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Grau, teurer Freund, ist alle Theorie
und grün des Lebens goldner Baum. [7]

1 Density estimation via regularized MLE

The objective of this note is to discuss certain aspects of the density estimation
proposal put forward by the present authors in [16]. Let x1, x2, . . . , xn be an ob-
served sample. Regarding it as arising from a continuous distribution on Ω ⊆ R

d,
we would like to estimate the underlying probability density. The regularized maxi-
mum likelihood approach provides an estimate f minimizing the penalized negative
loglikelihood

− 1
n

n∑
i=1

log f(xi) + λJ(f) (1)

over the class of probability density functions, nonnegative functions that integrate
to 1 over the whole Ω.

It is often practical to formulate a problem in terms of g such that f = g[κ];
an appealing choice is the family of power transformations f = g[κ] = gκ, together
with the limiting case f = g[∞] = eg. As it happens, from the potential continuum
of possibilities only those corresponding to κ = 1, 2 and ∞ seem to be of practical
interest. The choice κ = 2 circumvents enforcing the nonnegativity of f and as
such was one of the principal motivations of the early proposal of Good [8]; see also
Good and Gaskins [9], Eggermont and LaRiccia [6].

The choice κ = ∞, however, not only automatically enforces nonnegativity, but
also simplifies the imposition of the integral constraint

∫
fdx = 1 by incorporating

it directly into the objective function. This and several other intriguing properties
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won it our eventual favor in [16]. Since J(−g) = J(g) for any penalty considered
below, we chose −g rather g, mainly for aesthetic reasons; the resulting formulation
in terms of g = − log f amounts to the unconstrained minimization of

1
n

n∑
i=1

g(xi) +
∫

e−g(x)dx + λJ(g). (2)

The regularizing effect of the penalty prevents the ordinary maximum likelihood
from degenerating into a linear combination of Dirac functions. Usual penalties
employed in (2) have form J(g) = ‖Dg‖p

p, where D is a linear differential operator,
and ‖ · ‖p is an integral norm. In dimension d = 1, this general scheme specializes
to

J(g) = ‖Dνg‖p
p =

∫
|g(ν)(x)|pdx, (3)

where g(ν) stands now for the ν-th derivative of g. Again, all investigated instances
involve either p = 1 or 2, and ν = 1, 2, and 3. For p = 2, the case with ν = 2
was studied by Gu [10]; that with ν = 3 by Silverman [20], see also Ramsay and
Silverman [19]. The choice p = 1 corresponds to penalizing the total variation
of the (ν−1)-th derivative of g, and has received considerable recent attention
due to the capability of total-variation penalties to capture qualitative features.
Total variation is inherent to the “stretched string” methodology of Hartigan and
Hartigan [12] and Hartigan [11], recently revived by Davies [2] and substantially
enriched by Davies and Kovac [3, 4]; an inspiration for this note was the close
resemblance of the outcomes of this methodology and those of the scheme (2)–
(3) for p = 1 and ν = 1. This is revealed in Section 4. Sardy and Tseng [17]
recently proposed to penalize the total variation of the density itself—this proposal
corresponds in our nomenclature to κ = 1, ν = 1, and p = 1.

Our ultimate objective is the estimation of multidimensional densities densities,
that is, d > 2. Some discussion, in the context of our proposal with p = 1 and
ν = 2 (and κ = ∞) can be found in [16]; the somewhat related case with p = 2 and
ν = 2 was studied by Gu [10]. However, space and simplicity considerations neces-
sitate to omit this theme and also the discussion of practically very important, but
complicated issues concerning automatic selection of the regularization parameter
λ. The reader wishing to learn more is thus referred to Koenker and Mizera [16],
as well as to all our future publications.

2 The discretization and its dual

As a computational strategy for (2)–(3), we adopted in [16] quite a straightforward
finite-element approach, for d = 1 based on the representation of g as a piece-
wise linear function. Even if the final solution is not piecewise linear—in which
case the pieces of linearity could be determined by the data points xi themselves—
sufficiently regular g can always be approximated in this manner on fine meshes.
Another implementation problem is replacing a potentially infinite domain Ω ⊆ R



Alter egos of regularized maximum likelihood density estimators 3

by a finite interval I; nevertheless, our experience suggests that maximized likeli-
hood quite well guarantees that the estimated density vanishes outside its plausible
support, provided that the convex hull of xi is placed deep enough in the interior
of I.

