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Abstract. Some linkages between kernel and penalty methods of density estimation are

explored. It is recalled that classical Gaussian kernel density estimation can be viewed as

the solution of the heat equation with initial condition given by data. We then observe

that there is a direct relationship between the kernel method and a particular penalty

method of density estimation. For this penalty method, solutions can be characterized as

a weighted average of Gaussian kernel density estimates, the average taken with respect to

the bandwidth parameter. A Laplace transform argument shows that this weighted average

of Gaussian kernel estimates is equivalent to a fixed bandwidth kernel estimate using a

Laplace kernel. Extensions to higher order kernels are considered and some connections

to penalized likelihood density estimators are made in the concluding sections.

1. Introduction

In economics it is commonly believed that a phenomenon is understood if and only if one
can formulate an optimization problem that reproduces the phenomenon. In this respect
the appeal and apparent success of kernel density estimation methods in statistics, and
especially in econometrics, is something of an anomaly. By partially answering the question
posed in the title we hope to help remedy this neglect. We make no great claims for the
novelty of our account, indeed many aspects will be familiar to those conversant with the
regularization literature, especially the influential papers of Silverman (1982, 1984a), and
the somewhat less accessible papers of Terrell (1990) and Aidu and Vapnik (1989), but they
may be less familiar within the broader statistical community.

The linearization, or equivalent kernel characterization, of L2 penalty methods for non-
parametric regression has proven to be a valuable device for studying their asymptotic
behavior, as vividly demonstrated by Silverman (1984b), and the recent paper of Li and
Ruppert (2008). Our objective is more modest: reexamining kernel methods from the op-
timization perspective exposes some peculiarities of the kernel approach and suggests some
attractive alternatives within the penalization framework.
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2. Gaussian Kernel Density Estimation via the Heat Equation

Consider the proverbial rod of infinite length. Denote temperature of the rod at a point
x and time t by φ(x, t). Let φx(x, t), φxx(x, t) be the first and second derivatives with
respect to its first argument, and φt(x, t) be the first derivative with respect to the second
argument. If the initial temperature is described by a function g(x), the temperature at
(x, t) is determined by the heat equation,

(2.1) φt(x, t) = φxx(x, t) −∞ < x <∞, t > 0,

with initial condition,
φ(x, 0) = g(x) −∞ < x <∞,

and boundary conditions,
φ(x, t)→ 0 as x→ ±∞.

The solution of the heat equation is, see e.g. Strauss (1992),

φ(x, t) =
1√
4πt

∫ ∞
−∞

g(z) exp(−(x− z)2

4t
)dz.

Now suppose the initial condition g(x) is given by a sum of (Dirac) point masses, g(x) =
n−1

∑n
i=1 δXi(x), then the solution takes the form

φ(x, t) =
1√
4πt

∫ ∞
−∞

1
n

n∑
i=1

δXi(z) exp(−(x− z)2

4t
)dz =

1√
4πtn

n∑
i=1

exp(−(x−Xi)2

4t
)

This solution is immediately recognizable as a Gaussian kernel density estimate with the
value

√
2t playing the role of the bandwidth. As time passes and the heat diffuses through

the rod, its distribution at time t is precisely given by a Gaussian kernel density estimate.
This diffusion interpretation of kernel smoothing is conventional in the imaging literature
where partial differential equation methods are commonplace, but it is perhaps less famil-
iar elsewhere. In statistics, the multi-resolution work of Chaudhuri and Marron (2000)
constitutes an important exception.

3. A Roughness Penalty Interpretation of the Kernel Method

Consider the integral transform of φ(x, t)

f(x, λ) =
∫ ∞

0

1
λe
−t/λφ(x, t)dt.

for a fixed λ > 0. We will show that the variational problem,

(3.1) min
f

∫
[λ2fx(x, λ)2 + 1

2f(x, λ)2 − φ(x, 0)f(x, λ)]dx
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leads back to the solution of heat equation and therefore to the kernel estimate. To see this,
consider the integral transform of both sides of heat equation (2.1)∫ ∞

0

1
λe
−t/λφt(x, t)dt =

∫ ∞
0

1
λe
−t/λφxx(x, t)dt.

