ2T =
1

νT

(
ν0σ

2
0 + (T − 1)S +

Tκ0
κ0 + T

(θ0 − Y )2
)
.

Integrating out σ2, the marginal posterior of θ again follows a t-distribution,

θ− θT
σT /
√
κT
∼ tνT .

It is thus clear that the posterior mean of θ, is simply a linear function of Y and independent of
S,

E[θ|Y,S] = θT =
κ0θ0 + TY

κT
,
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and the posterior tail probability is given by,

vα(Y,S) = P(θ ≥ θα|Y,S) = P
( θ− θT
σT /
√
κT
≥ θα − θT
σT /
√
κT
|Y,S

)
= 1− FtνT

( θα − θT
σT /
√
κT

)
.

To illustrate this case, suppose θ0 = 0, κ0 = 1 , σ20 = 1 and ν0 = 6 and T = 9, it can be verified
that vα(Y,S) is in fact a monotone function of Y for each fixed S and any α > 0, hence in this
example we can invert the function vα(y, s) to obtain the level curves. The left panel of Figure 5.1
shows the level curves for vα(Y,S) and E(θ|Y,S) for α = 5%. It is clear that the posterior mean
is a constant function of S, while the posterior tail probability exhibits more exotic behaviour
with respect to S, especially for more extreme values of Y . If we fix S = s0, then vα(Y, s0) is an
increasing function of Y . On the other hand, fixing Y = y0, for small y0 implies that vα(y0, S) is a
increasing function of S, while for y0 large, vα(y0, S) becomes a decreasing function of S.

A capacity constraint of size α implies the thresholding rule,

P(vα(Y,S)≥ λ∗2) = α,

while FDR control at level γ leads to a cutoff value λ∗1 defined as

γ = E[(1− vα(Y,S))1{vα(Y,S)≥ λ∗1}]/P(vα(Y,S)≥ λ∗1).

The larger of the two thresholds, denoted λ∗ = max{λ∗1, λ∗2} defines the selection region based
on posterior tail probability ranking Ωα,γ = {(Y,S) : vα(Y,S) ≥ λ∗}. For α = 5% and γ = 10%,
the selection region based on the tail probability rule is {(Y,S) : vα(Y,S) ≥ 0.72}. The posterior
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FIGURE 5.1. The left panel shows level curves of the posterior mean (marked as red dashed lines) and
posterior tail probability (marked as black solid lines) for the normal model with (θ,σ2)∼NIX(0,1,6,1)

and panel time dimension T = 9. The right plot shows the boundary of the selection region based on
posterior mean ranking (marked as the red dashed line) and the posterior tail probability ranking (marked
as the solid black line) with α= 5% and γ = 10%.
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FIGURE 5.2. Selection set comparison for one sample realization from the normal model with
(θ,σ2)∼NIX(0,1,6,1) and panel time dimension T = 9: The left panel shows in grey circles the agreed
selected elements by both the posterior mean and posterior tail probability criteria under the capacity
constraint, extra elements selected by the posterior mean are marked in green and extra elements se-
lected by the posterior tail probability rule are marked in red. The right panel shows the comparison of
the selected sets under both the capacity and FDR constraint with α= 5% and γ = 10%.

mean ranking is defined as {(Y,S) : E[θ|Y,S]≥ 2.2}. These selection boundaries are depicted as
the red dashed line and black solid line respectively in the right panel of Figure 5.1. In this case,
the FDR constraint binds. If only the capacity constraint were in place, we would have a cutoff
for tail probability at 0.40 and the cutoff for the posterior mean at 1.84. Figure 5.2 further shows
the comparison of the selected set based on a sample realization from the model.

In Online Appendix B we consider a more complex bivariate discrete example that illustrates
somewhat more exotic behavior of the decision boundaries and compares performance of sev-
eral different ranking and selection rules.

5.2 Variants of the unknown variance model

We have assumed that the only scale heterogeneity is driven by σi in the above model, but often
there may be more heteroskedasticity that should be allowed in εit. Here we consider a variant
where

Yit = θi + σiεit, εit ∼N (0,1/wit), (θi, σ
2
i )∼G.

We will assume that wit ∼ H are known quantities and are independent from (θi, σ
2
i ). Denot-

ing wi =
∑Ti
t=1wit, the sufficient statistics now take the form Yi =

∑Ti
t=1witYit/wi and Si =

(Ti − 1)−1
∑Ti
t=1(Yit − Yi)2. In Gu and Koenker (2017) we have illustrated this formulation for

predicting baseball batting averages; in that setting “at bats” for player i in year t are given by
the wit, but there is still some player specific heterogeneity in the σi’s representing consistency
of batting performance. It is easy to show that Yi|θi, σ2i ∼N (θi, σ

2
i /wi) and Si|σ2i follows Gamma

distribution with shape parameter ri = (Ti − 1)/2 and scale parameter σ2i /ri. The decision rules
now become a function of the tuple (Yi, Si,wi), for instance the tail probability can be specified
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as

vα(yi, si,wi) = P(θi ≥ θα|yi, si,wi) =

∫ +∞

θα

f(yi|θ,σ2/wi)Γ(si|ri, σ2/ri)dG(θ,σ2)∫ +∞

−∞
f(yi|θ,σ2/wi)Γ(si|ri, σ2/ri)dG(θ,σ2)

.

and the posterior mean takes the form

E[θi|yi, si,wi] =

∫
θf(yi, si|θ,σ2,wi)dG(θ,σ2).

