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Abstract. Efron’s elegant approach to g-modeling for empirical Bayes problems is con-
trasted with an implementation of the Kiefer-Wolfowitz nonparametric maximum like-
lihood estimator for mixture models for several examples. The latter approach has the
advantage that it is free of tuning parameters and consequently provides a relatively simple
complementary method.

1. Introduction

It is a great privilege to have the opportunity to comment on this marvelous paper.
Nearly 70 years ago Herbert Robbins, the oracle of empirical Bayesianism, published an
abstract in the Annals that began:

Let θ be a vector random variable with distribution function G(θ) belonging
to some classs G, let X be a vector random variable whose frequency func-
tion f(x; θ) depends on θ, and let g∗(x) =

∫
f(x; θ)dG(θ) be the resulting

frequency function of X. From a sample X1, X2, · · · it is required to estimate
G(θ). The generalized method of maximum likelihood consists in using the
estimates Gn(θ;x1, · · · , xn) in G for which

∏
g∗(xi) is a maximum. Under

certain restrictions this method is consistent as n→∞. [Robbins (1950)]

Of course since this was only an abstract; no details were provided, or forthcoming, un-
til Kiefer and Wolfowitz (1956), elaborating on Wald, provided details for the consistency
claim. Some time then passed, until Laird (1978) described how the nascent EM algo-
rithm could be deployed to compute Gn. The influential paper of Jiang and Zhang (2009)
has renewed interest in the Kiefer-Wolfowitz NPMLE establishing precise risk bounds and
demonstrating attractive simulation performance. In econometrics Heckman and Singer
(1984) were among the first to take up the challenge of actually using EM to compute a Gn
in an effort to explore frailty models for unemployment durations.

As Efron persuasively argues the time is now ripe for a major revival of interest in these
methods. Data sources are much more plentiful and computational wherewithal is vastly
improved. Efron’s g-modeling offers an extremely flexible approach to achieving Robbins
objective of effectively estimating the mixing distribution, G. This seems already aston-
ishing in the Gaussian location mixture setting where maximum likelihood out-performs
classical Fourier methods for deconvolution, but is even more astonishing when one realizes
that similar methods may be applied to a much wider class of general mixture problems.
The decision to model g = G′ as an exponential family brings many attendant advantages,
not the least of which is the elegant inference apparatus laid out in Efron’s paper. However,
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the B-spline basis expansion and the Euclidean penalization of its coefficients adds a layer
of hierarchical Bayesian artistry that may frighten away some researchers. In what follows
we will try to make a case for a complementary, more minimalist approach based on the
nonparametric MLE of Robbins and Kiefer-Wolfowitz.

2. A Minimalist Gn

The Kiefer-Wolfowitz NPMLE, like Efron’s ĝ, relies upon a grid of values t1, · · · , tm,
that constitute potential support points. The number of these potential support points can
be quite large; we generally take m = 300 with equally spaced ti over the support of the
observed X’s, at least for Gaussian location mixtures with moderate n. The primal version
of the NPMLE problem is then,

min
g
{−

n∑
i=1

log f(xi) | f = Ag, g ≥ 0, 1>n g = 1},

where A denotes an n by m matrix with ij element, ϕ(xi − tj). This is a relatively simple
convex optimization problem and as such admits a unique solution. As for the Breiman
non-negative garrotte, the requirement that g ≥ 0 acts as a powerful regularization device.
No more that n of the m elements of ĝ can be strictly positive, and typically this number
grows like O(

√
n). As shown in Koenker and Mizera (2014) the corresponding dual problem,

max
ν
{
n∑
i=1

log νi | A>ν ≤ n, },

is somewhat more convenient for computations. In either case we obtain as a solution a
discrete Gn with a small number of distinct mass points.