Integrating by parts,

1
λe
−t/λφ(x, t)|∞0 + 1

λ

∫ ∞
0

1
λe
−t/λφ(x, t)dt =

∂2

∂x2

∫ ∞
0

1
λe
−t/λφ(x, t)dt

and we have,

(3.2) −φ(x, 0) + f(x, λ) = λfxx(x, λ)

By applying the integral transform on the boundary condition of the heat equation, we
obtain a boundary condition f(x, λ)→ 0 as x→ ±∞. Finally, note that the variational
integral (3.1) can be minimized by solving the Euler equation,

∂Ψ
∂f
− ∂

∂x

∂Ψ
∂fx

= 0 where Ψ = λ
2f

2
x + 1

2f
2 − φ(x, 0)f.

Since ∂Ψ/∂f = f − φ(x, 0) and ∂Ψ/∂fx = λfx, we obtain equation (3.2). Because (3.2)
is equivalent to the heat equation representation (2.1), we see that the solution of the
minimization problem (3.1) is the integral transform of the solution of heat equation (2.1).
See e.g., Carrier and Pearson (1988), for some further details of this argument.

Note that f(x, λ) itself is a proper density function since∫ ∞
−∞

f(x, λ)dx =
∫ ∞
−∞

∫ ∞
0

1
λe
−t/λφ(x, t)dtdx =

∫ ∞
0

1
λe
−t/λdt ·

∫ ∞
−∞

φ(x, t)dx = 1.

As before, let data describe the initial condition so, φ(x, 0) = g(x) = n−1
∑n

i=1 δXi(x) in
(3.1). With f(x, λ) as our density estimate, we can write (3.1) as,

(3.3) min
f
−
∫
f(x, λ)dFn(x) + 1

2

∫
(f(x, λ))2dx+ λ

2

∫
(fx(x, λ))2dx.

The first two terms can be interpreted as a measure of infidelity to the observed data, the
last term is a penalty on the roughness of the fitted density. The parameter λ plays the role
of a tuning, or regularization, parameter. Our interpretation of each of these components
probably warrants some additional explanation.

To interpret the fidelity term, first note that if we were to replace dFn by a limiting
form of the true density, then minimizing just the fidelity term with respect to f would
have to reproduce this density. Second, consider a discretization. Instead of integrating
with respect to dFn(x) suppose that we approximate the empirical measure by a piecewise
constant density with respect to Lebesgue measure, say fn(x). We can write the mean
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squared error criterion,∫
(f(x)− fn(x))2dx =

∫
f2dx− 2

∫
ffndx+

∫
f2
ndx.

Since we are minimizing with respect to f , the last term can be neglected. The connection
to the Pearson minimum χ2 framework is more apparent if we write,

Ef [
(f − fn)2

f
] =

∫
(f − fn)2

f
fdx =

∫
(f − fn)2dx.

So we conclude that the fidelity term implicit in Gaussian kernel density estimators is a
continuous analogue of Pearson’s minimum χ2 approach. Just as the discrete formulation
of the Pearson criterion attempts to minimize the difference between the observed and
the expected frequencies, penalized density estimation method try to minimize distance
between a density estimate and the empirical density, distance measured by the least squares
principle. This approach is closely related to the “histospline” approach of Boneva, Kendall,
and Stefanov (1971).

The roughness penalty appearing in (3.3) is also somewhat strange. More typically
roughness penalties would be based on curvature, that is on second derivatives of the density.
The early penalized density estimator of Good and Gaskins (1971) was based on the first
derivative, but it was the first derivative of the square root of the density, a quantity that
when squared and then integrated yields Fisher information. In the present case the penalty
is somewhat simpler and does not appear to have an obvious statistical or probabilistic
interpretation.