The threshold values under either the capacity or the FDR constraint can be worked out in a sim-
ilar fashion. For any ranking statistics δ(Yi, Si,wi) together with a decision rule 1{δ(Yi, Si,wi)≥
λ}, the capacity constraint requires choosing a thresholding value λ∗2(α) such that

α=

∫ ∫
1{δ(y, s,w)≥ λ∗2(α)}f(y, s|θ,σ2,w)dG(θ,σ2)dH(w),

while the thresholding value to control in addition the FDR rate under size γ requires solving for
λ∗1(α,γ) such that

γ =
P(δ(y, s,w)≥ λ∗1(α,γ);θ < θα)

P(δ(y, s,w)≥ λ∗1(α,γ))

which can be further represented as

γ =

∫ ∫
1{δ(y, s,w)≥ λ∗1(α,γ)}(1− α)f0(y, s|θ,σ2,w)dG(θ,σ2)dH(w)∫ ∫

1{δ(t, s,w)≥ λ∗1(α,γ)}f(y, s|θ,σ2,w)dG(θ,σ2)dH(w)

where f0(y, s|θ,σ2,w) is the density of (y, s) under the null hypothesis θ < θα.
We can again consider selection region as those plotted in Figure 5.1 and Figure B.1 to appre-

ciate how different decision criteria determines the selection. As soon as the ranking statistics
depends onw, the selection region of the thresholding rule 1{δ(y, s,w)≥ λ∗}will also depend on
the magnitude of w.
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6. ASYMPTOTIC ADAPTIVITY

The previous sections propose Bayes rules for minimizing the expected number of missed dis-
coveries subject to both capacity and FDR constraints under several modeling environments. In
each of these environments, the Bayes rule takes the form δ∗ = 1{vα ≥ λ∗}where vα is defined as
the posterior probability of θ ≥ θα conditional on the data. The thresholding value λ∗ is defined
to satisfy both the capacity and FDR constraints. The Bayes rule involves several unknown quan-
tities, in particular the vα’s and the optimal thresholding value, λ∗, that require knowledge on
the distribution of θi or the joint distribution of (θi, σ

2
i ) when the variances are latent variables.

For estimating this distribution of the latent variables, we propose a plug-in procedure that is
very much in the spirit of empirical Bayes methods pioneered by Robbins (1956). In this Section
we also establish that the resulting feasible rules achieve asymptotic validity and asymptotically
attain the same performance as the infeasible Bayes rule.

We begin by discussing properties of the Oracle procedure assuming that vα is known and
we only need to estimate the optimal thresholding value. We establish asymptotic validity of this
Oracle procedure and then propose a plug-in method for both vα and the thresholding value
thereby establishing the asymptotic validity of the empirical rule. Before presenting the formal
results, we introduce regularity conditions that will be required. We distinguish two cases de-
pending on whether the σ2i ’s are observed.

ASSUMPTION 1. 1. (Variances observed) {Yi, σ2i , θi} are independent and identically distributed
with a joint distribution with σ2i and θi independent. The random variables θi and σ2i have
positive densities with respect to Lebesgue measure on a compact set Θ ⊂ R and [σ2, σ2] re-
spectively for some σ2 > 0 and σ2 <+∞.

2. (Variance unobserved) Let Si be an individual sample variance based on T repeated mea-
surements and Yi be the sample means with T ≥ 4. Suppose further that {Yi, Si, θi, σi} are
independent and identically distributed and that the random variables {θi, σ2i } have a joint
distribution G with a joint density positive everywhere on its support.

6.1 Optimal thresholding

Whether σ2i is observed or estimated, the optimal thresholding value can be defined in a unified
manner by λ∗ = max{λ∗1, λ∗2} with

λ∗1 = inf{t ∈ (0,1),Hv(t)≥ 1− α}

λ∗2 = inf{t ∈ (0,1),Q(t)≤ γ}

where Hv denotes the cumulative distribution of either vα(yi, σi) or vα(yi, si), induced by the
marginal distribution of the data, either as the pair {yi, σi} when variances are observed or the
pair {yi, si} otherwise. Hence λ∗1 is the 1− α quantile of Hv .

The function Q(t) is defined as Q(t) = E[(1− vα)1{vα ≥ t}]/E[1{vα ≥ t}]. Its formulation re-
calls Proposition 5.2 and the existence of λ∗2 is guaranteed as long as α< 1− γ. The thresholding
value is also equivalent to those defined in Proposition 3.3 and Proposition 4.1. In particular,
the thresholding values t∗1 and t∗2 in Proposition 3.3 are cast in terms of Y directly and it is easy
to see λ∗j = vα(t∗j ) for j = 1,2 when variances are homogeneous. In a similar spirit, the explicit
formulae for λ∗1 and λ∗2 in Proposition 4.1 are a result of invoking the monotonicity of vα(y,σ)

with respect to y for each fixed value of σ. The function Q(t) is the mFDR of the procedure
δ = 1{vα ≥ t} for any α ∈ (0,1), and is monotonically decreasing in t. Monotonicity of Q(t) is
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crucial to justify this thresholding procedure insuring that either the capacity constraint or the
mFDR constraint must be binding. Cao et al. (2013) have observed that a sufficient condition for
monotonicity for a broad class of multiple testing procedures is that the ratio of densities under
the null and alternative of the test statistics employed for ranking be monotone and they discuss
the consequences of the violation of this condition. For the posterior tail probability criterion
this monotone likelihood ratio condition, as we will see, can be verified directly.