The discretized version of (2)–(3) seeks the estimate f in terms of the vector
f, with components f0, f1, . . . , fm; these relate to the values gj = − log fj of the
piecewise linear approximation of g on the mesh points v0 < v1 < · · · < vm. The
working domain is thus I = [v0, vm], and the integral of f = exp(g) is approximated
by the sum of cj exp(gj) following the trapezoid formula—the components of the
coefficient vector c are cj = (wj + wj−1)/2, with w−1 = wm = 0, and otherwise
wj = vj − vj−1. Other approximations are possible, and may very slightly alter the
final result.

The negative loglikelihood at the point xi is expressed through the result of
evaluation functional li applied to the vector g; in the simplest instance, when
the mesh points vj are selected to contain xi, the evaluation functional returns
the value fj/n, where vj = xi. That is, the coefficients of li are all zero except
for the j-th one which is 1/n. For larger n, it may be more numerically stable
to choose the mesh equidistant; in such a case, li may analogously relate to the
value of f at the nearest mesh point, or may express the interpolation between
the two nearest ones. All evaluation functionals li form together an evaluation
operator L. Whichever construction from those outlined above is used, L always
satisfies the following important properties: (i) L1 = (1/n)1n, where 1n is the
vector of ones with length n; (ii) Lv = x, where x is the vector consisting of the
sample points xi. The consequence of (i) is that 1T

nL1 = 1; similarly, (ii) implies
that 1T

nLv = (1/n)1T
nx, the sample mean of x.

The penalization is carried for the piecewise linear approximation of g in an exact
manner; that is, given g, the integral of the absolute value of the first or second
derivative can be expressed as the �1 norm of Pg, where P is a linear penalization
operator whose coefficients depend only on the mesh v. In particular, the total
variation of a piecewise linear g is the sum, for j = 1, 2, . . . , m, of |gj − gj−1|;
apparently, in this case P is the simple difference operator, hereafter denoted by ∇.
Note that ∇ annihilates 1: ∇1 = 0. As a rule, this is also true for other penalization
operators. For instance, the operator P arising from penalization of the total
variation of the derivative (ν = 2, p = 1), whose formula can be found in [16],
annihilates 1 as well; just note that the constant function is piecewise-linear and
therefore the total variation of its derivative must be zero.

The exact approach to penalization for higher derivatives and/or their squares
would require higher-order piecewise-polynomial finite elements; in dimension d =
1 it is numerically simpler to make the meshes fine and equidistant, and rather
approximate the penalties in the spirit of finite-difference methods (note that the
case p = 2 and ν = 1 can be still carried out exactly).

The components listed above form the discretized version of (2)–(3), which
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amounts to the convex optimization problem seeking f minimizing

1TLg + cTf + λ‖Pg‖p
p, f = exp(g) componentwise. (4)

The inputs are xi (reflected through L) and λ; the formulation depends on the way
how the evaluation operator L, the coefficient vector c and the penalization operator
P are set, and also on the selected value of p.

The conjugate dual of (4), derived in [16], minimizes, for p = 1,
∑

j

cjfj log fj , cjfj = hj for all j, h = LT1n + PTw, ‖w‖∞ ≤ λ. (5)

Similar dual formulations can be formulated for other values of p. While already
the formulation (4) is within the scope of the modern optimization software (for the
values like m = 1000, say, which is fully satisfactory for the graphing, for instance),
the dual formulation saves about 25% of CPU time. Beyond that, it has interesting
theoretical interpretations and consequences.