Regarding the tuning parameter λ, observe that the solution of the penalty method (3.3)
is an integral transform of a family of density function estimates {φ(x, t)}t∈[0,∞) indexed
by the smoothing parameter t. Solutions can be interpreted as weighted averages of var-
ious kernel density estimates for various bandwidth t, with the weight determined by an
exponential distribution with intensity parameter λ. The tuning parameter λ thus deter-
mines the relative weight of kernel density estimates {φ(x, t)}t∈[0,∞) when we calculate the
weighted average. Small λ, puts more weight on the kernel density estimates with smaller
bandwidths t, so we obtain a rather rough density, while larger λ’s yield a smoother density.

Thus far we have presented a penalized density estimation problem corresponding to the
Gaussian kernel density estimator. But we have not exhibited an explicit solution of the
penalty problem. Although it is usually true of penalty methods that solutions are defined
only implicitly as a solutions of a variational problem, and thus need to be computed by
some iterative algorithm, in the present instance we can present an explicit form of the
solution. Solving (3.1) is equivalent to solving equation (3.2). We can rewrite (3.2) as,

(3.4) −λfxx(x, λ) + f(x, λ) = dFn(x).
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To solve (3.4), define the Green’s function which satisfies

(3.5) −λGxx(x) +G(x) = δ0(x)

with a boundary condition G(x)→ 0 as x→ ±∞. One can show that either by direct inte-
gration or using the Fourier transform, that the equation (3.5) together with its boundary
condition has the following solution,

G(x) =
1

2
√
λ

exp(−|x|/
√
λ).

The solution of (3.4) is then obtained by convoluting the Green’s function with the right
hand side of the equation (3.4),

(3.6) f̂(x, λ) =
∫
G(x− z)dFn(z) =

1
2
√
λn

n∑
i=1

exp(−|x−Xi|/
√
λ).

We have thus obtained the following explicit kernel representation of the penalized density
estimator.

Theorem 1. The solution of (3.3) is given by

(3.7) f̂λ(x) =
1

2
√
λn

n∑
i=1

exp(−|x−Xi|/
√
λ),

a kernel density estimate with the double-exponential (Laplacian) kernel and bandwidth
√
λ.

Remark 1: A natural question would be whether this process is reversible, that is,
whether one can recover Gaussian kernel density estimate from the solution of the penalty
method. In order to investigate this it is convenient to consider the unnormalized density
λf(x, λ) =

∫∞
0 e−t/λφ(x, t)dt with mass λ. We may regard λf(x, λ) as the Laplace transform

of a family of Gaussian kernel density estimates φ(x, t). In doing so, we can exploit well-
established relationships of Laplace transform and their inverse transforms. Note, however,
that this Laplace transform is defined in terms of the bandwidth parameter t not x. From
Theorem 1, we know

(3.8) λf̂(x, λ) =

√
λ

2n

n∑
i=1

exp(−|x−Xi|/
√
λ)

Now apply the inverse Laplace transform to (3.8). Since the inverse Laplace transform of
the double exponential function is Gaussian, applying the inverse Laplace transform to (3.8)
term-by-term, we obtain the original kernel density estimate

φ(x, t) =
1

n
√

4πt

n∑
i=1

exp(−(x−Xi)2/4t).