Recall that mFDR is defined as
∑n
i=1 P[δi = 1, θi < θα]/

∑n
i=1 P(δi = 1). It suffices to show that

P[δi = 1, θi < θα] = E[(1− vα,i)δi]. Since vα,i = P [θi ≥ θα|Di] = αf1(Di)/f(Di) where Di is the in-
dividual data being either {yi, σi} or {yi, si} depending on the model and f1 is the marginal den-
sity of the data when θi ≥ θα and f is the marginal density ofDi. Then it is clear that P[δi = 1, θi <

θα] = (1− α)
∫
1{vα,i ≥ t}f0(Di)dDi =

∫
1{vα,i ≥ t}(1− vα,i)f(Di)dDi = E[(1− vα,i)1{vα,i ≥ t}].

Then Q(t) =
∫ 1
t (1− v)hvdv/

∫ 1
t hvdv where hv is the density function of vα. Monotonicity of Q(t)

can be easily verified by showing that the derivative with respect to t of the right hand side quan-
tity is nonpositive.

6.2 Oracle Procedures

The only unknown quantity in the Oracle procedure is the thresholding value and we now dis-
cuss how to estimate it to achieve asymptotic validity. Hv and Q can be estimated by the follow-
ing quantities:

Hn(t) =
1

n

n∑
i=1

1{vα,i ≤ t}

Qn(t) =

n∑
i=1

(1− vα,i)1{vα,i ≥ t}

n∑
i=1

1{vα,i ≥ t}

and the associated thresholding values are then defined as λn = max{λ1n, λ2n}, with

λ1n = inf{t ∈ [0,1],Hn(t)≥ 1− α}

λ2n = inf{t ∈ [0,1],Qn(t)≤ γ}

THEOREM 6.1. (Asymptotic validity of the Oracle procedure) Under Assumption 1, the procedure
δi = 1{vα,i ≥ λn} asymptotically controls the false discovery rate below γ and the expected propor-
tion of rejections below α for any (α,γ) ∈ [0,1]2 and γ < 1− α when n→∞, more specifically

lim sup
n→∞

E
[ n∑
i=1

1{θi < θα, vα,i ≥ λn}

n∑
i=1

1{vα,i ≥ λn}
∨

1

]
≤ γ

lim sup
n→∞

E
[ 1

n

n∑
i=1

1{vα,i ≥ λn}
]
≤ α

6.3 Adaptive Procedures

In practise the posterior tail probability also involves the unknown quantity θα = G−1(1 − α)

that needs to be estimated. We propose a plug-in estimator in the spirit of the empirical Bayes
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method: estimating G by its nonparametric maximum likelihood estimator Ĝn and estimating
θα as its 1− α quantile.

Consistency of the nonparametric maximum likelihood estimator, Ĝn, was first proven by
Kiefer and Wolfowitz (1956) using Wald type arguments. A Hellinger risk bound for the associ-
ated marginal density estimate and adaptivity of Ĝn and a self-regularization property have been
recently established in Saha and Guntuboyina (2020) and Polyanskiy and Wu (2020). In particu-
lar, the following established result, stated here as an assumption, is crucial for establishing the
asymptotic validity of the adaptive procedure.

ASSUMPTION 2. The nonparametric maximum likelihood estimator Ĝn is strongly consistent for
G. That is, for all continuity points k of G, Ĝn(k)→ G(k) almost surely as n→∞. Furthermore,
the estimated marginal (mixture) density converges almost surely in Hellinger distance.

When variances are homogeneous or when variances are unknown but we have longitudinal
data so that we have a mixture model for the pair {Yi, Si}, the Hellinger convergence is estab-
lished in van de Geer (1993). When variances are heterogeneous but known, the Hellinger bound
for marginal density has been established recently in Jiang (2020).

The plug-in estimators for the posterior tail probability, vα(yi, σi) when variances are known
or vα(yi, si) when variances are unknown is then defined respectively as

v̂α(yi, σi) =

∫ +∞

θ̂α

ϕ(yi|θ,σ2i )dĜn(θ)/

∫ +∞

−∞
ϕ(yi|θ,σ2i )dĜn(θ)

v̂α(yi, si) =

∫ +∞

θ̂α

f(yi, si|θ,σ)dĜn(θ,σ2)/

∫ +∞

−∞
f(yi, si|θ,σ)dĜn(θ,σ2)

where f is the density function for (yi, si) which is a product of Gaussian and gamma densities.
Abbreviating the estimated posterior tail probability by v̂α,i, we mimic the Oracle procedure and
estimate the thresholding value by λ̂n = max{λ̂1n, λ̂2n}, where,

λ̂1n = inf{t ∈ [0,1] :
1

n

n∑
i=1

1{v̂α,i ≤ t} ≥ 1− α}

λ̂2n = inf{t ∈ [0,1] :

n∑
i=1

(1− v̂α,i)1{v̂α,i ≥ t}

n∑
i=1

1{v̂α,i ≥ t}
≥ γ}

THEOREM 6.2. (Asymptotic validity of adaptive procedure) Under Assumptions 1 and 2, the adap-
tive procedure δi = 1{v̂α,i ≥ λ̂n} asymptotically controls the false discovery rate below γ and the
expected proportion of rejections below α for any (α,γ) ∈ [0,1]2 with α< 1− γ when n→∞, more
specifically

