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Abstract. L1 penalties have proven to be an attractive regularization device for
nonparametric regression, image reconstruction, and model selection. For function
estimation, L1 penalties, interpreted as roughness of the candidate function mea-
sured by their total variation, are known to be capable of capturing sharp changes
in the target function while still maintaining a general smoothing objective. We
explore the use of penalties based on total variation of the estimated density, its
square root, and its logarithm – and their derivatives – in the context of univariate
and bivariate density estimation, and compare the results to some other density
estimation methods including L2 penalized likelihood methods.

Our objective is to develop a unified approach to total variation penalized density
estimation offering methods that are: capable of identifying qualitative features
like sharp peaks, extendible to higher dimensions, and computationally tractable.
Modern interior point methods for solving convex optimization problems play a
critical role in achieving the final objective, as do piecewise linear finite element
methods that facilitate the use of sparse linear algebra.

1. Introduction

The appeal of pure maximum likelihood methods for nonparametric density es-
timation is immediately frustrated by the simple observation that maximizing log
likelihoods,

n∑
i=1

log f(Xi) = max
f∈F

!

over any moderately rich class of densities, F , yields estimators that collapse to a sum
of point masses. These notorious “Dirac catastrophes” can be avoided by penalizing
the log likelihood

(1)
n∑

i=1

log f(Xi)− λJ(f) = max
f∈F

!

by a functional J that imposes a cost on densities that are too rough. The penalty
regularizes the original problem and produces a family of estimators indexed by the
tuning parameter λ.
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2 Total Variation Density Estimation

Penalized maximum likelihood methods for density estimation were introduced by
Good (1971), who suggested using Fisher information for the location parameter of
the density as a penalty functional. Good offered a heuristic rationale of this choice
as a measure of the sensitivity of the density to location shifts. The choice has the
added practical advantage that it permits the optimization to be formulated as a
convex problem with the (squared) L2 penalty,

(2) J(f) =

∫
(
√

f ′)2dx.

In subsequent work Good and Gaskins (1971) found this penalty somewhat unsatis-
factory, producing estimates that sometimes “looked too straight.” They suggested a
modified penalty that incorporated a component penalizing the second derivative of√

f as well as the first. This component has a more direct interpretation as a measure
of curvature and therefore as a measure of roughness of the fitted density.

Eschewing a “full-dress Bayesian approach,” Good and Gaskins refer to their meth-
ods as a “Bayesian approach in mufti.” Ideally, penalties could be interpreted as an
expression of prior belief about the plausibility of various elements of F . In practice,
the justification of particular penalties inevitably has a more heuristic, ad-hoc flavor:
data-analytic rationality constrained by computational feasibility. While penalties
may be applied to the density itself rather than to its square root, a possibility briefly
mentioned in Silverman (1986), a more promising approach considered by Leonard
(1978) and Silverman (1982) replaces

√
f by log f in the penalty term. When the

second derivative of log f is penalized, this approach privileges exponential densities;
whereas penalization of the third derivative of log f targets the normal distributions.

The early proposals of Good and Good and Gaskins have received detailed theoret-
ical consideration by Thompson and Tapia (1990) and by Eggermont and LaRiccia
(2001), who establish consistency and rates of convergence. A heuristic argument of
Klonias (1991) involving influence functions suggests that penalized likelihood esti-
mators perform automatically something similar in effect to the “data sharpening”
of Hall and Minnotte (2002) – they take mass from the “valleys” and distribute it
to the “peaks.” Silverman (1984) provides an nice link between penalty estimators
based on the rth derivative of log f and adaptive kernel estimators, and he suggests
that the penalty approach achieves a degree of automatic adaptation of bandwidth
without reliance on a preliminary estimator. Taken together this work constitutes,
we believe, a convincing prima facie case for the regularization approach to density
estimation.

From the computational point of view, all these proposals, starting from those of
Good, can be formulated as convex optimization problems and therefore are in prin-
ciple efficiently computable. However, the practice has not been that straightforward,
and widely accessible implementations may still not be always available. In particu-
lar, the earlier authors thinking in terms of techniques for minimization of quadratic
functionals might still view the constraints implied by the fact that the optimization
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must be performed over f that are densities as a computational pain. Penalization of√
f or log f is often motivated as a practical device circumventing the nonnegativity

constraint on f ; penalizing the logarithm of the density as noted by Silverman (1982),
offers a convenient opportunity to eliminate the constraint requiring the integral of
f to be 1. In contrast to these advantages, penalizing the density f itself requires a
somewhat more complicated strategy to ensure the positivity and integrability of the
estimator. In any case, the form of the likelihood keeps the problem nonlinear; hence
iterative methods are ultimately required. Computation of estimators employing the
L2 penalty on (log f)′′ has been studied by O’Sullivan (1988). An implementation
in R is available from the package gss of Gu (2005). Silverman’s (1982) proposal
to penalize the third derivative of log f , thereby shrinking the estimate toward the
Gaussian density, has been implemented by Ramsay and Silverman (2002).