So we can indeed recover the original Gaussian kernel density function estimate.
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Remark 2: A final interpretation can be seen by considering the family of normal mixtures,

f(x) =
∫ ∫

(
√

4πt)−1 exp(−(x− z)2/4t)dQ1(z)dQ2(t)

where dQ1(·) is the mixing distribution of the location parameters and dQ2(·) is the mixing
distribution of the scale parameter. If we take dQ1(z) = dFn(z) and dQ2(t) = λ−1e−t/λdt,
then the normal mixture density representation yields f̂λ(x). Since the mixing distribution
for location parameters results in the Gaussian kernel density estimate, the penalized den-
sity estimator (3.7) can be interpreted as a scale mixture of the Gaussian kernel density
estimates.
Remark 3: Other kernel estimators can be derived from modifications of the partial
differential equation formulation of the variational solution. For instance, the Epanechnikov
kernel, K(x) = 3

4(1 − x2)I(|x| ≤ 1) can be shown to arise from the nonlinear diffusion
equation,

(3.9) φt = (φφx)x −∞ < x <∞, t > 0,

subject to initial conditions φ(x, 0) = δ0(x) − ∞ < x < ∞, boundary conditions,
φ(x, t) → 0 as x → ±∞, and the condition that

∫
φ(x, t)dx = 1 for all t > 0. See, for

example, Exercise 5.3.6 of McOwen (2003).
Starting from the heat equation whose solution is the Gaussian kernel density estimate,

we have exhibited a variational problem that shares some common structure with the heat
equation. We argued that the variational problem can be interpreted as the penalized
minimum χ2 method of density estimation. The solution of the penalty problem can be
characterized in terms of the Gaussian kernel method, as a weighted average of Gaussian
kernel estimates with exponentially declining weights with respect to bandwidth. In addi-
tion, this weighted average of Gaussian kernel density estimates can be represented as a
conventional fixed bandwidth kernel density estimator employing a Laplace (double expo-
nential) kernel. This leads one to ask: how reasonable is the fidelity and roughness penalty
that define the penalty problem? Neither, one would have to say, is very appealing; we will
briefly explore some alternatives in the final two sections of the paper.

4. Higher-Order Kernels and Derivative Penalties

Thus far we have seen that the L2 roughness penalty,

P (f) =
∫

(f ′(x))2dx,

when combined with a simple Pearsonian measure of fidelity yields solutions that can be
interpreted as classical kernel density estimators. Since it is evident more generally that
such quadratic variational problems have solutions represented by linear operators that
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must also have kernel interpretations it seems obligatory to press ahead with the question:
What happens with higher-order derivative penalties?

Consider the second-order penalty problem

(4.1) min
f
{1

2

∫
f2(x)dx−

∫
f(x)dFn(x) + λ

2

∫
(f ′′(x))2dx}.

As in the previous case we can express the solution of this problem as a kernel estimator
with fixed bandwidth depending on λ, except that we now require a “higher-order” kernel.

Theorem 2. Solutions (4.1) have the kernel representation,

f̂σ(x) =
∫
Gσ(x− z)dFn(z).

where Gσ(u) = 1
2 exp(−|u/σ|/

√
2) sin(|u/σ|/

√
2 + π/4)/σ, and σ = λ1/4.

Proof: The Euler condition for the problem (4.1) is,

λf
(iv)
λ (x) + fλ(x) = dFn(x)

It is easily verified that the Green’s function associated with this differential equation sat-
isfying,

λG(iv)(x) +G(x) = δ0(x)

takes the asserted form, with boundary conditions G(x) → 0 and G′(x) → 0 as x → ±∞
and consequently solutions have the integral representation appearing in the theorem.

This result is a particularly simple example of the general theory of reproducing kernel
Hilbert spaces as expounded for example by Wahba (1990). The function G is a second-
order kernel satisfying the condition, µk =

∫
ukG(u) = 0 for i = 1, 2, 3, and µ0 = 1; it is

precisely the kernel derived by Silverman (1984b) to approximate the penalized likelihood
estimator with conventional roughness penalty:

P (f) =
∫

(log f ′′(x))2dx,

except that we are now penalizing roughness of the density itself, rather than the roughness
of the logarithm of the density. In contrast to Silverman’s setting where this kernel provides
an approximation to the penalized maximum likelihood estimator, here there is an exact
equivalence.