lim sup
n→∞

E
[ n∑
i=1

1{θi < θα, v̂α,i ≥ λ̂n}

n∑
i=1

1{v̂α,i ≥ λ̂n}
∨

1

]
≤ γ



Submitted to Unknown Journal Ranking and Selection as Compound Decisions 29

lim sup
n→∞

E
[ 1

n

n∑
i=1

1
{
v̂α,i ≥ λ̂n

}]
≤ α

It is clear that given the Lagrangian formulation of the compound decision problem, it can be
viewed equivalently as a constrained optimization problem. See also the discussion in Remark
3.4. We seek to maximize power defined as β(t) := P(θi ≥ θα, δi = 1)/α subject to two constraints:
the first is the marginal FDR rate and the other is the selected proportion. For each fixed pair of
{α,γ}, the Bayes rule achieves the best power among all thresholding procedures that respect
the two constraints. The next theorem establishes that our feasible, adaptive procedure achieves
the same power as the oracle rule asymptotically. It is supported by the simulation evidence
presented in the next section. In practice we suggest convolution smoothing of the discrete Ĝ
as in Jiang and Zhang (2021) with a bandwidth slowly tending to zero with n. As they show, the
smoothed mixing distribution is also consistent, hence fulfilling Assumption 2 and therefore all
our adaptivity results.

THEOREM 6.3. Under Assumption 1 and 2, the adaptive procedure δi = 1{v̂α,i ≥ λ̂n} attains the
same power as the optimal Bayes rule asymptotically. In particular, as n→∞,

n∑
i=1

1{θi ≥ θα, v̂α,i ≥ λ̂n}

n∑
i=1

1{θi ≥ θα}

p→ β(λ∗)
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7. SIMULATION EVIDENCE

In this Section we describe two small simulation exercises designed to illustrate performance
of several competing methods for ranking and selection. As a benchmark for evaluating perfor-
mance we consider several Oracle methods that presume knowledge of the true distribution,
G, generating the θ’s as well as several feasible methods that rely on estimation of G. These are
contrasted with more traditional methods that are based on linear shrinkage rules of the Stein
type. The linear shrinkage rule is the posterior mean of θ under the assumption that G follows
a Gaussian distribution with unknown mean and variance parameters. This is the commonly
used estimator for ranking and selection in applied work, notably Chetty, Friedman and Rockoff
(2014a, 2014b) for teacher evaluation and Chetty and Hendren (2018) for studying intergenera-
tional mobility.

Typically the linear shrinkage estimator is used in the context of heterogeneous known vari-
ances, this will be the model we focus on in our simulation experiments. The linear shrinkage
formula defined in (2.1) easily adapts to the heterogeneous variances case and leads to the Jame-
Stein shrinkage rule with heterogeneous known variances. Efron and Morris (1973) introduced
some further modifications. As we have already demonstrated, when variances are heteroge-
neous, the linear shrinkage estimator provides a different ranking than the posterior tail proba-
bility rules. Further complications arise when we seek procedures that also control false discov-
ery. To estimate the false discovery rate for different thresholding values we requires knowledge
of G. If the Gaussian assumption on G underlying the linear shrinkage rules is misplaced, it may
lead to an inaccurate estimates of FDR, and consequently to procedures that fail to control for
false discovery.

Performance will be evaluated primarily on the basis of power, which we define as the pro-
portion of individuals whose true θi exceeds the cutoff θα = G−1(1 − α), who are actually se-
lected. This is the sample counterpart of P(δi = 1, θi ≥ θα)/P(θi ≥ θα). FDR is calculated as the
sample counterpart of P(δi = 1, θi < θα)/P(δi = 1), that is the proportion of selected individu-
als whose true θi falls below the threshold. While our selection rules are intended to constrain
FDR below the γ threshold, as in other testing problems they are not always successful in this
objective in finite samples so empirical power comparisons must be interpreted cautiously in
view of this. Nonetheless, asymptotic validity is assured by the results in Section 6. We compare
performance for three distinct α levels, {0.05,0.10,0.15} and three γ levels {0.05,0.10,0.15}.

7.1 The Student t Setting

Our first simulation setting focuses on the effect of tail behavior of the distribution on perfor-
mance of competing rules. For these simulations we take G to be a discrete approximation to
Student t distributions with degrees of freedom in the set {1,2,3,5,10}, and supported on the
interval [−20,20]. The scale parameters of the Gaussian noise contribution are independent and
uniformly distributed on the interval [0.5,1.5]. We report power performance for several alterna-
tive ranking and selection rules:

OTP Oracle Tail Probability Rule
OPM Oracle Posterior Mean Rule
Efron Efron Tail Probability Rule
KWs Kiefer-Wolfowitz Smoothed Tail Probability Rule
EM Efron and Morris (1973) Linear Shrinkage Rule

The KWs rule uses G̃= Ĝ ∗Kh, with biweight kernel K and bandwidth h equal to half the mean
absolute deviation from the median of Ĝ. The Efron rule uses his suggested default of a natural
spline basis with five degrees of freedom and penalty parameter 0.1.
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FIGURE 7.1. Power Performance for Several Selection Rules with Student t Signal. Capacity and FDR con-
straints are indicated at the top of each panel in the Figure.

We illustrate the results in Figure 7.1, where we plot empirical power against degrees of
freedom of the t distribution for a selected set of values for the capacity constraint, α ∈
{0.05,0.10,0.15} and FDR constraint, γ ∈ {0.05,0.10,0.15} as indicated at the top of each panel
of the figure. The most striking conclusion from this exercise is the dramatic decrease in power
as we move toward the Gaussian distribution. At the Cauchy, t1, power is quite respectable for
all choices of α and γ, but power declines rapidly as the degrees of freedom increases, reenforc-
ing our earlier conclusion that the Gaussian case is extremely difficult. We would stress, in view
of this finding, that classical linear shrinkage procedures designed for the Gaussian setting are
poorly adapted to heavy tailed settings in which the reliability of selection procedures is poten-
tially greatest.