The development of modern interior-point methods for convex programming not
only changes this outlook – convex programming works with constraints routinely –
but also makes various other penalization proposals viable. In what follows, we would
like to introduce several new nonparametric density estimation proposals involving
penalties formulated in terms of total variation. Weighted sums of squared L2 norms
are replaced by weighted L1 norms as an alternative regularization device. Squaring
penalty contributions inherently exaggerates the contribution to the penalty of jumps
and sharp bends in the density; indeed, density jumps and piecewise linear bends are
impossible in the L2 framework since the penalty evaluates them as “infinitely rough.”
Total variation penalties are happy to tolerate such jumps and bends, and they are
therefore better suited to identifying discrete jumps in densities or in their derivatives.
This is precisely the property that has made them attractive in imaging applications.

From a computational perspective, total-variation based penalties fit comfortably
into modern convex optimization setting. Exploiting the inherent sparsity of the
linear algebra required yields very efficient interior point algorithms. We will focus
our attention on penalizing derivatives of log f , but other convex transformations can
be easily accommodated. Our preliminary experimentation with penalization of

√
f

and f itself did not seem to offer tangible benefits.
Total-variation penalties also offer natural multivariate generalizations. Indeed, we

regard univariate density estimation as only a way station on a road leading to im-
proved multivariate density estimators. To this end, the fact that penalty methods can
easily accommodate qualitative constraints on estimated functions and their bound-
ary values is an important virtue. One of our original motivations for investigating
total variation penalties for density estimation was the ease with which qualitative
constraints – monotonicity or log-concavity, for instance – could be imposed. In this
context it is worth mentioning the recent work of Rufibach and Dümbgen (2004)
who show that imposing log-concavity without any penalization is enough to regular-
ize the univariate maximum likelihood estimator, and achieve attractive asymptotic
behavior.
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Total variation penalties for nonparametric regression with scattered data have
been explored by Koenker, Ng, and Portnoy (1994), Mammen and van de Geer (1997),
Davies and Kovac (2001, 2004) and Koenker and Mizera (2002, 2004). Total
variation has also played an important role in image processing since the seminal
papers of Mumford and Shah (1989), and Rudin, Osher, and Fatemi (1992).

We begin by considering the problem of estimating univariate densities, and then
extend the approach to bivariate settings.

2. Univariate Density Estimation

Given a random sample, X1, . . . , Xn from a density f0, we will consider estimators
that solve,

(3) max
f
{

n∑
i=1

log f(Xi)− λJ(f) |
∫

Ω

f = 1},

where J denotes a functional intended to penalize for the roughness of candidate
estimates, F , and λ is a tuning parameter controlling the smoothness of the estimate.
Here the domain Ω may depend on a priori considerations as well as the observed
data.

We propose to consider roughness penalties based on total variation of the trans-
formed density and its derivatives. Recall that the total variation of a function
f : Ω → R is defined as ∨

Ω

(f) = sup
m∑

i=1

|f(ui)− f(ui−1)|,

where the supremum is taken over all partitions, u1 < . . . < um of Ω. When f is
absolutely continuous, we can write, see e.g. Natanson (1974, p.259),∨

Ω

(f) =

∫
Ω

|f ′(x)|dx.

We will focus on penalizing the total variation of the first derivative of the log
density,

J(f) =
∨
Ω

((log f)′) =

∫
Ω

|(log f)′′|,

so letting g = log f we can rewrite (3) as,

(4) max
g
{

n∑
i=1

g(Xi)− λ
∨
Ω

(g′) |
∫

Ω

eg = 1}.

But this is only one of many possibilities: one may consider

J(f) =
∨
Ω

(g(k)),
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where g(0) = g, g(1) = g′, etc., and g may be log f , or
√

f , or f itself, or more generally
gκ = f , for κ ∈ [1,∞], with the convention that g∞ ≡ eg. Even more generally, linear
combinations of such penalties with positive weights may be considered. From this
family we adopt κ = ∞ and k = 1; see Sardy and Tseng (2005) for κ = 1 and k = 0.
In multivariate settings g(k) is replaced by ∇kg, as described in the next section.

As noted by Gu (2002), even for L2 formulations the presence of the integrability
constraint prevents the usual reproducing kernel strategy from finding exact solutions;
some iterative algorithm is needed. We will adopt a finite element strategy that
enables us to exploit the sparse structure of the linear algebra used by modern interior
point algorithms for convex programming.

