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PRIMAL AND DUAL FORMULATIONS RELEVANT

FOR THE NUMERICAL ESTIMATION OF A

PROBABILITY DENSITY VIA REGULARIZATION

Roger Koenker — Ivan Mizera

ABSTRACT. We investigate general schemes relevant for the estimation of a

probability density via regularization—their primal and dual versions in the dis-
cretized setting. In particular, conditions for the dual solution to be a probability

density are given, and a strong duality theorem is proved.

We study various instances of the problem

(P) −wTLh + sTΨ(g) + J(−Ph) = min
g,h

! subject to h � g,

where Ψ(g) indicates the application of a real convex function ψ to the compo-
nents of g, while J(h) is rather a general convex function applied to the whole
vector −Ph, the negative of the result of a linear operator P applied on h. We
assume that vectors w and s have positive nonzero elements; hereafter, � and �
stand for componentwise inequalities.

In some cases, the primal formulation (P) can be simplified. If the function
ψ is nondecreasing, then it immediately follows that (P) is equivalent to the
unconstrained problem

(U) −wTLg + sTΨ(g) + J(−Pg) = min
g

!

As is customary in convex analysis, we consider convex functions that may
attain +∞ as a value; the set where such a function Φ is finite is called its domain,
dom Φ. We assume that all convex functions appearing in (P) have domains with
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nonempty interior. Concave functions are handled in an analogous manner, only
the rôle of +∞ is played by −∞.

Important examples of convex functions include indicators of convex sets; an
indicator of a set E is defined to be 0 for all x ∈ E and +∞ otherwise. A
function conjugate to Φ is denoted by Φ∗ and defined as

Φ∗(y) = sup
x

(
yTx− Φ(x)

)
= sup

x∈dom Φ

(
yTx− Φ(x)

)
,

the latter formulation avoiding the need to compute with infinite values. The
conjugate of the function λ‖ · ‖p, related to the `p norm ‖ · ‖p, is the indicator of
the set {x : ‖x‖q ≤ λ}, a ball in the dual norm; here q is the (Hölder) conjugate
of p, that is, q = ∞ for p = 1, and satisfies the relationship (1/p) + (1/q) = 1
for p > 1. Conversely, the conjugate of the indicator of the above ball is the
multiple of the dual norm. The conjugate of the indicator of the cone {x : x � 0}
is the indicator of the polar cone {x : x � 0}. Finally, the function (1/2)‖ · ‖22 is
conjugate to itself; and consequently λ‖ · ‖22 to 1/(4λ2)‖ · ‖22. Our references for
convex analysis are Rockafellar [8], Boyd and Vanderberge [1].

We claim that the dual of (P), or when equivalent, (U) is the problem

−sTΨ∗(f)− J∗(e) = max
f,e

!

subject to Sf = LTw + PTe and f � 0,
(D)

where S = diag(s) and Ψ∗(f) indicates the componentwise application of ψ∗.
Both (P)–(U) and (D) are relevant in the study of discretized, numerical for-

mulations of regularized density estimation. We consider the estimated density
to be represented by the vector f consisting of its values on some collection of
points, referred to as a grid. The evaluation operator L then expresses the po-
sition of n datapoints with respect to the grid via interpolation; for instance, if
the datapoints are among gridpoints, then the i-th row assigns 1 to a gridpoint
equal to the i-th datapoint and zero otherwise. The vector w assigns weights
to the datapoints—as a rule, 1/n to each. Finally, s is the vector of integration
weights attached to gridpoints: the identity sTf = 1 expresses the fact that the
estimated density integrates to 1. In fact, estimated probability densities are
approximated by the densities with respect to the dominating measure on the
grid whose atoms are given by s.

As for the penalization term, a typical P is a discretized version of a dif-
ferential operator appearing in the continuous formulation of the regularization
proposal. Typical J involves an `p norm and a tuning constant, λ, customary in
this context: say, J(u) = λ‖u‖1 or J(u) = λ‖u‖22. Regularization may be also ex-
pressed in a constrained form, in which J is the indicator of a set {u : ‖u‖p ≤ Λ}.
All these examples are symmetric: J(−u) = J(u). An asymmetric example is

2



PRIMALS AND DUALS IN DENSITY ESTIMATION

provided by J equal to the indicator of {u : u � 0}, the style of penalization used
in density estimation under monotonicity or convexity constraints.

The fact that the estimated f is a indeed a probability density can be most
conveniently verified through the dual formulation (D).

Theorem 1. Suppose that wTL1 = 1 and P1 = 0. Then the solution f of (D)
satisfies

∑
j sjfj = 1 and fj ≥ 0 for every j.