Careful examination of this figure also reveals that there is a slight advantage to the poste-
rior tail probability rules over the posterior mean procedures, both for the Oracle rules and for
our feasible procedures. There is surprisingly little sacrifice in power in moving from the Oracle
methods to the Efron or Kiefer-Wolfowitz rules. The Efron and Morris selection rule is very com-
petitive in the almost Gaussian, t10 setting but sacrifices considerable power in the lower degrees
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of freedom settings due to the misspecification of the distribution G and consequent inaccurate
estimation of the false discovery rate.

7.2 A Teacher Value-Added Setting

Our second simulation setting is based on a discrete approximation of the data structure em-
ployed in Gilraine et al. (2020) to study teacher value-addded methods. Several longitudinal
waves of student test scores from the Los Angeles Unified School District were combined in
this study. Here we abstract from many features of the full longitudinal structure of this data,
and focus instead on comparing performance of several selection methods. We maintain our
standard known variance model in which we observe Yi ∼N (θi, σ

2
i ) with θi’s drawn iidly from a

distribution G̃ estimated by Gilraine et al. (2020). This distribution was estimated from the full
longitudinal LA sample using the nonparametric maximum likelihood estimator of Kiefer and
Wolfowitz and then smoothed slightly by convolution with a biweight kernel and illustrated in
the left panel of Figure 7.2. Variances, in keeping with our hypothesis in Section 4, are drawn
from a distribution with density illustrated in the right panel of Figure 7.2. We focus on selection
from the left tail of the resulting distribution since it is those teachers whose jobs are endangered
by recent policy recommendations in the literature. (see for instance Hanushek (2011)).
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FIGURE 7.2. Densities of “Latent” (Mean) Ability and Standard Deviation for the Teacher Value Added
Simulations

We draw samples of size 10,000 from the foregoing distribution and compute performance
measures based on 100 replications. The fitted densities for this simulation exercise are based
on a sample of roughly 11,000 teachers, so the simulation sample size is chosen to be commen-
surate with this. In Table 7.1 we report power, FDR and the proportion selected by ten selection
rules. The Oracle rules, OTP and OPM, based ranking by the tail probability and posterior mean
criteria can be considered benchmarks for the remaining feasible procedures. Only the Oracle
procedures can be considered reliable from the perspective of adhering to the capacity and FDR
constraints. Consequently, some caution is required in the interpretation of the power compar-
isons since feasible procedures can exhibit good power at the expense of violating these con-
straints. This is analogous to the common difficulty in interpreting power in testing problems
when different procedures have differing size. When FDR is constrained to 5%, even the Ora-
cle is only able to select about half of the deserving individuals; OTP is consistently preferable
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to OPM as expected and power performance improves somewhat as the capacity constraint is
relaxed. Among the feasible G-modeling selection procedures, the Efron rules have good power
performance, but fail to meet the FDR constraints. We conjecture that somewhat less aggressive
smoothing than the default, df = 5, c0 = 0.1 might help to rectify this. In contrast the smoothed
Kiefer-Wolfowitz rules are somewhat overly conservative in meeting the FDR constraints and
might benefit from somewhat more aggressive smoothing.

Among the other procedures the linear posterior mean rule, LPM, as employed by Chetty,
Friedman and Rockoff (2014a, 2014b), and the linear posterior mean rule, EM, of Efron and Mor-
ris (1973) behave identically and exhibit somewhat erratic FDR control due to the misspecified
Gaussian assumption on G; this leads to weaker power performance. As a further comparison,
when the linear shrinkage rules are implemented without any FDR constraint, denoted LPM*
and EM* in the table, as they typically would be used in practice, the false discovery proportion
is considerably higher than the targeted γ. We also report the performance of MLE and P-value
rules, implemented without FDR control; again both yield a higher FDR rate, making it difficult
to evaluate their power performance.
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γ = 5% γ = 10%