To illustrate the basic differences among the various methods of estimating G, we consider
two variants of a simulation setting from Efron (2016). In the first of these G is a smooth
scale mixture of Gaussians: G(θ) = G1(θ) = 1

8Φ(θ/6) + 7
8Φ(2θ), in the second we have a

discrete mixing distribution: G(θ) = G2(θ) = 1
8I(θ ≥ 0) + 7

8I(θ ≥ 2), In Figure 1 we depict
several estimates of G for each of these models based on a sample of size 1000. Performance,
measured by Wasserstein (L1) distance, W1(G, Ĝn) =

∫
|Ĝn(x) − G(x)|dx, is reported in

the legend for each estimator. In the smooth setting of the left panel, the Efron estimator
is the clear winner, although the smoothed version of the Kiefer-Wolfowitz estimator that
simply convolves the discrete estimate with a biweight kernel with scale 0.7 does almost as
well. In the right panel where the true G is discrete with only two mass points, the KW
estimator is almost paranormal. In both settings the kernel based deconvolution estimator
of Stefanski and Carroll (1990) does poorly particularly in the tails.

Efron Kernel NPMLE NPMLEs
Smooth 0.185 0.591 0.342 0.180
Discrete 0.409 0.718 0.156 0.280

Table 1. Mean Wasserstein (L1) Error
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Figure 1. Four estimates of the mixing distributions G: In the left panel
the true mixing distribution is a smooth scale mixture of Gaussians, in the
right panel it is discrete with mass points at 0 and 2. The legend reports
Wasserstein (L1) distances between each of the estimates Ĝn and the true
G.

A small simulation experiment to compare performance of these four estimators in the
two settings of Figure 1 is reported in Table 1. Mean Wasserstein errors are based on 1000
replications.

3. Tuning

The flexibility of g-modeling as formulated in Efron (2016) arises from the opportunity
to choose both the basis expansion for log g and the form and severity of the penalization
of the parameters of that expansion. To explore the role of these choices in the context
of Efron’s “two towers” example, we compared several estimates with g(θ;α) expressed as
a natural spline expansion with α ∈ RK and penalty term, c0‖α‖. We generate data as
in Efron’s Figure 1, with n = 1500. In the left panel of Figure 2 we plot estimates of the
mixing density, g, based on K = 5 and K = 20 with c0 = 0.1 together with the NPMLE
estimate, which has only three distinct mass points. In the right panel we do the same
except that now c0 = 1. It is evident that with K large and c0 small one can obtain a ĝ
that begins to mimic the NPMLE quite well. This is somewhat similar to what happens
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Figure 2. The Effect of Tuning on the Efron ĝ Estimator: The smooth
curves depict ĝ’s computed with K ∈ {5, 20} and c0 ∈ {0.1, 1} contrasted
with the estimated point masses produced by the Kiefer-Wolfowitz NPMLE.

when computing the NPMLE with the EM algorithm where early stopping of the iterations
acts as a regularizing device. This is just one realization, what happens if we repeat the
exercise?

To see how systematic the differences really are we ran a small simulation experiment to
compare empirical Bayes regret as defined by Efron relative to the Oracle Bayes estimator.
Table 2 reports the results of this experiment based on 500 replications. The most flexible
of the four Efron ĝ estimators performs essentially the same as the NPMLE, but the other
choices do not do as well, suggesting that careful tuning of the g-modeling procedure is
important.

c0 = 1.0 c0 = 0.1 NPMLE
df = 5 df = 20 df = 5 df = 20
0.03983 0.01131 0.01055 0.00805 0.00825

Table 2. Empirical Bayes Regret for ’two towers’ example
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4. Frequently Almost Bayesian

It is difficult, perhaps impossible, to unravel the Bayesian and frequentist strands of the
empirical Bayes tradition, and probably not terribly productive, Lindley’s dictum notwith-
standing. However, it does seem worthwhile at least briefly to see how the g-modeling
methods already considered compare with well-established, more formal Bayes methods
based on Dirichlet process methods. To this end we reconsider the analysis of Shakespeare’s
vocabulary in Efron (2010).