3 Deregularized maximum entropy

The idealized functional form of the dual (5) (which will be in the full formal
vigor pursued elsewhere) can be viewed as the maximization of the (differential)
Shannon entropy H(f) = − ∫

f log f . This maximization takes place over the sieve
h = LT1n + PTw, ‖w‖q ≤ λ. The coefficient vector c corresponds to the dominating
measure; f can be thus interpreted then as a density of the probability measure
corresponding to h. To see that the adjective “probability” is justified, we observe
the following. If a is annihilated by P, then aTh = aTLT1n. We noted already
that 1 is annihilated by typical penalization operators, and that for any evaluation
operator, 1TL1n = 1. Therefore, the elements of h sum to 1Th = 1TLT1n = 1.

For penalties involving derivatives higher than first, this reasoning can be ex-
tended to moments (interpreting the foregoing summation as the 0th moment). For
instance, the total variation of the derivative of any linear function is 0; since any
linear function is piecewise linear, the corresponding penalization operator P anni-
hilates any a of the form aj = α + βvj . In particular, vTh = vTLT1n = (1/n)xT1n;
thus, the mean of h is equal to the sample mean of x.

Similar considerations give us (at least approximate) equality of higher-order
moments, if higher-order derivatives are penalized. As can be best seen from the
idealized functional version, penalizing the derivative of order ν makes the moments
up to order ν − 1 of the estimated density equal to their sample counterparts
(irrespective of p, that is regardless of whether the �1 or �2 norm is penalized).

If we set λ = 0, then the sieve contains only one element, which corresponds
to the empirical probability measure supported by x. By increasing λ we gradually
relax the restrictions on the sieve, by adding a sequence of “stabilizers” wi, filtered
through the adjoint PT of the operator P.

Note, however, that the equality of moments remains preserved for every λ.
Therefore, for λ → ∞ the estimate approaches the result of entropy maximization
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subject to moment constraints—which is the classical maximum entropy estimate,
dating back at least to Jaynes [13]. The results of Shannon [18] about entropy
maximization, available in the modern form from Kagan, Linnik, and Rao [15],
tell us in the functional case that (a) for bounded domains, the maximum entropy
distribution without any moment distribution is uniform over the domain; (b) for
unbounded domains, the maximum entropy distribution with first two moments
fixed is the normal distribution with the corresponding mean and standard devia-
tion. The case (a) is prototypic to ν = 1, penalizing the first derivative; the case
(b) to ν = 3, penalizing the third derivative. Since only the form of the operator
P (or D) matters here, the same limiting distribution is obtained either for p = 2,
the proposal of Silverman [20], or for p = 1, the proposal of this note.

Our numerical evidence supports this qualitative behavior. Even for the bounded
domains of the discretized version, the constraint on the first two moments (ν = 3)
gives a quite stable truncated normal distribution close to the ideal one in the
limit. The case with a constraint on the mean, but not on variance (ν = 2), ex-
hibits somewhat intermediate behavior. For moderate λ, the results do not differ
much from those with ν = 3; however, for λ → ∞ those for ν = 3 converge to the
aforementioned truncated normal, while those for ν = 2 eventually sink into the
uniform, exhibiting sometimes an intermediate double-exponential behavior—to a
greater extent for �1, to a lesser one for �2 penalties, corresponding the proposals
of Koenker and Mizera [16] and Gu [10], respectively.

Note the opposite tendencies in λ: while the primal wants to increase λ to
regularize the MLE off its overfitting behavior, the dual rather prefers to decrease
λ to get the maximum entropy estimator closer to the reality in the data. For this
reason, we tend to speak rather about deregularized than regularized maximum
entropy.

Finally, further manipulation of quantities involved in the dual prescription
shows the well-known equivalence of maximum entropy principle with that of min-
imum Kullback-Leibler divergence, in our discretized version deregularized to min-
imize, over the very same sieve, the discrepancy of the estimated density to the
uniform on I. For more background, see Vajda [21], and the references there.

4 Tautology: some string theory and practice

The simplicity of the case ν = 1 and p = 1, corresponding to penalizing the
total variation of g itself, allows for some geometric understanding of the dual—in
connection to the “stretched” or “taut” string methods.