α= 1% α= 3% α= 5% α= 10% α= 1% α= 3% α= 5% α= 10%

Power
OTP 0.394 0.520 0.554 0.626 0.494 0.625 0.661 0.733

OPM 0.365 0.492 0.521 0.599 0.484 0.620 0.654 0.731

ETP 0.435 0.540 0.580 0.657 0.540 0.647 0.688 0.759

KWTP 0.355 0.477 0.521 0.614 0.452 0.583 0.631 0.723

EPM 0.398 0.511 0.552 0.632 0.528 0.642 0.683 0.758

KWPM 0.325 0.447 0.492 0.588 0.440 0.576 0.624 0.719

LPM 0.162 0.341 0.418 0.689 0.246 0.460 0.542 0.805

LPM* 0.726 0.781 0.796 0.829 0.726 0.781 0.796 0.829

EM 0.162 0.341 0.418 0.689 0.246 0.460 0.542 0.805

EM* 0.726 0.781 0.796 0.829 0.726 0.781 0.796 0.829

MLE 0.699 0.768 0.787 0.824 0.699 0.768 0.787 0.824

P-val 0.374 0.478 0.535 0.635 0.374 0.478 0.535 0.635

FDR
OTP 0.050 0.050 0.051 0.051 0.103 0.103 0.100 0.101

OPM 0.047 0.050 0.051 0.053 0.103 0.101 0.101 0.102

ETP 0.070 0.059 0.061 0.064 0.128 0.115 0.117 0.119

KWTP 0.035 0.037 0.041 0.048 0.082 0.081 0.085 0.096

EPM 0.063 0.057 0.059 0.062 0.129 0.115 0.116 0.118

KWPM 0.038 0.040 0.045 0.051 0.081 0.084 0.087 0.097

LPM 0.016 0.025 0.033 0.083 0.031 0.048 0.061 0.151

LPM* 0.276 0.226 0.207 0.172 0.276 0.226 0.207 0.172

EM 0.016 0.025 0.033 0.083 0.031 0.048 0.061 0.151

EM* 0.276 0.225 0.207 0.172 0.276 0.225 0.207 0.172

MLE 0.304 0.238 0.216 0.177 0.304 0.238 0.216 0.177

P-val 0.627 0.526 0.467 0.365 0.627 0.526 0.467 0.365

Selected
OTP 0.004 0.016 0.029 0.066 0.006 0.021 0.037 0.082

OPM 0.004 0.015 0.027 0.063 0.005 0.021 0.036 0.081

ETP 0.005 0.017 0.031 0.070 0.006 0.022 0.039 0.086

KWTP 0.004 0.015 0.027 0.064 0.005 0.019 0.034 0.080

EPM 0.004 0.016 0.029 0.067 0.006 0.022 0.038 0.086

KWPM 0.003 0.014 0.026 0.062 0.005 0.019 0.034 0.080

LPM 0.002 0.010 0.022 0.075 0.003 0.014 0.029 0.095

LPM* 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100

EM 0.002 0.010 0.022 0.075 0.003 0.014 0.029 0.095

EM* 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100

MLE 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100

P-val 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100

TABLE 7.1. Comparison of Performance of Several Selection Rules for the Teacher Value Added Simula-
tion.
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8. RANKING AND SELECTION OF U.S. DIALYSIS CENTERS

Motivated by important prior work on ranking and selection by Lin, Louis, Paddock and Ridge-
way (2006, 2009) illustrated by applications to ranking U.S. dialysis centers, we have chosen to
maintain this focus to illustrate our own approach. Kidney disease is a growing medical problem
in the U.S and considerable effort has been devoted to data collection and evaluation of the rela-
tive performance of the more than 6000 dialysis centers serving the afflicted population. Centers
are evaluated on multiple criteria, but the primary focus of center ranking is their standardized
mortality rate, or SMR, the ratio of observed deaths to expected deaths for center patients. Al-
locating patients to centers is itself a complex task since patients may move from one center to
another in the course of a year. Centers also vary considerably in the mix of patients they serve.
Predictions from an estimated Cox proportional hazard model that attempts to account for this
heterogeneity are employed to estimate expected deaths for each center.

Our analysis focuses exclusively on the SMR evaluation of centers using longitudinal data
from 2004-18 as reported in University of Michigan Kidney Epidemiology and Cost Center (2009–
2019). We restrict attention to 3230 centers that have consistently reported SMR data over this
sample period. Observed deaths, denoted yit for center i in year t are conventionally modeled as
Poisson,

yit ∼ Pois(ρiµit)

where µit is center i’s expected deaths as predicted by the Cox model in year t and ρi is the cen-
ter’s unobserved mortality rate. We view µit as the effective sample size for the center, after ad-
justment for patient characteristics of the center. Center characteristics are expliciitly excluded
from the Cox model. The classical variance stabilizing transformation for the Poisson brings us
back to the Gaussian model,

zit =
√
yit/µit ∼N (θi,1/wit),

where θi =
√
ρi and wit = 4µit. Exchangeability of the centers yields a mixture model in which

the parameter θi, is effectively assumed to be drawn iidly from a distribution, G. The predictions
of expected mortality, µit, are assumed to be sufficiently accurate that we treatwit as known, and
independent of θi ∼G.

Over short time horizons like 3 years we assume that centers have a fixed draw of θi from G,
and thus we have sufficient statistics for θi, as,

Ti =
∑
t∈T

witzit/wi ∼N (θi,1/wi),

where the set T is the corresponding three year window andwi =
∑
twit. Given these ingredients

it is straightforward to construct a likelihood for the mixing distribution, G, and proceed with
estimation of it.

Our objective is then to select centers based on the posterior distributions of their θi’s. For
example, the posterior tail probability of center i is given by,

vα(ti,wi) = P(θi ≥ θα|ti,wi) =

∫ +∞

θα

f(ti|θ,wi)dG(θ)∫ +∞

−∞
f(ti|θ,wi)dG(θ)

,
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where f is the density function of Ti conditional on θi and wi. The capacity constraint requires
choosing a thresholding value λ∗2(α) such that

α=

∫ ∫
1{vα(t,w)≥ λ∗2(α)}ϕ(t|θ,w)dG(θ)dH(w),

which can be approximated by 1
n

∑
i 1{vα(ti,wi) ≥ λ∗2(α)}, and inverted to obtain the thresh-

old. Based on the discussion in Section 6, for the FDR constraint we chose a thresholding value
λ∗1(α,γ) such that

γ =

∫ ∫
1{vα(t,w)≥ λ∗1(α,γ)}(1− vα(t,w))f(t|θ,w)dG(θ)dH(w)∫ ∫

1{vα(t,w)≥ λ∗1(α,γ)}f(t|θ,w)dG(θ)dH(w)

(8.1)

where H is the marginal distribution of the observed portion of the variance effect. The numer-
ator can be approximated by 1

n

∑
i(1 − vα(ti,wi))1{vα(ti,wi) ≥ λ∗1(α,γ)} and the denominator

can be approximated by, 1
n

∑
i 1{vα(ti,wi)≥ λ∗1(α,γ)}.