P r o o f. Since the nonnegativity constraint is directly included in the formula-
tion of (D), it remains to verify that

sTf = 1TSf = 1T(LTw + PTe) = wTL1 + eTP1 = 1,

as follows from the assumptions. �

In the simplest case, when matrix L is composed of zeros except for a single 1
in each row corresponding to a datapoint, wTL gets these 1’s multiplied by 1/n,
which further multiplying by 1 sums to 1. More generally, common interpolation
schemes yield evaluation operators satisfying the assumption of Theorem 1. As
far as potential operators P are concerned, they are discrete, difference versions
of differential operators; as such, they annihilate constants—as can be directly
verified for difference operators acting on sequences.

Compared to the dual (D), the relationship of the variables appearing in the
primal formulations (P) or (U) to the estimated density is not explicit. However,
once a strong duality of (P) and (D) is demonstrated true, then the relationship
of g to f for qualified ψ is given by

(E) f = Ψ′(g),

where Ψ′(g) indicates the componentwise application of ψ′, the derivative of ψ.

Theorem 2. Problem (D) is a strong dual of the problem (P). If ψ is differen-
tiable on the interior I of its domain, then the corresponding solutions of (D)
and (P) satisfy (E), whenever g is from I and f from the image of I under ψ′.

P r o o f. We start from a formulation equivalent to (P), obtained after rewriting
it in terms of new variables u and v,

− wTL(g − v) + sTΨ(g) + J(u) = min
g,u,v

!

subject to v � 0 and − P(g − v) = u.
(1)

The Lagrange dual of (1) is

(2) inf
g,u,v

L(p, e; g, u, v) = max
p,e

! subject to p � 0,
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where (p used here has no relationship to the parameter p used elsewhere)

L(p, e; g, u, v) = −wTL(g − v) + sTΨ(g) + J(u) + pT(−v) + eT[−u− P(g − v)]

is the Lagrangean of (1). The linear part of L, in v, leads to a feasibility
constraint

(3) LTw + PTe = p,

preventing the objective function of (2) from becoming −∞. Under (3), the
minimization of the simplified Lagrangean can be done separately in g and u,

inf
g,u
L(p, e; g, u) = inf

g,u

(
−wTLg − eTPg + sTΨ(g)− eTu + J(u)

)
= inf

g

(
−(LTw + PTe)g + sTΨ(g)

)
+ inf

u

(
−eTu + J(u)

)
,

= inf
g

(
−pTg + sTΨ(g)

)
− J∗(e).

(4)

Minimizing in g is done by expanding into components,

inf
g

(
−pTg + sTΨ(g)

)
= inf

g

(
−

∑
j

pjgj +
∑

j

sjψ(gj)
)

=
∑

j

sj inf
gj

(
−pj

sj
gj + ψ(gj)

)
= −

∑
j

sjψ
∗
(

pj

sj

)
.

(5)

The dual formulation (D) is obtained as the summary of (2)–(5), rewritten in
terms of fj = pj/sj . Finally, (1) satisfies the Slater constraint qualification
condition; therefore strong duality holds.

For fixed y, the domain of the concave function ϕ(x) = yx−ψ(x) is the same
as the domain of ψ. If ψ has a derivative on I, so does ϕ; if y belongs to a
range of I under ψ′, then there is x∗ in I, depending on y, such that y = ψ′(x∗).
That is, ϕ′(x∗) = 0, and consequently ϕ attains its global maximum at x∗,
because ϕ is concave. Hence, the conjugate is ψ∗(y) = yx∗ − ψ(x∗) and can be
obtained via taking the derivative of ψ and setting it equal to zero. Applying
this procedure componentwise in (5) yields ψ′(gj) = pj/sj = fj , whenever the
additional assumptions of the theorem are satisfied. �

Example 1 (Maximum Likelihood). The primal formulation of this example
was our primary motivation. Its continuous version can be traced back to Sil-
verman [10] and Leonard [6]; in particular, Silverman [10] proposed to estimate
the density via the maximum likelihood penalized scheme

(6) −
∫
gdPn +

∫
egdx+ λ

∫ (
g(k)

)2
dx = min

g
!
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penalizing the square of the third (k = 3) derivative of g = log f , where Pn

denotes the empirical probability supported by the datapoints. Other instances
involve a possible use of the second derivative instead of third (k = 2), champi-
oned by Gu [3] and others; the use of the total variation penalty∫ ∣∣g(k)

∣∣dx =
∨
g(k−1)

considered by Koenker and Mizera [4, 5] for k = 1, 2, 3; and estimation of a log-
concave density studied by Rufibach and Dümbgen [9], which here corresponds
to k = 2 and the penalty term in the form of the non-positivity constraint on
the second derivative (with no tuning parameter λ involved).

