
Discussion:
Inference for Losers

Roger Koenker

University College London

Selective Inference Seminar: 17 February 2022

Roger Koenker (UCL) Selective Inference Inference on Losers 1 / 5



Inference on the Best (or Nearly Best)

We have independent, noisy measurements of performance for K
treatments,

Xk = µk + uk, uk ∼ N(0,σ2k), k = 1, · · · ,K.

Let’s consider the σk’s known constants.

A k∗ is selected as best (or 3rd best) from the 1, · · · ,K.

We would like to construct a confidence interval for µk∗ .

Ignoring the selection choice yields biased intervals.

Bias correction based on truncated Gaussian representation of Xk∗ .

O(K logK) algorithm for construction of truncation set.

Question: Suppose µk ≡ 0 and σk ≡ 1 what would the confidence
interval look like for µk∗ with k∗ = {k|Xk = max{Xj j = 1, · · · ,K}}.
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Bayes-time, and the Livin’ is Easy

Imagine the Bayesian:

Given a prior on the µ’s,

Guilt free posterior credible intervals are constructed

From a strict Bayesian perspective: No bias, no cry.

If the prior were the usual improper, π(µ) ∝ 1, our Bayesian has
committed the same sin Dillon went to all that trouble to correct.

Beware the casual uninformative prior!

Dawid (1994) is highly recommended.
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Better Living through Better Priors
Suppose we now consider the conjugate prior, π(µ) ∼ N(0, τ2IK)

Then the posterior for µk∗ is

µk∗ | (Xk∗ = xk∗) ∼ N

(
τ2

τ2 + σk∗
xk∗ ,

(
1

τ2
+

1

σ2k∗

)−1
)

Rather than accepting xk∗ at face-value it is shrunken toward 0 by an
amount depending upon τ2 and σ2k∗ .
Posterior credible intervals can be easily constructed as well.
Beware the casual conjugate prior!
When K is large, a prior G for the µk’s can be estimated:

Ĝ = argmaxG∈G

K∑
k=1

log

∫
ϕσk(xk − µ)dG(µ)

Nonlinear shrinkage with this empirical Bayes prior converges to
optimal Bayes rule based on Gn(µ) = n−1

∑
1(µk 6 µ) provided

that the µ distribution isn’t too heavy tailed.
Comparisons with these posterior intervals might be interesting.
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