The posterior mean ranking, in contrast, is based on,

δ(ti,wi) = E[θi|ti,wi] =

∫
θf(ti|θ,wi)dG(θ).

For the capacity constraint we choose a thresholding value C∗2 (α) such that

α=

∫ ∫
1{δ(t,w)≥C∗2 (α)}f(t|θ,w)dG(θ)dH(w).

For FDR constraint, we pick a thresholding value C∗1 (α,γ) such that

γ =
P(δ(t,w)≥C∗1 (α,γ);θ < θα)

P(δ(t,w)≥C∗1 (α,γ))
.

The right hand side of the FDR constraint can be approximated by

1

n

∑
i

1{δ(ti, si,wi)≥C∗1 (α,γ)}(1− vα(ti,wi))/
1

n

∑
i

1{δ(ti,wi)≥C∗1 (α,γ)},

while the right hand side of the capacity constraint can be approximated by

1

n

∑
i

1{δ(ti,wi)≥C∗2 (α)},

so C∗2 (α) is simply the empirical quantile of the δ(ti,wi).
We will compare the foregoing ranking and selection rules with more naive rules based upon

the Poisson and Gaussian MLEs,
∑
t∈T yit/

∑
t∈T µit, and Ti, respectively, a variant of the much

maligned P-value, as well as a linear shrinkage procedure. For these rules we do not attempt to
control for FDR since this is how they are typically implemented in practice.

To help appreciate the difficulty of the selection task, Table 8.1 reports estimated FDR rates
for several selection rules under a range of capacity constraints α for both right and left tail selec-
tion based on the data from 2004 - 2006. Right tail selection corresponds to identifying centers
whose mortality rate is higher than expected; left tail selection to centers with mortality lower
than expected. To estimate FDR we require an estimate of the distribution of distribution, G. For
this purpose we use the smoothed version of the Kiefer-Wolfowitz NPMLE introduced in Section
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α= 4% α= 10% α= 15% α= 20% α= 25%

Right Selection
MLE 0.544 0.481 0.436 0.403 0.352

Poisson-MLE 0.545 0.485 0.440 0.406 0.355

Pvalue 0.532 0.475 0.432 0.399 0.349

Efron-Morris 0.521 0.473 0.429 0.398 0.349

James-Stein 0.521 0.473 0.429 0.398 0.349

PM 0.517 0.472 0.428 0.398 0.349

TP 0.517 0.471 0.428 0.397 0.349

Left Selection
MLE 0.611 0.565 0.481 0.449 0.393

Poisson-MLE 0.600 0.561 0.478 0.448 0.393

Pvalue 0.620 0.565 0.477 0.450 0.393

Efron-Morris 0.595 0.552 0.472 0.445 0.391

James-Stein 0.595 0.552 0.472 0.445 0.391

PM 0.592 0.552 0.473 0.445 0.391

TP 0.589 0.550 0.471 0.444 0.390

TABLE 8.1. FDR Estimates: 2004-2006

2. The biweight bandwidth for the smoothing was chosen as the mean absolute deviation from
the median of the discrete NPMLE, Ĝ. The assessment of FDR reported in Table 8.1 reflects the
considerable uncertainty associated with the selected set of centers deemed by the capacity con-
straint to be in the upper (or lower) α quantile based upon our estimate of the distribution, G, of
unobserved quality.

The MLE rule ranks centers based on their Gaussian MLE, Ti, while the Poisson-MLE rule
ranks on

∑
t yit/

∑
t µit, which is the MLE of ρi from the Poisson model. P-value ranks centers

based on the variance stabilizing transformation from the Poisson model under the null hypoth-
esis ρi = 1 and ρi > 1 as the alternative hypothesis for right selection and ρi < 1 for the left selec-
tion. All these rules ignore the compound decision perspective of the problem entirely.

Among the compound decision rules, we consider the linear (James-Stein) shrinkage rule,
µ̂θ + (Ti − µ̂θ)σ̂

2
θ/(σ̂

2
θ + 1/wi) which is the posterior mean of θi based on the model Ti ∼

N (θi,1/wi) assuming that the latent variable θi follows a Gaussian distribution with mean µθ
and variance σ2θ . We also consider the Efron and Morris (1973) estimator which is a slight modi-
fication of the James-Stein estimator.

Finally, PM and TP are the posterior mean of θ and posterior tail probability of θ ≥ θα, for
right selection, and θ ≤ θα for left selection based on our estimated Ĝ. For both left and right tail
selection, as α increases, the FDR rate decreases, indicating the selection task becomes easier.
All rules that account for the compound decision perspective of the problem have slightly lower
FDRs than those that consider each center individually.

The Kidney Epidemiology and Cost Center (2018) assigns ratings of five stars down to one
star to centers in the proportions {0.22,0.30,0.35,0.09,0.04} respectively. We will abbreviate these
ratings to the conventional academic scale of A-F. To illustrate the conflict between the selection
criteria we plot in Figure 8.1 the centers selected for the grade A (Five star, which consists 22%
of the centers that suppose to have their true mortality rate being the lowest) category with and
without FDR control. Centers are characterized by pairs, (Ti,wi), consisting of their weighted
mean standarized mortality, Ti, and their estimate of the precision, wi, of these mortality es-
timates. In each plot the solid curves represent the decision boundaries of the selection rule
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under comparison. Centers with low mortality and relatively high precision appear toward the
northwest in each figure.