In the discrete setting of (P), the k-th derivative operator is usually replaced
by an appropriate difference operator P, and the evaluation operator L and
vector of weights w by their typical instances described above. Since ψ(x) = ex

is nondecreasing, (P) is equivalent to the unconstrained formulation (U), whose
specific form in this example, for symmetric J(u) = λ‖u‖p

p and p = 1, 2, is

(7) −wTLg + sTeg + λ‖Pg‖p
p = min

g
!

where eg has to be understood componentwise. An elementary calculation de-
termines that the additional assumptions of Theorem 2 are satisfied, so that
indeed f = eg, and

ψ∗(y) =


y log y − y for y > 0,
0 for y = 0,
+∞ otherwise.

The fact that domψ∗ = [0,+∞) independently enforces the nonnegativity con-
straint on f through the objective function, as a feasibility requirement. Sil-
verman [10] showed, via an argument based on the specific properties of the
exponential function, that the result of (6) is a probability density; the same
conclusion follows, in the discrete version, from our Theorems 1 and 2 for all
formulations of the type (7). If the assumptions of Theorem 1 regarding P, L.
and w are satisfied, then the objective function in the dual of (7),

−
∑

j

sjfj log fj +
∑

j

sjfj ,

can be further simplified, because the second sum is equal to 1, a constant. The
resulting dual of (7) cast in the minimization form is then, for p = 1,∑

sjfj log fj = min
f,e

!

subject to Sf = LTw + PTe, f � 0, and ‖e‖∞ ≤ λ,
(8)
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and for p = 2, ∑
sjfj log fj +

1
4λ
‖e‖22 = min

f,e
!

subject to Sf = LTw + PTe, and f � 0.
(9)

The dual of the penalty-constrained version,

(10) −wTLg + sTeg = min
g

! subject to ‖Pg‖p ≤ Λ,

of the primal (7), is (p and q being conjugate)∑
j

sjfj log fj + Λ‖e‖q = min
f,e

!

subject to Sf = LTw + PTe, and f � 0.
(11)

Finally, the dual of the shape-constrained formulation,

(12) −wTLg + sTΨ(g) = min
g

! subject to Pg � 0

(yielding log-concave f when P is a second-order difference operator), is∑
j

sjfj log fj = min
f,e

!

subject to Sf = LTw + PTe, f � 0, and e � 0.
(13)

The essence of all the dual variants is the maximization of the Shannon entropy
of f, or, equivalently, the minimization of the Kullback-Leibler divergence

K(f, s−1) =
∑

j

sjfj log
fj
s−1

=
∑

j

sjfj log
sjfj

sjs−1
,=

∑
j

sjfj log fj + s

where s−1 = (
∑

j sj)−1 is the uniform probability mass function on the grid.

The dual formulation of the penalized likelihood problem as a maximum en-
tropy problem offers a possibility of generalization by replacing the Shannon
entropy term by, say, one from the system of Rényi entropies indexed by a
parameter α > 0; similarly to the Kullback-Leibler case, this entails the appro-
priate minimum divergence interpretations. Formally, Rényi’s entropies include
that of Example 1 for α = 1; the Rényi entropy with exponent α 6= 1 is defined
as (1 − α)−1 log

(
sTfα

)
, where fα is hereafter interpreted componentwise. See

Rényi [7]. The maximization of this function is equivalent to the maximization
of − sign(α− 1)sTfα or, equivalently, − sign(α− 1)sTfα/α.

Let us denote by ψp a function equal to xp/p for x ≥ 0 and to 0 for x < 0.
The conjugate of ψp for p > 1 is the function ψ∗p equal to yq/q for y ≥ 0 (with p
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and q conjugate), and to +∞ otherwise. Note that ψp is nondecreasing, hence
(P) is equivalent to (U) whenever ψ = ψp.

Example 2 (Minimum χ2). This example is the special case of the Rényi for-
mulation, with α = 2; that is, ψ(x) = ψ2. The conjugate of ψ2 is equal to y2/2
for y ≥ 0. The dual in this example replaces the entropy term

∑
j sjfj log fj in

the objective function of (8), (9), (11), and (13) by sTf2 (after the elimination of
the redundant constant in the objective). The corresponding primal is obtained
by replacing

∑
j egj in (7), (10), and (12) by

∑
j sjψ2(gj). Minimizing the dual

(and in this case also primal) objective function is equivalent to minimizing the
χ2-divergence

χ2(f, s−1) =
∑

j

sj
(fj − s−1)2

s−1
=

∑
j

(sjfj − sjs
−1)2

sjs−1
= s

(∑
j

sjf
2
j

)
− 1.