The result given in Theorem 2 can be extended to yet higher order derivative penalties
yielding yet higher order kernels. In Figure 1 we illustrate the kernels appearing in Theorems
1 and 2 as well as the kernel corresponding to the third order derivative penalty proposed
by Silverman (1982).
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Figure 1. Equivalent Kernels for L2 Density Estimation Penalties

We can also ask whether there is an analogue of the diffusion representation of this
second-order penalty estimator. Consider the modified diffusion equation,

(4.2) φt(x, t) = −φxxxx(x, t) −∞ < x <∞, t > 0,

with initial condition, φ(x, 0) = g(x) −∞ < x <∞, and boundary conditions, φ(x, t)→
0 and φ′(x, t)→ 0 as x→ ±∞. Let

Φ(ξ, t) =
∫
e−2πiξxφ(x, t)dx

denote the Fourier transform of φ. Integrating by parts repeatedly we can rewrite the
Fourier transform of (4.2),∫

e−2πiξxφt(x, t)dx = −
∫
e−2πiξxφxxxx(x, t)dx

as
∂
∂tΦ(ξ, t) = −16π4ξ4t Φ(ξ, t).

But this elementary first order differential equation has solution,

Φ(ξ, t) = Φ(ξ, 0)e−16π4ξ4t
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where Φ(ξ, 0) =
∫
φ(x, 0)e−2πiξxdx. Thus, inverting the Fourier transform, we obtain the

convolution,

φ(x, t) = φ(x, 0) ∗K(x, t) =
∫ ∞
−∞

g(z)K(x− z, t)dz

where K(x, t) = K(x/t, 1)/t and

K(x, 1) =
∫
e2πiξxe−16π4ξ4dξ

=
1

2π

(
2Γ(5

4) 0H2[{}, {1
2 ,

3
4},

x4

256 ]− 1
4x

2Γ(3
4) 0H2[{}, {5

4 ,
3
2},

x4

256 ]
)

and pHq [{a1, · · · ap}, {b1, · · · bq}, x] is the generalized hypergeometric function. The kernel
is again a second-order kernel. As in the previous section we can interpret the function
φ(x, t) as describing the state of the diffusion at time t. Integrating out t by averaging over
these solutions with exponentially declining weights yields the solution given in Theorem 2.

5. Penalized Likelihood Methods

In contrast to the foregoing approach in which fidelity is represented by a Pearsonian
squared error criterion, the tradition originating in Good and Gaskins (1971), and further
developed by de Montricher, Tapia, and Thompson (1975), Silverman (1982), Cox and
O’Sullivan (1990), and Eggermont and LaRiccia (1999) is to pose the density estimation
problem as a maximum likelihood problem subject to a penalty on the roughness of the
fitted density.

Eggermont and LaRiccia (1999) demonstrate that one can approximate the penalized
likelihood estimator of Good and Gaskins (1971), by a kernel estimator, and then use the
known properties of kernel estimators to investigate asymptotic behavior of the penalty
method. We briefly describe this approach and its connections to the results of the previous
section. The Good and Gaskins (1971) penalized likelihood estimator solves,

(5.1) min
v
{−2

∫
log v(x)dFn(x) +

∫
(v(x))2dx+ λ

∫
(vx(x))2dx},

where, v can be interpreted as the square root of the estimated density, and the negative log-
likelihood function is employed as a measure of fidelity. The second term looks similar to the
penalty term of (3.3), but it plays a completely different role, of enforcing a normalization
constraint. The third term is the roughness penalty. Given the interpretation of v the
penalty is proportional to the Fisher information for the location parameter of the density.
One may well ask why Fisher information for location is a reasonable measure of roughness
of densities, but we will not attempt to defend this choice here.
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Invoking the Euler equation, de Montricher, Tapia, and Thompson (1975) showed that
the solutions of (5.1) satisfy the second order non-linear differential equation