Consider first the ideal functional version again. Integration by parts shows that
the adjoint of the first derivative operator D1 is −D1; in the light of the symmetry
of the penalization prescription and that of the sieve, we can safely drop the minus
sign. In dimension d = 1, it is possible express the density f as the derivative
of the cumulative distribution function, f = F ′. The dominating measure is the
Lebesgue one, hence cj is equal to a constant; identifying f with h and applying the
antiderivative operator to the both sides of the sieve identity, we obtain that F =
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Fn +w with ‖w‖ ≤ λ; here Fn is the empirical distribution function supported by x.
In other words, the estimated F lies within the Kolmogorov distance λ of Fn, and
minimizes the objective function

∫
F ′(x) log F ′(x)dx, which makes F linear between

the points where it touches the boundary of the Kolmogorov “tube”—this follows
from an exercise in classical calculus of variations: minimizing

∫ β

α
f(x) log f(x)dx

under boundary conditions fixing f(α), f(β) leads to the solution linear on [α, β].
In other words, our F is the stretched string in the neighborhood of Fn given by λ!
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Figure 1: Stretched strings in three differently understood tubes.

Since all this may appear pretty unconvincing (and on the other hand probably
not worth a formal proof), let us try to implement (5) numerically and compare it
with the taut string estimate, as returned by the function pmden() of the R package
ftnonpar of Davies and Kovac [5]. However, here we stumble on aspects indicated
by the motto in the preamble. While the theoretical descriptions in [11] and [2]
seem clear, [4] in passing indicates that the outcome of pmden() is a result of some
closer unspecified (and undocumented in ftnonpar) aftersmoothing. Fortunately,
the open source character of the R code of pmden() enables reverse engineering—
after which we are able to conjecture that the key to the “real” taut lies in its
variable fts.

The next problem lies in the interpretation of “tube”. We omit the details and
rather refer the reader to Figure 1, which shows three possible interpretations that
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come immediately to mind. However, it turns out that pmden() uses a fourth one—
not that unnatural in the given context, but also not that immediately coming to
mind.
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Figure 2: Short simulation experiment (2 runs): string plotted over taut.
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Having gathered all this intelligence, it is not hard to reproduce it as an output
of our MATLAB function taut and try it on several examples against the original
variable fts from pmden(). While we find the agreement in this case fully satisfac-
tory, the same cannot be said yet with respect to the output of our implementation
of (5), with P = ∇. The problem is not only in different understanding of the
concept of the tube, but also in the fact that (5) computes density at the mesh
points, while the taut string algorithm between them. Nevertheless, a slight mod-
ification of our coefficient vector (that is, the integral approximation formula) to
ci = ((n − 1)/n)(vi+1 − vi) for i = 0, 1, . . . , n − 1, and cn = (1/n)(vn − v0) pro-
duces, on the mesh generated by the sorted xi, fits that in repeated runs of our
new MATLAB function string (see Figure 2 for a sample) give 99% satisfactory
agreement; we attribute the missing 1% to numerical discrepancies, different algo-
rithms and similar phenomena between Earth and Heaven. At this point, we—if
not the reader—are sufficiently convinced that this very special case of (5) (recall:
ν = 1, p = 1, v = x and tweaked c) can be viewed as essentially identical with the
stretched string method.

5 Beyond Shannon: brave new worlds

We have to admit that our intention to make all our research reproducible is hitting
a serious obstacle at this point: our computational procedures require an access to
proprietary software, in particular to a reasonable convex optimization solver: not
only MATLAB and its optimization toolbox, but unfortunately beyond. While we
gratefully acknowledge the use of Danish MOSEK [1] we may also contemplate
potential modifications of our estimating prescriptions. A possible direction is to
consider a generalized form of the entropy functional based on Rényi’s entropy; this
is defined for α �= 1 as

Hα(f) =
1

1 − α
log

∫
fαdx,

the limit for α → 1 being equal to the Shannon entropy H(f), which can be thus
viewed as H1(f). Using the discrete version of Hα in the objective function of
(5), we arrive to a continuum of alternatives, from which again only few are of
interest (if any): apart from H1, it is most prominently H2, whose versions are
known in ecology as Simpson’s diversity index and in economics as Gini’s index.
From the computational perspective, note that replacing the Shannon entropy by
that of Rényi-Simpson-Gini moves (5) from the “nonlinear convex” to “quadratic”
programming denomination —hence possibly easing the implementation. ∗