Restricting attention to f ’s for which log(f) is piecewise linear on a specified par-
tition of Ω, we can write J(f) as an `1 norm of the second weighted differences
of f evaluated at the mesh points of the partition. More explicitly, let Ω be the
closed interval [x0, xm] and consider the partition x0 < x1 < · · · < xm with spacings
hi = xi − xi−1, i = 1, · · ·m. If log(f(x)) is piecewise linear, so that

log(f(x)) = αi + βix x ∈ [xi, xi+1),

then

J(f) =
∨
Ω

((log f)′) =
m∑

i=1

|βi − βi−1| =
m∑

i=1

|(αi+1 − αi)/hi+1 − (αi − αi−1)/hi|,

where we have imposed continuity of f in the last step. We can thus parameterize
functions f ∈ F by the function values αi = log(f(xi)), and this enables us to write
our problem (3) as a linear program,

(5) max{
n∑

i=1

αi − λ
m∑

j=1

(uj + vj)|Dα− u + v = 0, (α, u, v) ∈ Rn × R2m
+ }

where D denotes a tridiagonal matrix containing the hi factors for the penalty con-
tribution, and u and v represent the positive and negative parts of the vector Dα,
respectively.

An advantage of parameterization of the problem in terms of log f is that it obviates
any worries about the non-negativity of f̂ . But we have still neglected one crucial
constraint. We need to ensure that our density estimates integrate to one. In the
piecewise linear model for log f this involves a rather awkward nonlinear constraint
on the α’s,

m∑
j=1

hi
eαi − eαi−1

αi − αi−1

= 1.

This form of the constraint cannot be incorporated directly in its exact form into
our optimization framework, nevertheless its approximation by a Riemann sum on a
sufficiently fine grid provides a numerically satisfactory solution.
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2.1. Data Augmentation. In the usual Bayesian formalism, the contribution of the
prior can often be represented as simple data augmentation. That is, the prior can be
interpreted as what we would believe about the model parameters if we had observed
some “phantom data” whose likelihood we could evaluate. This viewpoint may strain
credulity somewhat, but under it the penalty, J(f), expresses the belief that we have
“seen” m observations on the second differences of log f evaluated at the xi’s, all
zero, and independent with standard Laplacian density, 1

2
e−|x|. The presence of λ

introduces a free scale parameter that represents the strength of this belief. Data
dependent strategies for the choice of λ obviously violate Bayesian orthodoxy, but
maybe condoned by the more pragmatic minded.

Pushing the notion of Bayesian virtual reality somewhat further, we may imagine
observing data at new xi values. Given that our estimated density is parameterized
by its function values at the “observed” xi values, these new values introduce new
parameters to be estimated; these “phantom observations” contribute nothing to the
likelihood, but they do contribute to the penalty term J(f). But by permitting log f
to bend at the new xi points in regions where there is otherwise no real data, flexibility
of the fitted density is increased. In regions where the function log f is convex, or
concave, one large change in the derivative can thus be broken up into several smaller
changes, without affecting the total variation of its derivative. Recall that the total
variation of a monotone function on an interval is just the difference in the values
taken at the endpoints of the interval.

Rather than trying to carefully select a few xi values as knots for a spline represen-
tation of the fitted density, as described in Stone, Hansen, Kooperberg, and Truong
(1997), all of the observed xi are retained as knots and some virtual ones are thrown
in as well. Shrinkage, controlled by the tuning parameter, λ, is then relied upon to
achieve the desired degree of smoothing. The use of virtual observations is particu-
larly advantageous in the tails of the density, and in other regions where the observed
data are sparse. We will illustrate the use of this technique in both univariate and
bivariate density estimation in the various examples of subsequent sections.

Example. Several years ago one of us, as a class exercise, asked students to estimate
the density illustrated in Figure 1(a), based on a random sample of 200 observations.
The density is a mixture of three, three-parameter lognormals:

(6) f1(x) =
3∑

i=1

wiφ(log((x− γi − µi)/σi))/(σi(x− γi)),

where φ denotes the standard normal density, µ = (0.5, 1.1, 2.6), γ = (.0.4, 1.2, .2.4),
σ = (0.2, 0.3, .0.2), and w = (0.33, 0.33, 0.33). In the figure we have superimposed
the density on a histogram of the original data using an intentionally narrow choice
of binwidth.