(5.2) −λvxx(x) + v(x) =
dFn(x)
v(x)

with boundary condition v(x)→ 0 as x→ ±∞. To obtain a solution of (5.2), we can apply
the same principle that we used in (3.4). The Green’s function is

G√λ(x) = 1
2
√
λ

exp(−|x|√
λ

)

and convolution of the right hand side of (5.2) and the Green’s function yields,

v̂(x) =
∫
G√λ(x− z)dFn(z)

v(z)
=

1
n

n∑
i=1

1
2
√
λ

exp(−|x−Xi|√
λ

)/v̂(Xi).

Note that this is not a solution of the differential equation (5.2), since the right hand
side is a function of the unknown v̂. We have simply converted a differential equation
into an integral equation. Finding an analytic solution of (5.2) is difficult because of this
nonlinearity. Rather than solving the equation directly, Eggermont and LaRiccia (1999)
devised an elegant way to construct upper and lower bounds for density estimator arising
from equation (5.2). We will summarize their methods briefly.

Rewriting (5.2), using (v2)xx = 2vvxx + 2(vx)2 we have,

−λ
2 (v2)xx + v2 = dFn − λ(vx)2

−λ
4 (v2)xx + v2 = 1

2dFn + 1
2(1− λ(vx/v)2)(vx)2

Bearing in mind that it was v̂2 from solving (5.1) that was intended to be a density, we can
set f̂(x) = v̂2(x) and employ the Green’s functions for each case. Then ignoring the second
components of the right hand side of each equation, one obtains upper and lower bounds
for the density estimate:

1
2

∫
G√

λ/4
(x− z)dFn(z) ≤ f̂(x) ≤

∫
G√

λ/2
(x− z)dFn(z),

or more explicitly,

1
2n

n∑
i=1

1√
2λ

exp(−
√

2|x−Xi|√
λ

) ≤ f̂(x) ≤ 1
n

n∑
i=1

1√
λ

exp(−2|x−Xi|√
λ

).

Positivity of the second component in the second equation is treated in detail by Eggermont
and LaRiccia (1999).

The upper bound is a proper density, but the lower bound is a sub-density. One may
wonder how a density function can be a upper bound for another density function? The
answer lies in the fact that the solution of the maximum penalized likelihood method (5.1)
is itself is a sub-density, that is its total mass is always less that unity. Indeed, Eggermont
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and LaRiccia (1999) show that for solutions of (5.1),∫
(v̂(x))2dx = 1− λ

∫
(v̂x(x))2dx,

and thus can be easily renormalized to have mass one.
For the Good and Gaskins’ estimator, then, we do not have a exact representation of the

penalty estimator in terms of a kernel estimator, and we are led to believe that nonlinearities
are likely to render this unlikely in the case of most other penalty methods. Nevertheless,
the interplay between the penalty approach and the kernel approach constitute, in our view,
a fruitful means of better understanding both methods.

6. Conclusion

We have elaborated some connections between kernel and penalty methods of density
estimation, illustrating that exact equivalence can be achieved by adopting a Pearsonian
measure of fidelity, or goodness-of-fit, combined with certain L2 roughness penalties. The
quadratic structure of such variational problems leads to exact solutions representable by
integral equations and interpretable as kernel estimators. Higher order derivative penalties
yield higher-order kernels with their attendant advantages and disadvantages, notably their
tendency to deliver negative estimates of the density in the tails. Modification of these
penalty problems to impose non-negativity or more exotic properties like log-concavity
are quite straightforward. Indeed, we would argue that the virtue of penalty methods
generally is their flexibility, the opportunity afforded to tailor both fidelity and penalty
contributions to the demands of particular applications. A large class of such problems
retains a convenient convex structure that facilitates efficient computations via modern
interior point methods. Some further details emphasizing penalized likelihood methods
with total variation roughness penalties are available in Koenker and Mizera (2006).
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