If instead of ψ2 we consider ψ(x) equal to (1/2)x2 for all x, we can cast both
primal and dual in a quadratic programming form. However, the correct primal
has to be written in the constrained form (P) now, because ψ is no longer
monotone. In particular, the correct formulation for the setting corresponding
to (7) is

−wTLh + 1
2 sTg2 + λ‖Ph‖p

p = min
f,h

! subject to h � f.

In all these variants, both primal and dual estimate directly the density f , due
to the fact that ψ′(x) = x.

Example 3. Another special case of the Rényi scheme, with α = 3, results in
the replacement by sTf3 in the objective function of (8), (9), (11), and (13). For
the primal, we again may take either

∑
j sjψ

3/2(gj) in (7), (10), and (12); or
we may use ψ(x) = (2/3)|x|3/2 instead, which leaves the dual unchanged, but
makes the primal constrained; the formulation (7), for instance, becomes

−wTLh + 2
3 sTg3/2 + λ‖Ph‖p

p = min
g

! subject to h � g.

Due to the fact that in any of these variants f = g2, this example could be
nicknamed “Silverman for Good”. Apart from the additional middle term, the
objective functions differs from the original proposal of Good [2] also in the first
term, which is not based on the logarithm of the square root of the estimated
density, but instead directly on the square root itself. It would be interesting to
know whether there is any Bayesian justification for such an approach, whether
in mufti or full regalia. In any case, the primal formulation yields a square root
of a probability density, a “rootogram” in Tukey terminology.
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Example 4 (Minimum Hellinger). Another example from the Rényi system,
with α = 1/2, sets ψ(x) = −1/x for x < 0 and +∞ elsewhere. The conjugate
function is ψ∗(y) = −2

√
y, for y ≥ 0, and ∞ elsewhere. The dual (for p = 1),

in the minimization form and after the elimination of the redundant constant,
puts −sT

√
f, where

√
f is again applied componentwise, into the objective of (8),

(9), (11), and (13). The minimization of the dual objective is equivalent to the
minimization of the Hellinger distance

H(f, s−1) =
∑

j

sj

(√
fj −

√
1/s

)2 =
∑

j

(√
sjfj −

√
sj/s

)2 = 2− 2
√
s
∑

sj

√
fj .

The primal can be cast—because ψ is nondecreasing—in the unconstrained ver-
sion (U), just replacing the

∑
j egj term in (7), (10), or (12) by −sTh−1, where

h−1 is the componentwise reciprocal value of h; however, we have to include
the domain restriction for ψ as a feasibility constraint. The resulting primal
formulation in case of (7) is

−wTLh− sTh−1 + λ‖Ph‖1 = min
h

! subject to h � 0.

For symmetric penalties, it is more convenient to recast the primal in terms of
g = −h:

wTLg + sTg−1 + λ‖Pg‖1 = min
h

! subject to g � 0.

The estimated density f is the reciprocal of g2, hence g could be called, in the
Tukey spirit, a “rootosparsity”; and consequently h, being negative, a “hanging
rootosparsity”.

In implementations, we observed that the numerical perfomance may be im-
proved by adding the (theoretically redundant) nonnegativity constraint f � 0
also in the primal formulation. This is, however, rather an unimportant detail,
because dual formulations always ran significantly faster and were more numer-
ically stable than their primal counterparts. The utility of the latter is rather
theoretical—as a guidance in more complex formulations, where density estima-
tion is merely a building block. It seems that the results did not substantially
differ for different Rényi exponents; thus, if maximum likelihood formulation
turns out to be numerically infeasible, there can be a viable Rényi alternative.

Example 5. The choice ψ(x) = −1/2− log(−x) for x < 0, and +∞ otherwise,
can be viewed as a limiting case of the Rényi system for α = 0. It is similar in
spirit and shape to Example 4; however, we are unaware about any minimum
distance interpretation. After elimination of the redundant constants, the dual
puts −sT log f into the objective function of (8), (9), (11), and (13), while the
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primal (unconstrained, but with a feasibility constraint) puts −sT log(−g) into
in (7), (10), or (12). For instance, recasting (7) in terms of g = −h gives

wTLg − sT log g + λ‖Pg‖1 = min
g

! subject to g � 0.

The salient feature of this example is that the function g penalized in the primal
is “sparsity”, the reciprocal of the estimated density f.

Example 6. One can easily come to the idea to employ the popular and simple
total variation distance in the minimum divergence formulation; in such a case,
the dual objective would be chosen to minimize

V (f, s−1) =
∑

j

sj |fj − s−1|,

and the appropriate version of (8) would have a computationally appealing form
of a linear programming problem. However, the primal in this case would involve
a function ψ(x) equal to x/s for x in the interval [−1, 1], and +∞ elsewhere.
This indicates difficulties and likely explains the strange results we observed
when we implemented this formulation.
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