The most striking conclusion of the exercise was how poorly conventional den-
sity estimators performed. With one exception, none of the student entries in the
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competition were able to distinguish the two tallest peaks, and their performance
on the lower peak wasn’t much better. All of the kernel estimates looked very sim-
ilar to smoother of the two kernel estimates displayed in Figure 1(b). This is a
fixed-bandwidth Gaussian kernel estimate with bandwidth chosen by Scott’s (1992)
biased cross-validation criterion as implemented in R and described by Venables and
Ripley (2002). The other kernel estimate employs Scott’s alternative unbiased cross-
validation bandwidth, and clearly performs somewhat better. Gallant and Nychka’s
(1987) Hermite series estimator also oversmooths when the order of the estimator is
chosen with their BIC criterion, but performs better when AIC order selection is used,
as illustrated in Figure 1(c). In Figure 1(d) we illustrate two variants of the most suc-
cessful of the student entries based on the logspline method of Kooperberg and Stone
(1991): one constrained to have positive support, the other unconstrained. Figure
1(e) illustrates two versions of the logspline estimator implemented by Gu (2002).
Finally, Figure 1(f) illustrates two versions of a total variation penalty estimator;
both versions employ a total variation penalty on the derivative of log f , and use in
addition to the 200 sample observations, 300 “virtual observations” equally spaced
between 0 and 25. These estimators were computed with the aid of the MOSEK pack-
age of E. D. Andersen, an implementation for MATLAB of the methods described
in Andersen and Ye (1998). The penalty method estimators all perform well in this
exercise, but the kernel and Hermite series estimators have difficulty coping with the
combination of sharp peaks and smoother foothills.

3. Bivariate Density Estimation

In nonparametric regression piecewise linear fitting is often preferable to piecewise
constant fitting. Thus, penalizing total variation of the gradient, ∇g, instead of total
variation of g itself, is desirable. For smooth functions we can extend the previous
definition by writing,

(7)
∨
Ω

∇g =

∫
Ω

‖∇2g‖,

where ‖ · ‖ can be taken to be the Hilbert-Schmidt norm, although other choices
are possible as discussed in Koenker and Mizera (2004). This penalty is closely
associated with the thin plate penalty that replaces ‖∇2g‖ with ‖∇2g‖2. The latter
penalty has received considerable attention, see e.g. Wahba (1990) and the references
cited therein. We would stress, however, that as in the univariate setting there are
important advantages in taking the square root.

For scattered data more typical of nonparametric regression applications, Koenker
and Mizera (2004) have proposed an alternative discretization of the total variation
penalty based on continuous, piecewise-linear functions defined on triangulations of a
convex, polyhedral domain. Following Hansen, Kooperberg, and Sardy (1998), such
functions are called triograms. The penalty (7) can be simplified for triograms by
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Figure 1. Comparison of Estimates of the 3-Sisters Density.
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summing the contributions over the edges of the triangulation,

(8)
∨
Ω

∇g =
∑

k

‖∇g+
ek
−∇g−ek

‖ ‖ek‖.

Each edge is associated with two adjacent triangles; the contribution of the edge is
simply the product of the Euclidean norm of the difference between the gradients on
the two triangles multiplied by the length of the edge. The interiors of the triangles,
since they are linear, contribute nothing to the total variation, nor do the vertices of
the triangulation. See Koenker and Mizera (2004) for further details.

Choice of the triangulation is potentially an important issue especially when the
number of vertices is small, but numerical stability favors the classical Delaunay tri-
angulation in most applications. Hansen and Kooperberg (2002) consider sequential
(greedy) model selection strategies for choosing a parsimonious triangulations for
nonparametric regression without relying on a penalty term. In contrast, Koenker
and Mizera (2004) employ the total variation penalty (8) to control the roughness of
the fit based on a much more profligate triangulation. As in the univariate setting it
is often advantageous to add virtual vertices that can improve the flexibility of the
fitted function.

Extending the penalized triogram approach to bivariate density estimation requires
us, as in the univariate case, to make a decision about what is to be penalized?
We will focus exclusively on total variation penalization of the log density with the
understanding that similar methods could be used for the density itself or another
(convex) transform.

Given independent observations {xi = (x1i, x2i) : i = 1, · · · , n} from a bivariate
density f(x), let g = log f , and consider the class of penalized maximum likelihood
estimators solving

max
g∈G

n∑
i=1

g(xi)− λJ(g),

where J is the triogram penalty, given by (8). The setA consists of triogram densities:
continuous functions from a polyhedral convex domain Ω to R+, piecewise linear on
a triangulation of Ω and satisfying the condition,∫

Ω

eg = 1.

It follows that log f can be parameterized by its function values at the vertices of
the triangulation. As in the univariate case, adding virtual vertices is advantageous
especially so in the region outside the convex hull of the observed data where they
provide a device to cope with tail behavior.
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Example. To illustrate the performance of our bivariate density estimator, we
consider the density

f2(x1, x2) = f(x2|x1)f(x1)

= 2φ(2(x2 −
√

x1)) · f1(x1),

where f1 is the univariate test density given above. Two views of this density can be
seen in the upper panels of Figure 2. There is one very sharp peak and two narrow
“fins”. In the two lower panels we depict views of a fitted density based on 1000
observations. The tuning parameter λ is taken to be 2, and the fit employs virtual
observations on a integer grid over the rectangle {[0, 30]× [0, 6]}.

