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League Tables: Invasive Species of Statistical Analysis

Universities, journals, chess players, football teams, . . .

Personal favorite: Basel AML League Table of Money Laundering
May have serious impact on resource allocation:

I Medical treatments and facilities
I Teacher and student evaluation
I A/B testing, . . .

Room for improvement in methods for ranking and selection.

I’ll focus on rating and ranking from pairwise comparisons.

Journal rankings based on citation influence are produced.
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Pairwise Comparisons and the Ranking Problem

In the simplest setting we have p+ 1 players of scalar abilities,
α0,α1, . . . ,αp who meet in pairs; player i defeats player j with probability,

πij = αi/(αi + αj).

With a sufficiently rich accumulated history of play, the α’s can be
estimated by maximum likelihood and thereby ranked.

In accordance with Stigler’s law of eponymy, this Bradley-Terry (1952)
model for ranking competitors based on paired comparisons was first
proposed by Zermelo (1929) for rating chess players.

There has been considerable recent attention to such models in the
machine earning community where random pairing assumptions make
rankings based on total wins (aka Borda scores) attractive.
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The Logistic Model

It is convenient to reparameterize abilities so θi = logαi and πij,
becomes,

πij =
1

1+ exp(−(θi − θj))

and to write the (logistic) log likelihood for n binary outcomes,
y1,y2, . . . ,yn, with hθ(xk) = 1/(1+ exp(−θ>xk)), as,

`(θ|y) =

n∑
k=1

yk log(hθ(xk)) + (1− yk) log(1− hθ(xk))

where for match k between i and j, xk is an p vector with ith element 1,
and jth element -1, and other elements 0. Wlog, we set θ0 = 0.

This model is closely linked to the Elo model used for chess rankings via
dynamic updating. Other link functions are possible, among which Cauchit
seems particularly attractive, e.g. Aldous (2017).
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Selection of the “Best Players”

There is a rich literature on ranking and selection with important early
contributions by Bahadur, Robbins, Gupta and Portnoy, who show that
ranking by best linear predictors is optimal in certain Gaussian settings,
but note that in non-Gaussian settings BLUPS may go badly wrong.

But such problems have been largely overlooked in econometrics, with
present company emphatically excluded.
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Regularization of the Logistic Model

If we aggregate to binomial observations for each pair we are in the
relatively benign high dimensional world of p = O(

√
n). Nonetheless, it

seems ripe for regularization. An interesting penalty is the group lasso
penalty of Hocking, Joulin, Bach and Vert (2011),

P(θ) = ‖Dθ‖1 =
∑
i<j

|θi − θj|.

Pairwise differences in parameters are pulled together in an attempt to
identify groups of players of similar ability. The penalized log likelihood
problem,

−`(θ|X,y) + λ‖Dθ‖1,

is convex and efficiently solved by modern interior point methods. This is
closely related to total variation penalization for smoothing problems.
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A Two-Step Empirical Bayes NPMLE Alternative

Another approach to regularization is to treat the unconstrained logistic
MLE estimates, θ̂, as approximately independent draws from a
heteroscedastic Gaussian sequence model.

Coordinates have different variances when the design is unbalanced.

Each θ̂i is a draw from the density, fG(θ̂i) =
∫
ϕσ̂i(θ̂i − t)dG(t).

The NPMLE of the mixing distribution G solves.

min
G∈G

{−

p∑
i=1

log fG(θ̂i) | fG(θ̂i) =

∫
ϕσ̂i(θ̂i − t)dG(t)}

The problem is convex and efficiently solved with interior point
methods, K and Mizera (2014).