Panel (a) of the figure compares the posterior tail probability selection with the MLE, or fixed
effect, selection. The selection boundary for the MLE is the (red) vertical line, since the MLE
ignores the precision of the estimates entirely. The selection boundary for the tail probability
rule is indicated by the (blue) curve. A few centers with high precision excluded by the MLE rule
are selected by the TP rule, and on the contrary a few centers with low precision are selected by
the MLE rule, but excluded by the TP criterion. Panel (b) imposes FDR control with γ = 0.20 on
the TP selection with an estimated thresholding value implied by the FDR constraint using the
smoothed NPMLE. The MLE selection is the same as in Panel (a) without the FDR control. We
see that under TP rule with FDR control, the number of selected centers is reduced considerably.
Instead of selecting 711 centers allowed by the capacity constraint, it selects only 230 centers. In
comparison, the MLE rule under capacity constraint has an estimated FDR rate at 0.431. Panel (c)
compares selected centers by the TP rule with those selected by a James-Stein linear shrinkage
rule. Now the TP rule tolerates a few more low precision centers, while it is the James-Stein rule
that demands higher precision to be selected. Finally, in Panel (d) we again subject the TP rule
to FDR control of 20 percent, while the James-Stein rule continues to adhere only to the capacity
constraint. The TP boundary scales back substantially, suggesting that a large proportion of the
extra selections made by James-Stein linear shrinkage rules are likely to be false discoveries. In
fact, the estimated FDR rate of the James-Stein rule under just capacity constraint is also 0.431,
the same as that of the MLE rule.

Given the longtitudinal structure of the Dialysis data, it would be possible to consider the
models in Section 5 that allow for unobserved variance heterogeneity. We refrain from doing
so partly due to space considerations and because we are reluctant to assume stationarity of
random effects over longer time horizons.

8.1 Temporal Stability, Ranking and Selection

Given the longitudinal nature of the data, it is natural to ask, “How stable are rankings over time,
and isn’t there some temporal dependence in the observed data that should be accounted for?”
Perhaps surprisingly, the year-to-year dependence in the observed mortality is quite weak. In
Figure 8.2 we plot a histogram of estimated AR(1) coefficients for the 3230 centers; it is roughly
centered at zero and slightly skewed to the left. We do not draw the conclusion from this that
there is no temporal dependence in the observed yit, but only that there is considerable het-
erogeneity in the nature of this dependence with roughly as many centers exhibiting negative
serial dependence as those with positive dependence. Our approach of considering brief, 3-5
year, windows of presumed stability in center performance is consistent with the procedures of
the official ranking agency. In each of these windows we can compute a ranking according to one
of the criteria introduced above, and it is of interest to see how much stability there is in these
rankings.

To address this question we consider rankings based on the posterior tail probability crite-
rion for three year windows. In each of the 5 3-year windows we assign centers letter grades, A-F,
with proportions {0.22,0.30,0.35,0.09,0.04} respectively. Table 8.2 reports the estimated transi-
tion matrix between these categories, so entry i, j in the matrix represents the estimated proba-
bility of a center in state i moving to state j in the next period.

It is obviously difficult to maintain an “A” rating for more than a couple of periods, but centers
with poor performance are also likely to move into the middle of the rankings. Although, as we
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FIGURE 8.1. Contrasting Selections for A-rated centers: The two upper panels compare posterior tail
probability selection with MLE (fixed effects) selection, while the lower panels compare TP selection with
James-Stein (linear shrinkage) selection. Left panels impose capacity control only, while the right panels
impose 20 percent FDR control for the TP rule. The estimated FDR rate for both the MLE and James-Stein
selection under capacity constraint, using the smoothed NPMLE estimator for G, is 0.431. Comparisons
are based on the 2004-2006 data.

have seen, there is no guarantee that the posterior tail probability criterion yields a nested rank-
ing, nestedness does hold in this particular application. Posterior mean ranking yields similar
transition behavior. The high degree of mobility between rating categories reenforces our con-
clusion that ranking and selection into rating categories is subject to considerable uncertainty.
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FIGURE 8.2. Histogram of estimated AR(1) coefficients for 3230 Dialysis centers based on annual data
2004-2017

A B C D F

A 0.441 0.328 0.201 0.024 0.006

B 0.247 0.360 0.327 0.059 0.007

C 0.122 0.286 0.440 0.112 0.040

D 0.062 0.181 0.441 0.210 0.106

F 0.021 0.085 0.346 0.219 0.329

TABLE 8.2. Estimated First Order Markov Transition Matrix: Entry i, j of the matrix estimates the probabil-
ity of a transition from state i to state j based on posterior tail probability rankings for 3-year longitudinal
grouping of the center data.
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9. CONCLUSIONS

Robbins’s compound decision framework is well suited to ranking and selection problems, and
nonparametric maximum likelihood estimation of mixture models offers a powerful tool for im-
plementing empirical Bayes rules for such problems. Posterior tail probability selection rules
perform better than posterior mean rules when precision is heterogeneous. Ranking and selec-
tion is especially difficult in Gaussian settings where classical linear shrinkage methods are most
appropriate. Nonparametric empirical Bayes methods can substantially improve upon selection
methods based on linear shrinkage and traditional p-values when the latent mixing distribution
is not Gaussian both in terms of power and false discovery rate.
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