4. Duality and Regularized Maximum Entropy

An important feature of convex optimization problems is that they may be reformu-
lated as dual problems, thereby often offering a complementary view of the problem
from the other side of the looking glass. In addition to providing deeper insight into
the interpretation of the problem as originally posed, dual formulations sometimes
yield substantial practical benefits in the form of gains in computational efficiency. In
our experience, the dual formulation of our computations exhibits substantially bet-
ter performance than the original penalized likelihood formulation. Execution times
are about 20 percent faster and convergence is more stable. We will show in this
section that total variation penalized maximum likelihood density estimation has a
dual formulation as regularized form of maximum entropy estimation.

As we have seen already, piecewise linear log density estimators can be represented
by a finite dimensional vector of function values

αi = g(xi) i = 1, · · · , m,

evaluated at knot locations, xi ∈ Ω. These points of evaluation can be sample obser-
vations or “virtual” observations, or a mixture of the two. They may be univariate,
bivariate, or in principle, higher dimensional. We approximate our integral by the
Riemann sum, ∫

Ω

eg ≈
m∑

i=1

cie
αi ,

a step that can be justified rigorously by introducing points of evaluation on a suffi-
ciently fine grid, but is also motivated by computational considerations. Provisionally,
we will set the tuning parameter λ = 1, so our primal problem is,

max{δ>α− ‖Dα‖1 |
∑

i

cie
αi = 1}. (P )

In the simplest case the vector δ ∈ R is composed of zeros and ones indicating which
elements of α correspond to sample points and thus contribute to the likelihood term.
In the case that the xi are all virtual, chosen to lie on a regular grid, for example,
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Figure 2. Bivariate 3-Sisters Density and an Estimate.
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we can write, δ = B1n, where B denotes an m by n matrix representing the n
sample observations expressed in terms of the virtual points, e.g. using barycentric
coordinates.

The integrability constraint can be conveniently incorporated into the objective
function using the following discretized version of a result of Silverman (1982).

Lemma 1. α̂ solves problem (P) if and only if α̂ maximizes,

R(α) = δ>α− ‖Dα‖1 − n
∑

i

cie
αi .

Proof. Note that any differential operator, D, annihilates constant functions, or the
vector of ones. Thus, evaluating R at α∗ = α− log

∑
cie

αi , so
∑

cie
α∗i = 1, we have

R(α∗) = R(α) + n
∑

i

cie
αi − n log

∑
i

cie
αi − 1,

but t− log t ≥ 1, for all t > 0 with equality only at t = 1. Thus, R(α∗) ≥ R(α), and
it follows that α̂ maximizes R if and only if α̂ maximizes R subject to

∑
i cie

αi = 1.
This constrained problem is equivalent to (P).

Introducing the artificial barrier vector β, the penalty contribution can be refor-
mulated slightly, and we can write (P) as,

max
α,β

{δ>α− 1>β −
∑

i

cie
αi | Dα ≤ β, −Dα ≤ β}.

We seek to minimize the Lagrangian,

L(α, β, ν1, ν2) = δ>α− 1>β − n
∑

cie
αi + ν>1 (Dα− β) + ν>2 (−Dα− β)

= (δ + D>(ν1 − ν2))
>α− (1− ν1 − ν2)1

>β − n
∑

cie
αi ,

subject to the feasibility constraints,

γ ≡ δ + D>(ν1 − ν2) ≥ 0, ν1 + ν2 = 1, ν1 ≥ 0, and ν2 ≥ 0.

Now, differentiating the Lagrangian expression with respect to the αi’s yields

∂L

∂αi

= δi − d>i (ν1 − ν2)− cie
αi = 0, i = 1, · · · , m.

Convexity assures that these conditions are satisfied at the unique optimum:

fi ≡ (δi − d>i (ν1 − ν2))/ci = eαi i = 1, · · · , m,

so we can rewrite our Lagrangian problem with C = diag(c) as

min{
∑

cifi log fi | f = C−1(δ + D>y) ≥ 0. ‖y‖∞ ≤ 1}.

Reintroducing the tuning parameter λ we obtain the final form of the dual problem.
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Theorem 1. Problem (P) has equivalent dual formulation

max{−
∑

cifi log fi | f = C−1(δ + D>y) ≥ 0, ‖y‖∞ ≤ λ}. (D)

Remarks:

(1) We can interpret the dual as a maximum entropy problem regularized by the
`∞ constraint on y with added requirement that an affine transformation of
the vector of dual variables, y, lies in the positive orthant.