Given a Ĝ we can compute posterior means, or medians, for the θi’s,

Which might improve upon the raw logistic MLE estimates.
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A Simple Discrete Mixture Example
Consider the simple model, Yi ∼ N(θi, 1), with θ ∈ {1, 4} with probabilities
(0.75, 0.25) respectively. We draw a sample of n = 1000, Y’s, plot their
histogram, and then overplot the Kiefer-Wolfowitz NPMLE in red. It is
shockingly accurate!

y

D
en

si
ty

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Roger Koenker (UCL) Pairwise Ranking and Selection AEA 9.1.2022 8 / 24



Adaptivity of the NPMLE

The Kiefer-Wolfowitz NPMLE, Ĝ, is self-regularizing, that is no
penalization is required to achieve a parsimonious, consistent fit.

The non-negativity constraint on the probability masses assures only
a small number of positive mass points by the Carathéodory
Theorem, as already observed by Laird (1978) and Lindsay (1983).

Even when the true mixing distribution, G, has a density, Ĝ will have a
small number of discrete mass points, of order O(logn) as recently
shown by Polyanskiy and Wu (2020).

This is sufficient to approximate the mixture distribution, f = ϕ ∗G to
order o(1/n) in total variation, i.e. there exists an atomic, Gk with
k = O(logn) mass points such that TV(f, fk) = o(1/n) with
fk = ϕ ∗Gk.

For some practical decision problems, including ranking, it may be
advantageous to replace, Gk, by a smoothed approximate.
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Tweedie Shrinkage for Posterior Means

Given our Ĝ we can compute a posterior mean estimate for any value of y.
When Ĝ is Gaussian shrinkage is linear, but otherwise can be quite highly
nonlinear,

−2 0 2 4 6

Posterior mean (Tweedie) shrinkage is quite smart about adapting
shrinkage to the form of the G. Black points are shrunken to the red points.
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The Machine Learning Perspective

In contrast to the strict parametric, logistic, formulation of the Bradley-Terry
model, there is quite an extensive literature on ranking based on pairwise
comparisons in machine learning.

While the ML approach is technically highly virtuosic, it makes what
we regard as unrealistic assumptions about how the data is
generated.

I Pairwise matches occur randomly à la Erdős-Rényi resulting in an
(asymptotically) balanced design.

I True “abilities” of the competitors are well separated.

Under such conditions it is possible to estimate ratings that recover a
correct (partial) ranking asymptotically using various methods
including support vector machines and Borda (1781) scores.

Notable examples: Wauthier, Jordan, and Jojic (2013), Shah and
Wainwright (2018), and Chen, Gao and Zhang (2021).
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Borda Scores

When match pairings are random, the vector of total “wins” for each player
constitute a sufficient statistic for estimation of the “abilities.” These Borda
scores play an important role in the history of social choice.

However, the number of i versus j matches may convey information about
relative abilities of players when players of similar ability tend to be paired
together as in tennis, or chess. This is the “strength of schedule” effect.
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Posterior Ranks

Given an estimated mixing distribution, Ĝ we can also compute posterior
mean ranks,

Ri =
∑
j6=i

1{αi > αj}.

When our α̂’s are Gaussian we can approximate a Bayes rule for the
quadratic loss,

∑n
i=1(R̂i − Ri)

2,

R̂i =
∑
j6=i

P(αi > αj | α̂1, . . . , α̂n)

=
∑
j6=i

∫
αi>αj

ϕij((α̂i, α̂j))dĜ(αi)dĜ(αj)∫
ϕij((α̂i, α̂j))dĜ(αi)dĜ(αj)

where ϕij(z) is a bivariate Gaussian density with mean, µ = (αi,αj) and
covariance matrix, Σ(i, j), estimated from the Hessian of the MLE.
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Some Simulation Evidence
We will compare performance measured by Kendall’s τ rank correlation of
estimated ratings versus true ratings for 5 estimators:

MLE: Logistic MLE

KWPM: Posterior Means Ratings

KWPMs: Posterior Means Ratings smoothed

KWPR: Posterior Means Ranks

RMLE: Group Lasso Logistic MLE

B: Classical Borda Score

WB: Weighted Borda Score

for four distinct data generating schemes:

α ∼ noisy mixture of two Diracs

α ∼ lognormal

RS: Random matchings

LS: Local matching
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Kendall’s τ Performance with 100 players
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Borda scores are terrible when matching is more probable for similar
abilities.
Regularization is somewhat helpful especially for local matching
Group lasso is hard to tune.
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The Stigler Model of Journal Influence
Stigler and Stigler (1992) and Stigler (1994) consider a Bradley-Terry
model of journal influence based on pairwise citation counts.