The data consists of word counts, {n1, · · · , n100} where nj denotes the number of the
words in the Shakespeare canon of plays and poetry used precisely j times. Adopting the
presumption that words appear as independent Poisson draws with individual intensity
parameter, λi, this gives us a truncated Poisson mixture model,

ηj = Enj = S

∫ ∞
0

e−λλj/(P (λ)j!)dG(λ),

where P (λ) = Λ(100, λ) − Λ(0, λ) with Λ(x, λ) denoting the Poisson distribution func-
tion, and S = 884, 647 the total number of words in the Shakespeare canon. The standard
Dirichlet process formulation for Poisson mixtures would specify a prior for G as DP (α,G0),
where the base measure, G0 would be gamma with some specified parameters, and α de-
notes the concentration of the prior belief. Truncation of the Poisson complicates things
somewhat, rendering the usual closed form Gibbs MCMC infeasible. Instead we can adopt
the Metropolis-Hastings strategy of Algorithm 8 of Neal (2000) as implemented in the R
package dirichletprocess of Ross and Markwick (2018).

How formal is this more formal DP estimate from a Bayesian standpoint? We have
not, we confess, chosen the parameters of the prior DP (α,G0) from some deep philological
understanding of English poetry and prose, instead we have given the MCMC iterations
free rein to update the concentration parameter, α, and the rate parameter β of G0. The
rate parameter of G0 is taken to be conjugate Gamma with parameters (1, 1/2); the shape
parameter of the G0 is held fixed at 0.25 to avoid further complicating the estimation
process. This yields a relatively weak “prior” with α̂ = 9.27 and gamma rate parameter
β̂ = 0.0232, as posterior medians based on the last 1000 of 2000 MCMC iterations. The
resulting DP estimate, Gn, is illustrated in left panel of Figure 3 as a 0.95 pointwise band
again based on the last 1000 MCMC iterations. For comparison, the NPMLE and Efron’s
Gn, with df = 5 and c0 = 2, are overlayed in the figure. Although the three estimates
appear quite similar, the computational effort they require differs considerably. The DP
posterior requires about an hour and a half to compute, while the NPMLE and Efron’s Gn
each require less than a second; this has the unfortunate consequence of making further
exploration of sensitivity of the DP procedure to the choice of hyperparameters and other
tuning parameters of the MCMC process quite costly.

In the right panel of Figure 3 we compare the observed values, nj , with the predictions
from the NPMLE, Efron and DP procedures for ηj : j = 2, · · · , 100 with the parametric
MLE procedure proposed by Fisher for the Corbet butterfly data. Conditioning on n1, and
using the negative binomial representation of gamma mixtures of Poissons, we can write,

η̂j = n1λj(â, b̂) = n1
Γ(â+ j)b̂j−1

j!Γ(â+ 1)
,
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Figure 3. Left panel: Comparison of the Kiefer-Wolfowitz NPMLE and
Efron g-modeling estimates with a Dirichlet process estimate of the mixing
distribution G for the Shakespeare vocabulary data. The Dirichlet estimate
is depicted as a 0.95 pointwise band based on the last 1000 iterations of
the Metropolis-Hastings MCMC chain. Right panel: Comparison of the
NPMLE, Efron and DP predictions of the ηj = Enj values for j = 2, 3, · · · 100
with the parametric empirical Bayes procedure of Fisher.

where (â, b̂) = argmax{
∑n

j=2 log p(nj , n1λj(a, b))}, and p(n, λ) denotes the Poisson density.
This too may be viewed as a parametric empirical Bayes procedure, and it delivers an
astonishingly good fit to the observed counts despite the fact that its estimated “prior”
with (â, b̂) = (−0.398, 0.992) is improper. On the basis of visual goodness of fit, there is
little to distinguish the four procedures, all perform admirably.

None of the procedures we have discussed meet a stringent Bayesian standard, as for-
mulated for example in Deeley and Lindley (1981), so perhaps it is time to modify slightly
another famous dictum of Lindley:

We will all be [empirical ] Bayesians in 2020, and then we can be a united
profession. [Lindley and Smith (1995)]
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