(2) The `∞ constraint may be viewed as a generalized form of the tube constraint
associated with the taut string methods of Davies and Kovac (2004). In the
simplest setting, when total variation of the log density itself, rather than
its derivative, is employed as a penalty for univariate density estimation, D
is a finite difference operator and the dual vector, y, can be interpreted as a
shifted estimate of the distribution function constrained to lie in a band around
the empirical distribution function. In more general settings the geometric
interpretation of the constraints on the dual vector, y, in terms of the sample
data is somewhat less clear.

(3) The weights ci appearing in the objective function indicate that the sum may
be interpreted as a Riemann approximation to the entropy integral. Express-
ing the problem equivalently as the maximization of∑

i

cifi log
ci

cifi

+ log n

we arrive at an interpretation in terms of the Kullback-Leibler divergence,
K(φ, ν), of the probability distribution φ = (cifi), corresponding to the esti-
mated density f , from the probability distribution ν = n(ci), corresponding
to the density uniform over Ω. Thus, our proposal can be interpreted in terms
of regularized minimum distance estimation,

min{K(φ, ν)|φ = (δ + DT y) ≥ 0, ‖y‖∞ < λ},

a formulation not entirely surprising in the light of our knowledge about max-
imum likelihood estimation. The choice of the uniform “carrier” density could
be modified to obtain exponentially tilted families as described in Efron and
Tibshirani (1996).

(4) Density estimation methods based on maximum entropy go back at least to
Jaynes (1957). However, this literature has generally emphasized imposing
exact moment conditions, or to use the machine learning terminology, “fea-
tures,” on the estimated density. In contrast, our dual problem may be viewed
as a regularized maximum entropy approach that specifies “soft” feature con-
straints imposed as inequalities. Dud́ık, Phillips, and Schapire (2004) consider
a related maximum entropy density estimation problem with soft feature con-
straints. Donoho, Johnstone, Hoch, and Stern (1992) consider related penalty
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methods based on entropy for a class of regression type imaging and spec-
troscopy problems, and show that they have superior performance to linear
methods based on Gaussian likelihoods and priors.

5. Monte-Carlo

In this section we report the results of a small Monte-Carlo experiment designed
to compare the performance of the TV penalized estimator with three leading com-
petitors:

TS: The taut string estimator of Davies and Kovac (2005) using the default tun-
ing parameters embedded in the function pmden of their R package ftnonpar.

Kucv: The fixed bandwidth kernel density estimator implemented by the func-
tion density in the R stats package, employing Scott’s (1992) “unbiased
cross validation” bandwidth selection.

Kbcv: The fixed bandwidth density estimator as above, but using Scott’s biased
cross-validation bandwidth.

For purposes of the Monte-Carlo, automatic selection of λ for the TV estimator
was made according to the following recipe. Estimates were computed at the fixed
λ’s, {.1, .2, . . . , .9, 1.0}, using virtual observations on a grid, G, of 400 points equally
spaced on [−4, 4]. For each of these estimates the Kolmogorov distance between the

empirical distribution function of the sample, F̂n, and the smoothed empirical, F̃n,λ,
corresponding to the density estimate

κ(λ) ≡ K(F̂n, F̃n,λ) = max
xi∈G

|F̂n(xi)− F̃n,λ(xi)|

was computed. Based on preliminary investigation, log κ(λ) was found to be approxi-
mately linear in log λ, so we interpolated this log-linear relationship to find the λ that
made κ(λ) approximately equal to the cutoff cκ = .3/

√
n. The value .3 was chosen

utterly without any redeeming theoretical justification. In rare cases for which this
interpolation fails, i.e., λ̂ 6∈ [.1, 1], we use λ̂ = max{min{λ̂, 1}, .1}.

As candidate densities, we use the familiar Marron and Wand (1992) normal mix-
tures illustrated in Figure 1. Random samples from these densities were generated
in with the aid of the R nor1mix package of Mächler (2005). All computations for
the taut string and kernel estimators are conducted in R; computations for the TV
estimator are made in matlab with the aid of the PDCO function of Saunders (2004)
as described above using the sample data generated from R.

Three measures of performance are considered for each of the 16 test densities.
Table 1.1 reports the proportion replications for which each method obtained the
correct identification of the number of modes of the true density. Table 1.2 reports
median MIAE (mean integrated absolute error), and Table 1.3 reports median MISE
(mean integrated squared error).