We compare several rating/ranking methods for 86 journals in
statistics and econometrics.

Based on citation counts from 2010-2019 in the Clarivate Journal
Citation Reports.

Citation counts by journal j of papers in journal i are a measure of
influence of i on j.

These counts are binomial “wins” and “losses” for each journal pair.

Self-citations, though interesting, are ignored in the analysis.
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Group/Ranking Lasso Plot
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“How Do You Choose λ?”
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Raw Citation Counts for Top 10 Journals

EMCA QJE AnnP JRSSB PRF AER AnnS BMKA JPE JASA
EMCA 387 82 2 21 0 341 60 25 204 73
QJE 90 203 0 0 0 403 0 0 172 4
AnnP 0 0 313 7 183 0 60 15 0 7
JRSSB 5 3 5 87 4 4 162 105 0 276
PRF 2 0 189 6 149 0 47 3 0 6
AER 211 234 0 2 0 785 2 0 376 10
AnnS 19 2 5 141 44 3 754 203 2 472
BMKA 3 0 0 61 5 3 134 171 3 223
JPE 131 96 0 0 0 268 0 0 201 0
JASA 14 9 3 142 8 27 231 155 8 547

Cij = #{times journal i is cited by journal j}

Roger Koenker (UCL) Pairwise Ranking and Selection AEA 9.1.2022 19 / 24



Comparison of Journal Rankings for the Top 10

MLE RMLE KWPM Borda WBorda
ECONOMETRICA 1 1 1 4 1
Q-J-ECON 2 2 2 5 3
ANN-PROBAB 3 3 4 13 7
J-R-STAT-SOC-B 4 4 3 7 2
PROBAB-THEORY-REL 5 5 5 19 9
AM-ECON-REV 6 6 6 1 6
ANN-STAT 7 7 7 3 4
BIOMETRIKA 8 8 8 6 5
J-POLIT-ECON 9 9 9 9 10
J-AM-STAT-ASSOC 10 10 10 2 8

Comparison of Top Ten Journal Influence Rankings for Five Methods
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Comparison of Journal Rankings for the Bottom 10

MLE RMLE KWPM Borda WBorda
INT-J-FORECASTING 77 77 79 57 71
J-HUM-CAPITAL 78 78 77 82 81
COMPUTATION-STAT 79 79 80 69 75
J-APPL-STAT 80 80 82 66 79
BRAZ-J-PROBAB-STAT 81 81 81 79 80
COMPUT-ECON 82 82 83 81 82
J-AGR-ECON 83 83 85 83 83
J-CHOICE-MODEL 84 84 84 85 84
TEST 85 85 86 84 85
J-ROY-STAT-SOC-A-STA 86 86 48 86 86

Comparison of Bottom Ten Journal Influence Rankings for Five Methods
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The Lanterne Rouge

What about the hapless JRSS(A)?

It has 51 self-cites, no others.

MLE rating -16, but should be −∞.

Its KWPM ranking is only 48, why?

Because its standard error is 165.

Tweedie shrinkage moves its rating to ≈ 0.

Q: What if it had one cite in the AER?

A: Would move down to 83 for KWPM.

Because standard error drops to ≈ 1.
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Conclusions

Ranking and selection are difficult with only pairwise comparisons.

There is a demand for rankings, therefore there should be a supply.

The grouped/ranked lasso is attractive, but needs delicate tuning.

Tweedie shrinkage of MLE ratings is more automatic and accurate.

Machine learning claims about Borda scores are misleading.

The Stigler model of journal influence via citation flows is copacetic.

R package available on request.
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