Somewhat unexpectedly, we find that replacing H1 by H2 does not change
the outcome for the taut string case (ν = 1, p = 1). Indeed: the aforementioned
exercise to find a minimum of

∫ β

α f(x) log f(x)dx under fixed f(α), f(β) yields same

∗Not in the MATLAB optimization toolbox, though. While MOSEK’s quadratic programming
function successfully converges to the solutions shown at Figures 4 and 5, MATLAB’s crashes at
the same input data reporting mysterious error messages.
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Figure 3: Total variation does not stretch the string unambiguously.

linear solution when the minimized functional is replaced by
∫ β

α (f(x))2dx. In this
respect, an interesting question is whether the minimized functional could not be
the L1 functional

∫ β

α
|f(x)|dx, as suggested on page 19 of Davies and Kovac [3].

Note that this would mean further simplification, downshifting the denomination
from “quadratic” to “linear” programming. Unfortunately, the answer is negative,
for the reason that can be seen in Figure 3. For the L1 functional, the taut string
is only a solution, not the solution; albeit this might not be an issue in many cases,
there is always a danger that an L1-based density estimation algorithm would return
different results, depending on the particular linear programming implementation.

Despite these findings, it is important to remind ourselves and the reader that
the world does not end at the first derivative (ν = 1). After all, one can ask whether
the Shannon and Rényi-Simpson-Gini density estimators, shown in Figure 4 (for
ν = 2) and Figure 5 (for ν = 3), and computed from the data used in the left panel
of Figure 2 do not each resemble the 50:50 mixture of N(−2,1) and N(2,1) densities
(from which the data were simulated) more than anything from Figure 2. Note
that for ν > 1 different entropies really give different results—albeit perhaps not
that much.

Before proceeding to the final conclusion, let us mention that our findings about
the nature of stretched strings may have some relevance also for the nonparametric
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Figure 4: The Shannon (H1, solid) and the Rényi-Simpson-Gini (H2, broken)
deregularized maximum-entropy estimates penalizing the total variation of the first
derivative of the logarithm of the estimated density.

regression methods based on this principle; knowing the equivalence of strengths
and weakness of various possible dual prescriptions entices to trace them back into
their primal formulations.

6 Conclusion: density estimation in the new millenium

Density estimation methods based on penalized maximum likelihood offer a flexible
and data-analytically very apealing methodological tool—as can be realized from
various viewpoints and is also documented by the recent wave of interest in these
methods. While the fortuitous aspects of the L2 approach (a possibility to express
exact solutions via Hilbert space theory; linear estimating algorithms) are in the
density estimation context for the most part lost due to the presence of nonneg-
ativity and integrability constraints, the L1 formulation offers not only a compu-
tationally feasible alternative, but through its conjugate dual also a possibility to
apply the sophisticated λ selection adaptive strategies developed by Davies and
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Figure 5: The Shannon (H1, solid) and the Rényi-Simpson-Gini (H2, broken) dereg-
ularized maximum-entropy estimates penalizing the total variation of the second
derivative of the logarithm of the estimated density.

Kovac [3], [4], as exemplified by the taut string connection. The dual formulation
brings not only computational savings and intriguing theoretical interpretations,
but the use of alternative entropies broadens the scope of the methods and may
lead to further conceptual and computational improvements.

From various possibilities in this vein, the L1 analog of the proposal of Silver-
man [20], minimizing

1
n

n∑
i=1

g(xi) +
∫

e−g(x)dx +
∨

g′′,

the last term standing for the total variation of the second derivative of g, may have
additional aesthetic qualities, in particular arising from the fact that its regular-
ization limit is normal. Moreover, this extends to the multivariate case, and recent
results of Johnson and Vignat [14], and others establish similar properties also for
the Rényi-Simpson-Gini alter ego, with the role of normal played by t distributions.
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From the pragmatic standpoint, however, any definitive recommendations will
be possible only after a more rigorous scrutiny of possible alternatives, comple-
mented by appropriate automatic λ selection rules. We hope that this note gives
some impetus for such an undertaking.
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