Clearly, the taut-string estimator performs very well in identifying unimodal and
well separated bimodal densities, but it has more difficulties with the multimodal



Koenker and Mizera 15

−3 −1 1 2 3

0.
0

0.
2

0.
4

#1 Gaussian

−2 0 1 2 3

0.
0

0.
2

0.
4

#2 Skewed

−5 −3 −1 1

0.
0

0.
6

1.
2

#3 Str Skew

−2 0 1 2

0.
0

1.
0

#4 Kurtotic

−1.0 0.0 0.5 1.0

0
1

2
3

#5 Outlier

−2 0 2

0.
00

0.
15

0.
30

#6 Bimodal

−4 0 2 4

0.
0

0.
2

0.
4

#7 Separated

−3 −1 1 3

0.
0

0.
2

0.
4

#8 Asym Bim

−4 −2 0 2 4

0.
00

0.
15

0.
30

#9 Trimodal

−2 0 1 2

0.
0

0.
2

0.
4

0.
6

#10 Claw

−3 −1 1 3

0.
0

0.
2

0.
4

#11 Doub Claw

−3 −1 1 3

0.
0

0.
2

0.
4

#12 Asym Claw

−3 −1 1 3

0.
0

0.
2

0.
4

#13 As Do Claw

−4 0 2 4

0.
0

0.
2

0.
4

#14 Smoo Comb

−4 0 2 4

0.
0

0.
2

0.
4

#15 Disc Comb

−5 0 5

0.
0

0.
4

0.
8

1.
2

#16 Dist Bim

Figure 3. The Marron and Wand candidate densities.

cases. Unbiased cross-validation is generally inferior to biased cross-validation from
a mode identification viewpoint, producing too rough an estimate and therefore too
many modes.

Unbiased CV has quite good MIAE performance. Not surprisingly, it does best at
the normal model, but it is somewhat worse than our TV estimator for distributions
3, 4, 5, and 16. In the other cases the performance is quite comparable. The biased
CV kernel estimator is consistently inferior in MIAE except at the normal model. It
fails spectacularly for the sharply bimodel density number 16. The TV estimator is
not too bad from the MIAE perspective, consistently outperforming the taut-string
estimator by a substantial margin, and very competitive with the kernel estimators
except in the strictly Gaussian setting. Results for MISE are generally similar to
those for MIAE.



16 Total Variation Density Estimation

Distribution TV TS K-ucv K-bcv
MW 1 0.303 1.000 0.690 0.863
MW 2 0.304 1.000 0.354 0.456
MW 3 0.169 1.000 0.000 0.059
MW 4 0.152 1.000 0.000 0.176
MW 5 0.345 1.000 0.000 0.000
MW 6 0.634 0.329 0.718 0.937
MW 7 0.716 1.000 0.678 0.880
MW 8 0.522 0.067 0.279 0.592
MW 9 0.472 0.013 0.434 0.292
MW 10 0.680 0.528 0.000 0.001
MW 11 0.008 0.000 0.006 0.000
MW 12 0.438 0.014 0.017 0.000
MW 13 0.016 0.001 0.003 0.000
MW 14 0.056 0.021 0.000 0.014
MW 15 0.078 0.078 0.000 0.038
MW 16 0.914 1.000 0.000 1.000

Table 1. Proportion of correct estimates of the number of modes:
Sample size, n = 500 and number of replications R = 1000.

6. Prospects and Conclusions

Total variation penalty methods appear to have some distinct advantages when
estimating densities with sharply defined features. They also have attractive compu-
tational features arising from the convexity of the penalized likelihood formulation.

There are many enticing avenues for future research. There is considerable scope for
extending the investigation of dual formulations to other penalty functions and other
fitting criteria. It would also be valuable to explore a functional formulation of the
duality relationship. The extensive literature on covering numbers and Kolmogorov
entropy for functions of bounded variation can be deployed to study consistency
and rates of convergence. And inevitably there will be questions about automatic λ
selection. We hope to be able to address some of these issues in subsequent work.

References

Andersen, E., and Y. Ye (1998): “A computational study of the homogeneous algorithm for
large-scale convex optimization,” Computational Optimization and Applications, 10, 243–269.

Davies, P. L., and A. Kovac (2001): “Local extremes, runs, strings and multiresolution,” The
Annals of Statistics, 29, 1–65.

(2004): “Densities, Spectral Densities and Modality,” The Annals of Statistics, 32, 1093–
1136.



Koenker and Mizera 17

Distribution TV TS K-ucv K-bcv
MW 1 0.109 0.166 0.089 0.082
MW 2 0.109 0.173 0.099 0.092
MW 3 0.130 0.218 0.191 0.200
MW 4 0.143 0.212 0.199 0.202
MW 5 0.120 0.177 0.150 0.140
MW 6 0.110 0.187 0.105 0.104
MW 7 0.127 0.204 0.120 0.116
MW 8 0.113 0.187 0.116 0.124
MW 9 0.120 0.204 0.118 0.132
MW 10 0.190 0.289 0.190 0.348
MW 11 0.121 0.193 0.118 0.117
MW 12 0.178 0.262 0.182 0.274
MW 13 0.143 0.214 0.146 0.143
MW 14 0.225 0.295 0.222 0.279
MW 15 0.242 0.311 0.224 0.248
MW 16 0.129 0.201 0.140 1.279

Table 2. Median Integrated Absolute Error: Sample size, n = 500
and number of replications R = 1000.

(2005): “ftnonpar: Features and Strings for Nonparametric Regression,” http://cran.R-
project.org.

Donoho, D. L., I. M. Johnstone, J. C. Hoch, and A. S. Stern (1992): “Maximum entropy
and the nearly black object,” J. R. Stat. Soc. (B), 54, 41–67.

Dud́ık, M., S. Phillips, and R. Schapire (2004): “Performance Guarantees for Regularized
Maximum Entropy Density Estimation,” in Proceedings of the 17th Annual Conference on Com-
putational Learning Theory, ed. by J. Shawe-Taylor, and Y. Singer.

Efron, B., and R. Tibshirani (1996): “Using Specially Designed Exponential Families for Den-
sity Estimation,” The Annals of Statistics, 24, 2431–2461.

Eggermont, P., and V. LaRiccia (2001): Maximum Penalized Likelihood Estimation. Springer-
Verlag.

Gallant, A. R., and D. W. Nychka (1987): “Semi-nonparametric maximum likelihood estima-
tion,” Econometrica, 55, 363–390.

Good, I. J. (1971): “A nonparametric roughness penalty for probability densities,” Nature, 229,
29–30.

Good, I. J., and R. A. Gaskins (1971): “Nonparametric roughness penalties for probability
densities,” Biometrika, 58, 255–277.

Gu, C. (2002): Smoothing spline ANOVA models. Springer-Verlag.
Gu, C. (2005): “gss: An R Package for general smoothing splines,” R package version 0.9-3,
http://cran.R-project.org.

Hall, P., and M. C. Minnotte (2002): “High order data sharpening for density estimation,”
Journal of the Royal Statistical Society, B,, 64(1), 141–157.



18 Total Variation Density Estimation

Distribution TV TS K-ucv K-bcv
MW 1 0.0039 0.0074 0.0021 0.0018
MW 2 0.0042 0.0088 0.0028 0.0024
MW 3 0.0096 0.0468 0.0162 0.0280
MW 4 0.0117 0.0293 0.0163 0.0202
MW 5 0.0241 0.0577 0.0220 0.0183
MW 6 0.0037 0.0090 0.0029 0.0027
MW 7 0.0052 0.0121 0.0041 0.0037
MW 8 0.0042 0.0095 0.0041 0.0050
MW 9 0.0042 0.0104 0.0037 0.0043
MW 10 0.0163 0.0393 0.0137 0.0468
MW 11 0.0049 0.0101 0.0045 0.0043
MW 12 0.0118 0.0225 0.0115 0.0223
MW 13 0.0072 0.0136 0.0073 0.0071
MW 14 0.0200 0.0310 0.0174 0.0276
MW 15 0.0226 0.0334 0.0168 0.0231
MW 16 0.0147 0.0349 0.0145 0.5596

Table 3. Median Integrated Squared Error: Sample size, n = 500 and
number of replications R = 1000.

Hansen, M., and C. Kooperberg (2002): “Spline Adaptation in Extended Linear Models,”
Statistical Science, 17, 2–51.

Hansen, M., C. Kooperberg, and S. Sardy (1998): “Triogram Models,” J. Am. Stat. Assoc.,
93, 101–119.

Jaynes, E. (1957): “Information theory and statistical mechanics,” Physics Review, 106, 620–630.
Klonias, V. K. (1991): “The influence function of maximum penalized likelihood density estima-
tors,” in Nonparametric Functional Estimation and Related Topics, ed. by G. Roussas. Kluwer.

Koenker, R., and I. Mizera (2002): “Comment on Hansen and Kooperberg: Spline Adaptation
in Extended Linear Models,” Statistical Science, 17, 30–31.

(2004): “Penalized triograms: total variation regularization for bivariate smoothing,” J.
R. Stat. Soc. (B), 66, 145–163.

Koenker, R., P. Ng, and S. Portnoy (1994): “Quantile Smoothing Splines,” Biometrika, 81,
673–680.

Kooperberg, C., and C. J. Stone (1991): “A Study of Logspline Density Estimation,” Com-
putational Statistics and Data Analysis, 12, 327–347.

Leonard, T. (1978): “Density estimation, stochastic processes and prior information,” J. R. Stat.
Soc. (B), 40, 113–132.
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